

    
      
          
            
  [image: menu]

pygamelib - documentation


Forewords

Historically, this library was (and still is) used as a base to teach coding to kids
from 6 to 15. It aims at giving an environment to new and learning developers (including
kids) that let them focus on the algorithm instead of the lousy display or precise
management.

It started as a very simple library with very little capabilities, but over time it
became something more. To the point that it is now possible to make very decent terminal
games with it.

So this is obviously still extremely simple compared to other game framework and it
still does not have the pretention of being anything serious for real game developers.
However, it can now be used by aspiring game developers for an introduction to 2D games
development.



Introduction

First of all, his module is exclusively compatible with python 3.6+.

The core concept is that writting a game mostly involve the
Game object, the Board object and
the derivatives of board_items.

More advanced game will use the ui module to create terminal user interfaces
(or TUI) and the GFX core module to improve the graphics with
Sprite and Color.

Here is an example of what the current version allow to build:


  
    
    

    actuators
    

    

    
 
  

    
      
          
            
  
actuators

This module contains the base classes for simple and advanced actuators.
These classes are the base contract for actuators.
If you wish to create your own one, you need to inherit from one of these base class.



	Actuator
	Actuator
	Actuator.__init__()

	Actuator.attach()

	Actuator.detach()

	Actuator.handle_notification()

	Actuator.load()

	Actuator.next_move()

	Actuator.notify()

	Actuator.pause()

	Actuator.screen_column

	Actuator.screen_row

	Actuator.serialize()

	Actuator.start()

	Actuator.stop()

	Actuator.store_screen_position()









	Behavioral
	Behavioral
	Behavioral.__init__()

	Behavioral.attach()

	Behavioral.detach()

	Behavioral.handle_notification()

	Behavioral.load()

	Behavioral.next_action()

	Behavioral.next_move()

	Behavioral.notify()

	Behavioral.pause()

	Behavioral.screen_column

	Behavioral.screen_row

	Behavioral.serialize()

	Behavioral.start()

	Behavioral.stop()

	Behavioral.store_screen_position()









	PathActuator
	PathActuator
	PathActuator.__init__()

	PathActuator.attach()

	PathActuator.detach()

	PathActuator.handle_notification()

	PathActuator.load()

	PathActuator.next_move()

	PathActuator.notify()

	PathActuator.pause()

	PathActuator.screen_column

	PathActuator.screen_row

	PathActuator.serialize()

	PathActuator.set_path()

	PathActuator.start()

	PathActuator.stop()

	PathActuator.store_screen_position()









	PatrolActuator
	PatrolActuator
	PatrolActuator.__init__()

	PatrolActuator.attach()

	PatrolActuator.detach()

	PatrolActuator.handle_notification()

	PatrolActuator.load()

	PatrolActuator.next_move()

	PatrolActuator.notify()

	PatrolActuator.pause()

	PatrolActuator.screen_column

	PatrolActuator.screen_row

	PatrolActuator.serialize()

	PatrolActuator.set_path()

	PatrolActuator.start()

	PatrolActuator.stop()

	PatrolActuator.store_screen_position()









	PathFinder
	PathFinder
	PathFinder.__init__()

	PathFinder.add_waypoint()

	PathFinder.attach()

	PathFinder.clear_waypoints()

	PathFinder.current_path()

	PathFinder.current_waypoint()

	PathFinder.detach()

	PathFinder.find_path()

	PathFinder.handle_notification()

	PathFinder.load()

	PathFinder.next_action()

	PathFinder.next_move()

	PathFinder.next_waypoint()

	PathFinder.notify()

	PathFinder.pause()

	PathFinder.remove_waypoint()

	PathFinder.screen_column

	PathFinder.screen_row

	PathFinder.serialize()

	PathFinder.set_destination()

	PathFinder.start()

	PathFinder.stop()

	PathFinder.store_screen_position()









	RandomActuator
	RandomActuator
	RandomActuator.__init__()

	RandomActuator.attach()

	RandomActuator.detach()

	RandomActuator.handle_notification()

	RandomActuator.load()

	RandomActuator.moveset

	RandomActuator.next_move()

	RandomActuator.notify()

	RandomActuator.pause()

	RandomActuator.screen_column

	RandomActuator.screen_row

	RandomActuator.serialize()

	RandomActuator.start()

	RandomActuator.stop()

	RandomActuator.store_screen_position()









	UnidirectionalActuator
	UnidirectionalActuator
	UnidirectionalActuator.__init__()

	UnidirectionalActuator.attach()

	UnidirectionalActuator.detach()

	UnidirectionalActuator.handle_notification()

	UnidirectionalActuator.load()

	UnidirectionalActuator.next_move()

	UnidirectionalActuator.notify()

	UnidirectionalActuator.pause()

	UnidirectionalActuator.screen_column

	UnidirectionalActuator.screen_row

	UnidirectionalActuator.serialize()

	UnidirectionalActuator.start()

	UnidirectionalActuator.stop()

	UnidirectionalActuator.store_screen_position()
















            

          

      

      

    

  

  
    
    

    Actuator
    

    

    
 
  

    
      
          
            
  
Actuator


	
class pygamelib.actuators.Actuator(parent: BoardItem | None)

	Bases: PglBaseObject

Actuator is the base class for all Actuators. It is mainly a contract class with
some utility methods.

By default, all actuators are considered movement actuators. So the base class only
require next_move() to be implemented.


	Parameters:

	parent – the item parent.






	
__init__(parent: BoardItem | None)

	The constructor take only one (positional) parameter: the parent object.


Important

The default state of ALL actuators is RUNNING. If you want your
actuator to be in a different state (PAUSED for example), you have to do it
yourself.







Methods



	__init__(parent)

	The constructor take only one (positional) parameter: the parent object.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load serialized data, create and returns a new actuator out of these data.



	next_move()

	That method needs to be implemented by all actuators or a NotImplementedError exception will be raised.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	pause()

	Set the actuator state to PAUSED.



	serialize()

	Serializes the actuator and returns it as a dict.



	start()

	Set the actuator state to RUNNING.



	stop()

	Set the actuator state to STOPPED.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
load(data: dict) → Actuator

	Load serialized data, create and returns a new actuator out of these data.

That method needs to be implemented by all actuators or a NotImplementedError
exception will be raised.


	Raises:

	NotImplementedError










	
next_move() → Vector2D | int

	That method needs to be implemented by all actuators or a NotImplementedError
exception will be raised.


	Raises:

	NotImplementedError



	Returns:

	Vector2D | int










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serializes the actuator and returns it as a dict.

That method needs to be implemented by all actuators or a NotImplementedError
exception will be raised.


	Raises:

	NotImplementedError










	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()










	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)
















            

          

      

      

    

  

  
    
    

    Behavioral
    

    

    
 
  

    
      
          
            
  
Behavioral


	
class pygamelib.actuators.Behavioral(parent: BoardItem | None)

	Bases: Actuator

The behavioral actuator is inheriting from Actuator and is adding a next_action()
method.
The actual actions are left to the actuator that implements Behavioral.


	Parameters:

	parent – the item parent.






	
__init__(parent: BoardItem | None)

	The constructor simply construct an Actuator. It takes on positional parameter:
the parent object.





Methods



	__init__(parent)

	The constructor simply construct an Actuator.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load serialized data, create and returns a new actuator out of these data.



	next_action()

	That method needs to be implemented by all behavioral actuators or a NotImplementedError exception will be raised.



	next_move()

	That method needs to be implemented by all actuators or a NotImplementedError exception will be raised.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	pause()

	Set the actuator state to PAUSED.



	serialize()

	Serializes the actuator and returns it as a dict.



	start()

	Set the actuator state to RUNNING.



	stop()

	Set the actuator state to STOPPED.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
load(data: dict) → Actuator

	Load serialized data, create and returns a new actuator out of these data.

That method needs to be implemented by all actuators or a NotImplementedError
exception will be raised.


	Raises:

	NotImplementedError










	
next_action()

	That method needs to be implemented by all behavioral actuators or a
NotImplementedError exception will be raised.


	Raises:

	NotImplementedError










	
next_move() → Vector2D | int

	That method needs to be implemented by all actuators or a NotImplementedError
exception will be raised.


	Raises:

	NotImplementedError



	Returns:

	Vector2D | int










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serializes the actuator and returns it as a dict.

That method needs to be implemented by all actuators or a NotImplementedError
exception will be raised.


	Raises:

	NotImplementedError










	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()










	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)
















            

          

      

      

    

  

  
    
    

    PathActuator
    

    

    
 
  

    
      
          
            
  
PathActuator


	
class pygamelib.actuators.PathActuator(path: List[int] | None = None, parent: BoardItem | None = None)

	Bases: Actuator

The path actuator is a subclass of
Actuator.
The move inside the function next_move
depends on path and index. If the state is not running it returns None
otherwise it increments the index & then, further compares the index
with length of the path. If they both are same then, index is set to
value zero and the move is returned back.


	Parameters:

	
	path (list) – A list of paths.


	parent (pygamelib.board_items.BoardItem) – The parent object to actuate.









	
__init__(path: List[int] | None = None, parent: BoardItem | None = None)

	The constructor take only one (positional) parameter: the parent object.


Important

The default state of ALL actuators is RUNNING. If you want your
actuator to be in a different state (PAUSED for example), you have to do it
yourself.







Methods



	__init__([path, parent])

	The constructor take only one (positional) parameter: the parent object.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new PathActuator out of it.



	next_move()

	Return the movement based on current index



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	pause()

	Set the actuator state to PAUSED.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_path(path)

	Defines a new path



	start()

	Set the actuator state to RUNNING.



	stop()

	Set the actuator state to STOPPED.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data: dict) → PathActuator

	Load data and create a new PathActuator out of it.


	Parameters:

	data (dict) – Data to create a new actuator (usually generated by
serialize())



	Returns:

	A new actuator.



	Return type:

	PathActuator





Example:

path_actuator = PathActuator.load(actuator_data)










	
next_move() → int

	Return the movement based on current index

The movement is selected from path if state is RUNNING, otherwise
it returns NO_DIR from the constants module. When state is
RUNNING, the movement is selected before incrementing the index by 1. When the
index equal the length of path, the index should return back to 0.


	Returns:

	The next movement



	Return type:

	int | pygamelib.constants.Direction.NO_DIR





Example:

path_actuator.next_move()










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_path(path: List[int])

	Defines a new path

This will also reset the index back to 0.


	Parameters:

	path (list) – A list of movements.





Example:

path_actuator.set_path([Direction.UP,Direction.DOWN,Direction.LEFT,Direction.RIGHT])










	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()










	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)
















            

          

      

      

    

  

  
    
    

    PatrolActuator
    

    

    
 
  

    
      
          
            
  
PatrolActuator


	
class pygamelib.actuators.PatrolActuator(path: List[int] | None = None, parent: BoardItem | None = None)

	Bases: PathActuator

The patrol actuator is a subclass of
PathActuator.  The move inside the function
next_move depends on path and index and the mode. Once it reaches the end
of the move list it will start cycling back to the beginning of the list.
Once it reaches the beginning it will start moving forwards
If the state is not running it returns None otherwise it increments the
index & then, further compares the index with length of the path.
If they both are same then, index is set to value zero and the move is
returned back.


	Parameters:

	path (list) – A list of directions.






	
__init__(path: List[int] | None = None, parent: BoardItem | None = None)

	The constructor take only one (positional) parameter: the parent object.


Important

The default state of ALL actuators is RUNNING. If you want your
actuator to be in a different state (PAUSED for example), you have to do it
yourself.







Methods



	__init__([path, parent])

	The constructor take only one (positional) parameter: the parent object.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new PatrolActuator out of it.



	next_move()

	Return the movement based on current index



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	pause()

	Set the actuator state to PAUSED.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_path(path)

	Defines a new path



	start()

	Set the actuator state to RUNNING.



	stop()

	Set the actuator state to STOPPED.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data: dict) → PatrolActuator

	Load data and create a new PatrolActuator out of it.


	Parameters:

	data (dict) – Data to create a new actuator (usually generated by
serialize())



	Returns:

	A new actuator.



	Return type:

	PatrolActuator





Example:

patrol_actuator = PatrolActuator.load(actuator_data)










	
next_move() → int

	Return the movement based on current index

The movement is selected from path if state is RUNNING, otherwise it returns
NO_DIR from the constants module. When state is RUNNING,
the movement is selected before incrementing the index by 1. When the index
equals the length of path, the index should return back to 0 and the path list
should be reversed before the next call.


	Returns:

	The next movement



	Return type:

	int | pygamelib.constants.Direction.NO_DIR





Example:

patrol_actuator.next_move()










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_path(path: List[int])

	Defines a new path

This will also reset the index back to 0.


	Parameters:

	path (list) – A list of movements.





Example:

path_actuator.set_path([Direction.UP,Direction.DOWN,Direction.LEFT,Direction.RIGHT])










	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()










	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)
















            

          

      

      

    

  

  
    
    

    PathFinder
    

    

    
 
  

    
      
          
            
  
PathFinder


	
class pygamelib.actuators.PathFinder(game: engine.Game | None = None, actuated_object: board_items.BoardItem | None = None, circle_waypoints=True, parent: board_items.BoardItem | None = None, algorithm=Algorithm.BFS)

	Bases: Behavioral


Important

This module assume a one step movement.
If you need more than one step, you will need to sub-class
this module and re-implement next_waypoint().



This actuator is a bit different than the simple actuators
(SimpleActuators) as it requires
the knowledge of both the game object and the actuated object.

The constructor takes the following parameters:


	Parameters:

	
	game (pygamelib.engine.Game) – A reference to the instantiated game engine.


	actuated_object (pygamelib.board_items.BoardItem) – The object to actuate. Deprecated in favor of parent.
Only kept for backward compatibility.


	parent (pygamelib.board_items.BoardItem) – The parent object to actuate.


	circle_waypoints (bool) – If True the next_waypoint()
method is going to circle between the waypoints
(when the last is visited, go back to the first)


	algorithm (constant) – ALGO_BFS - BFS, ALGO_ASTAR - AStar









	
__init__(game: engine.Game | None = None, actuated_object: board_items.BoardItem | None = None, circle_waypoints=True, parent: board_items.BoardItem | None = None, algorithm=Algorithm.BFS)

	The constructor simply construct an Actuator. It takes on positional parameter:
the parent object.





Methods



	__init__([game, actuated_object, ...])

	The constructor simply construct an Actuator.



	add_waypoint(row, column)

	Add a waypoint to the list of waypoints.



	attach(observer)

	Attach an observer to this instance.



	clear_waypoints()

	Empty the waypoints stack.



	current_path()

	This method simply return a copy of the current path of the actuator.



	current_waypoint()

	Return the currently active waypoint.



	detach(observer)

	Detach an observer from this instance.



	find_path()

	Find a path to the destination.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new PathFinder out of it.



	next_action()

	That method needs to be implemented by all behavioral actuators or a NotImplementedError exception will be raised.



	next_move()

	This method return the next move calculated by this actuator.



	next_waypoint()

	Return the next active waypoint.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	pause()

	Set the actuator state to PAUSED.



	remove_waypoint(row, column)

	Remove a waypoint from the stack.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_destination([row, column])

	Set the targeted destination.



	start()

	Set the actuator state to RUNNING.



	stop()

	Set the actuator state to STOPPED.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
add_waypoint(row: int, column: int)

	Add a waypoint to the list of waypoints.

Waypoints are used one after the other on a FIFO basis
(First In, First Out).

If not destination (i.e destination == (None, None)) have been set yet, that
method sets it.


	Parameters:

	
	row (int) – The “row” part of the waypoint’s coordinate.


	column – The “column” part of the waypoint’s coordinate.






	Raises:

	PglInvalidTypeException – If any of the parameters is not an int.





Example:

pf = PathFinder(game=mygame, actuated_object=npc1)
pf.add_waypoint(3,5)
pf.add_waypoint(12,15)










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
clear_waypoints()

	Empty the waypoints stack.

Example:

pf.clear_waypoints()










	
current_path() → List[Tuple[int, int]]

	This method simply return a copy of the current path of the actuator.

The current path is to be understood as: the list of positions still
remaining. All positions that have already been gone through are
removed from the stack.


Important

A copy of the path is returned for every call to that
function so be wary of the performances impact.



Example:

mykillernpc.actuator = PathFinder(
                        game=mygame,
                        actuated_object=mykillernpc
                    )
mykillernpc.actuator.set_destination(
                        mygame.player.pos[0],
                        mygame.player.pos[1]
                    )
mykillernpc.actuator.find_path()
for i in mykillernpc.actuator.current_path():
    print(i)










	
current_waypoint() → Tuple[int | None, int | None]

	Return the currently active waypoint.

If no waypoint have been added, this function return None.


	Returns:

	Either a None tuple or the current waypoint.



	Return type:

	A None tuple or a tuple of integer.





Example:

(row,column) = pf.current_waypoint()
pf.set_destination(row,column)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
find_path() → List[Tuple[int, int]]

	Find a path to the destination.

Destination (PathFinder.destination) has to be set beforehand.

Example:

mykillernpc.actuator = PathFinder(
        game=mygame, actuated_object=mykillernpc
    )
mykillernpc.actuator.set_destination(
        mygame.player.pos[0], mygame.player.pos[1]
    )
mykillernpc.actuator.find_path()






Warning

PathFinder.destination is a tuple!
Please use PathFinder.set_destination(x,y) to avoid problems.



Path Finding Algorithm Description:

Breadth First Search:
This method implements a Breadth First Search algorithm
(Wikipedia: BFS [https://en.wikipedia.org/wiki/Breadth-first_search])
to find the shortest path to destination.

A* Search:
This method implements a A* Search algorithm
(Wikipedia: A* [https://en.wikipedia.org/wiki/A*_search_algorithm])
to find the shortest path to destination.






	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data: dict) → PathFinder

	Load data and create a new PathFinder out of it.


	Parameters:

	data (dict) – Data to create a new actuator (usually generated by
serialize())



	Returns:

	A new actuator.



	Return type:

	PathFinder





Example:

path_finder = PathFinder.load(actuator_data)










	
next_action()

	That method needs to be implemented by all behavioral actuators or a
NotImplementedError exception will be raised.


	Raises:

	NotImplementedError










	
next_move() → int

	This method return the next move calculated by this actuator.

In the case of this PathFinder actuator, next move does the following:



	If the destination is not set return NO_DIR             (see constants)          - If the destination is set, but the path is empty and actuated             object’s position is different from destination:             call find_path()


	Look at the current waypoint, if the actuated object is not at             that position return a direction from the             constants module. The direction is calculated             from the difference between actuated object’s position and             waypoint’s position.


	If the actuated object is at the waypoint position, then call             next_waypoint(), set the destination and return a direction.             In this case, also call find_path().


	In any case, if there is no more waypoints in the path this method             returns NO_DIR (see constants)







Example:

seeker = NPC(model=graphics.Models.SKULL)
seeker.actuator = PathFinder(game=mygame,actuated_object=seeker)
while True:
    seeker.actuator.set_destination(mygame.player.pos[0],mygame.player.pos[1])
    # next_move() will call find_path() for us.
    next_move = seeker.actuator.next_move()
    if next_move == Direction.NO_DIR:
        seeker.actuator.set_destination(mygame.player.pos[0],mygame.player.pos[1])
    else:
        mygame.current_board().move(seeker,next_move,1)










	
next_waypoint() → Tuple[int | None, int | None]

	Return the next active waypoint.

If no waypoint have been added, this function return None.
If there is no more waypoint in the stack:


	if PathFinder.circle_waypoints is True this function reset the         waypoints stack and return the first one.


	else, return None.





	Returns:

	Either a None tuple or the next waypoint.



	Return type:

	A None tuple or a tuple of integer.





Example:

pf.circle_waypoints = True
(row,column) = pf.next_waypoint()
pf.set_destination(row,column)










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()










	
remove_waypoint(row: int, column: int)

	Remove a waypoint from the stack.

This method removes the first occurrence of a waypoint in the stack.

If the waypoint cannot be found, it raises a ValueError exception.
If the row and column parameters are not int, an
PglInvalidTypeException is raised.


	Parameters:

	
	row (int) – The “row” part of the waypoint’s coordinate.


	column – The “column” part of the waypoint’s coordinate.






	Raises:

	
	PglInvalidTypeException – If any of the parameters is not an int.


	ValueError – If the waypoint is not found in the stack.








Example:

path_finder.remove_waypoint(2,5)










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_destination(row: int = 0, column: int = 0)

	Set the targeted destination.


	Parameters:

	
	row (int) – “row” coordinate on the board grid


	column (int) – “column” coordinate on the board grid






	Raises:

	PglInvalidTypeException – if row or column are not int.





Example:

mykillernpc.actuator.set_destination(
    mygame.player.pos[0], mygame.player.pos[1]
)










	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()










	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)
















            

          

      

      

    

  

  
    
    

    RandomActuator
    

    

    
 
  

    
      
          
            
  
RandomActuator


	
class pygamelib.actuators.RandomActuator(moveset: List[Vector2D | int] | None = None, parent: BoardItem | None = None)

	Bases: Actuator

A class that implements a random choice of movement.

The random actuator is a subclass of
Actuator.
It is simply implementing a random choice in a predefined move set.


	Parameters:

	
	moveset (list) – A list of movements.


	parent (pygamelib.board_items.BoardItem) – The parent object to actuate.









	
__init__(moveset: List[Vector2D | int] | None = None, parent: BoardItem | None = None)

	The constructor take only one (positional) parameter: the parent object.


Important

The default state of ALL actuators is RUNNING. If you want your
actuator to be in a different state (PAUSED for example), you have to do it
yourself.







Methods



	__init__([moveset, parent])

	The constructor take only one (positional) parameter: the parent object.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new RandomActuator out of it.



	next_move()

	Return a randomly selected movement



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	pause()

	Set the actuator state to PAUSED.



	serialize()

	Return a dictionary with all the attributes of this object.



	start()

	Set the actuator state to RUNNING.



	stop()

	Set the actuator state to STOPPED.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	moveset

	Return the moveset.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data: dict) → RandomActuator

	Load data and create a new RandomActuator out of it.


	Parameters:

	data (dict) – Data to create a new actuator (usually generated by
serialize())



	Returns:

	A new actuator.



	Return type:

	RandomActuator





Example:

npc2.actuator = actuators.RandomActuator.load( npc1.actuator.serialize() )










	
property moveset: List[Vector2D | int]

	Return the moveset.


	Returns:

	The moveset.



	Return type:

	list










	
next_move() → Vector2D | int

	Return a randomly selected movement

The movement is randomly selected from moveset if state is RUNNING,
otherwise it returns NO_DIR from the constants module.


	Returns:

	The next movement Vector2D | int





Example:

random_actuator.next_move()










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()










	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)
















            

          

      

      

    

  

  
    
    

    UnidirectionalActuator
    

    

    
 
  

    
      
          
            
  
UnidirectionalActuator


	
class pygamelib.actuators.UnidirectionalActuator(direction: int = Direction.RIGHT, parent: BoardItem | None = None)

	Bases: Actuator

A class that implements a single movement.

The unidirectional actuator is a subclass of
Actuator.
It is simply implementing a mono directional movement. It is primarily target at
projectiles.


	Parameters:

	
	direction (int) – A single direction from the Constants module.


	parent (pygamelib.board_items.BoardItem) – The parent object to actuate.









	
__init__(direction: int = Direction.RIGHT, parent: BoardItem | None = None)

	The constructor take only one (positional) parameter: the parent object.


Important

The default state of ALL actuators is RUNNING. If you want your
actuator to be in a different state (PAUSED for example), you have to do it
yourself.







Methods



	__init__([direction, parent])

	The constructor take only one (positional) parameter: the parent object.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new UnidirectionalActuator out of it.



	next_move()

	Return the direction.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	pause()

	Set the actuator state to PAUSED.



	serialize()

	Return a dictionary with all the attributes of this object.



	start()

	Set the actuator state to RUNNING.



	stop()

	Set the actuator state to STOPPED.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data: dict) → UnidirectionalActuator

	Load data and create a new UnidirectionalActuator out of it.


	Parameters:

	data (dict) – Data to create a new actuator (usually generated by
serialize())



	Returns:

	A new actuator.



	Return type:

	UnidirectionalActuator





Example:

unidir_actuator = UnidirectionalActuator.load(actuator_data)










	
next_move() → int

	Return the direction.

The movement is always direction if state is RUNNING,
otherwise it returns NO_DIR from the constants module.


	Returns:

	The next movement



	Return type:

	int | pygamelib.Direction.NO_DIR





Example:

unidirectional_actuator.next_move()










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()










	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)
















            

          

      

      

    

  

  
    
    

    assets
    

    

    
 
  

    
      
          
            
  
assets

The assets sub-module holds all the classes that are adding features without being core
features. The graphics module is a good example of that: it is cool to have and provides
a nice default set of assets to build games. But the library can work without it.



	graphics
	Blocks
	Blocks
	Blocks.__init__()

	Blocks.DARK_SHADE

	Blocks.FULL_BLOCK

	Blocks.LEFT_FIVE_EIGHTHS_BLOCK

	Blocks.LEFT_HALF_BLOCK

	Blocks.LEFT_ONE_EIGHTH_BLOCK

	Blocks.LEFT_ONE_QUARTER_BLOCK

	Blocks.LEFT_SEVEN_EIGHTHS_BLOCK

	Blocks.LEFT_THREE_EIGHTHS_BLOCK

	Blocks.LEFT_THREE_QUARTERS_BLOCK

	Blocks.LIGHT_SHADE

	Blocks.LOWER_FIVE_EIGHTHS_BLOCK

	Blocks.LOWER_HALF_BLOCK

	Blocks.LOWER_ONE_EIGHTH_BLOCK

	Blocks.LOWER_ONE_QUARTER_BLOCK

	Blocks.LOWER_SEVEN_EIGHTHS_BLOCK

	Blocks.LOWER_THREE_EIGHTHS_BLOCK

	Blocks.LOWER_THREE_QUARTERS_BLOCK

	Blocks.MEDIUM_SHADE

	Blocks.QUADRANT_LOWER_LEFT

	Blocks.QUADRANT_LOWER_RIGHT

	Blocks.QUADRANT_UPPER_LEFT

	Blocks.QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT

	Blocks.QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT

	Blocks.QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT

	Blocks.QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT

	Blocks.QUADRANT_UPPER_RIGHT

	Blocks.QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT

	Blocks.QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT

	Blocks.RIGHT_HALF_BLOCK

	Blocks.RIGHT_ONE_EIGHTH_BLOCK

	Blocks.UPPER_HALF_BLOCK

	Blocks.UPPER_ONE_EIGHTH_BLOCK









	BoxDrawings
	BoxDrawings
	BoxDrawings.__init__()

	BoxDrawings.DOUBLE_DOWN_AND_HORIZONTAL

	BoxDrawings.DOUBLE_DOWN_AND_LEFT

	BoxDrawings.DOUBLE_DOWN_AND_RIGHT

	BoxDrawings.DOUBLE_HORIZONTAL

	BoxDrawings.DOUBLE_UP_AND_HORIZONTAL

	BoxDrawings.DOUBLE_UP_AND_LEFT

	BoxDrawings.DOUBLE_UP_AND_RIGHT

	BoxDrawings.DOUBLE_VERTICAL

	BoxDrawings.DOUBLE_VERTICAL_AND_HORIZONTAL

	BoxDrawings.DOUBLE_VERTICAL_AND_LEFT

	BoxDrawings.DOUBLE_VERTICAL_AND_RIGHT

	BoxDrawings.DOWN_DOUBLE_AND_HORIZONTAL_SINGLE

	BoxDrawings.DOWN_DOUBLE_AND_LEFT_SINGLE

	BoxDrawings.DOWN_DOUBLE_AND_RIGHT_SINGLE

	BoxDrawings.DOWN_HEAVY_AND_HORIZONTAL_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_LEFT_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_LEFT_UP_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_RIGHT_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_RIGHT_UP_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT

	BoxDrawings.DOWN_LIGHT_AND_HORIZONTAL_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_LEFT_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_LEFT_UP_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_RIGHT_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_RIGHT_UP_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY

	BoxDrawings.DOWN_SINGLE_AND_HORIZONTAL_DOUBLE

	BoxDrawings.DOWN_SINGLE_AND_LEFT_DOUBLE

	BoxDrawings.DOWN_SINGLE_AND_RIGHT_DOUBLE

	BoxDrawings.HEAVY_DOUBLE_DASH_HORIZONTAL

	BoxDrawings.HEAVY_DOUBLE_DASH_VERTICAL

	BoxDrawings.HEAVY_DOWN

	BoxDrawings.HEAVY_DOWN_AND_HORIZONTAL

	BoxDrawings.HEAVY_DOWN_AND_LEFT

	BoxDrawings.HEAVY_DOWN_AND_RIGHT

	BoxDrawings.HEAVY_HORIZONTAL

	BoxDrawings.HEAVY_LEFT

	BoxDrawings.HEAVY_LEFT_AND_LIGHT_RIGHT

	BoxDrawings.HEAVY_QUADRUPLE_DASH_HORIZONTAL

	BoxDrawings.HEAVY_QUADRUPLE_DASH_VERTICAL

	BoxDrawings.HEAVY_RIGHT

	BoxDrawings.HEAVY_TRIPLE_DASH_HORIZONTAL

	BoxDrawings.HEAVY_TRIPLE_DASH_VERTICAL

	BoxDrawings.HEAVY_UP

	BoxDrawings.HEAVY_UP_AND_HORIZONTAL

	BoxDrawings.HEAVY_UP_AND_LEFT

	BoxDrawings.HEAVY_UP_AND_LIGHT_DOWN

	BoxDrawings.HEAVY_UP_AND_RIGHT

	BoxDrawings.HEAVY_VERTICAL

	BoxDrawings.HEAVY_VERTICAL_AND_HORIZONTAL

	BoxDrawings.HEAVY_VERTICAL_AND_LEFT

	BoxDrawings.HEAVY_VERTICAL_AND_RIGHT

	BoxDrawings.LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT

	BoxDrawings.LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT

	BoxDrawings.LEFT_HEAVY_AND_RIGHT_UP_LIGHT

	BoxDrawings.LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT

	BoxDrawings.LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY

	BoxDrawings.LEFT_LIGHT_AND_RIGHT_UP_HEAVY

	BoxDrawings.LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY

	BoxDrawings.LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT

	BoxDrawings.LIGHT_ARC_DOWN_AND_LEFT

	BoxDrawings.LIGHT_ARC_DOWN_AND_RIGHT

	BoxDrawings.LIGHT_ARC_UP_AND_LEFT

	BoxDrawings.LIGHT_ARC_UP_AND_RIGHT

	BoxDrawings.LIGHT_DIAGONAL_CROSS

	BoxDrawings.LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT

	BoxDrawings.LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT

	BoxDrawings.LIGHT_DOUBLE_DASH_HORIZONTAL

	BoxDrawings.LIGHT_DOUBLE_DASH_VERTICAL

	BoxDrawings.LIGHT_DOWN

	BoxDrawings.LIGHT_DOWN_AND_HORIZONTAL

	BoxDrawings.LIGHT_DOWN_AND_LEFT

	BoxDrawings.LIGHT_DOWN_AND_RIGHT

	BoxDrawings.LIGHT_HORIZONTAL

	BoxDrawings.LIGHT_LEFT

	BoxDrawings.LIGHT_LEFT_AND_HEAVY_RIGHT

	BoxDrawings.LIGHT_QUADRUPLE_DASH_HORIZONTAL

	BoxDrawings.LIGHT_QUADRUPLE_DASH_VERTICAL

	BoxDrawings.LIGHT_RIGHT

	BoxDrawings.LIGHT_TRIPLE_DASH_HORIZONTAL

	BoxDrawings.LIGHT_TRIPLE_DASH_VERTICAL

	BoxDrawings.LIGHT_UP

	BoxDrawings.LIGHT_UP_AND_HEAVY_DOWN

	BoxDrawings.LIGHT_UP_AND_HORIZONTAL

	BoxDrawings.LIGHT_UP_AND_LEFT

	BoxDrawings.LIGHT_UP_AND_RIGHT

	BoxDrawings.LIGHT_VERTICAL

	BoxDrawings.LIGHT_VERTICAL_AND_HORIZONTAL

	BoxDrawings.LIGHT_VERTICAL_AND_LEFT

	BoxDrawings.LIGHT_VERTICAL_AND_RIGHT

	BoxDrawings.RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT

	BoxDrawings.RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT

	BoxDrawings.RIGHT_HEAVY_AND_LEFT_UP_LIGHT

	BoxDrawings.RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT

	BoxDrawings.RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY

	BoxDrawings.RIGHT_LIGHT_AND_LEFT_UP_HEAVY

	BoxDrawings.RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY

	BoxDrawings.RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT

	BoxDrawings.UP_DOUBLE_AND_HORIZONTAL_SINGLE

	BoxDrawings.UP_DOUBLE_AND_LEFT_SINGLE

	BoxDrawings.UP_DOUBLE_AND_RIGHT_SINGLE

	BoxDrawings.UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT

	BoxDrawings.UP_HEAVY_AND_HORIZONTAL_LIGHT

	BoxDrawings.UP_HEAVY_AND_LEFT_DOWN_LIGHT

	BoxDrawings.UP_HEAVY_AND_LEFT_LIGHT

	BoxDrawings.UP_HEAVY_AND_RIGHT_DOWN_LIGHT

	BoxDrawings.UP_HEAVY_AND_RIGHT_LIGHT

	BoxDrawings.UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY

	BoxDrawings.UP_LIGHT_AND_HORIZONTAL_HEAVY

	BoxDrawings.UP_LIGHT_AND_LEFT_DOWN_HEAVY

	BoxDrawings.UP_LIGHT_AND_LEFT_HEAVY

	BoxDrawings.UP_LIGHT_AND_RIGHT_DOWN_HEAVY

	BoxDrawings.UP_LIGHT_AND_RIGHT_HEAVY

	BoxDrawings.UP_SINGLE_AND_HORIZONTAL_DOUBLE

	BoxDrawings.UP_SINGLE_AND_LEFT_DOUBLE

	BoxDrawings.UP_SINGLE_AND_RIGHT_DOUBLE

	BoxDrawings.VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE

	BoxDrawings.VERTICAL_DOUBLE_AND_LEFT_SINGLE

	BoxDrawings.VERTICAL_DOUBLE_AND_RIGHT_SINGLE

	BoxDrawings.VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT

	BoxDrawings.VERTICAL_HEAVY_AND_LEFT_LIGHT

	BoxDrawings.VERTICAL_HEAVY_AND_RIGHT_LIGHT

	BoxDrawings.VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY

	BoxDrawings.VERTICAL_LIGHT_AND_LEFT_HEAVY

	BoxDrawings.VERTICAL_LIGHT_AND_RIGHT_HEAVY

	BoxDrawings.VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE

	BoxDrawings.VERTICAL_SINGLE_AND_LEFT_DOUBLE

	BoxDrawings.VERTICAL_SINGLE_AND_RIGHT_DOUBLE









	GeometricShapes
	GeometricShapes
	GeometricShapes.__init__()

	GeometricShapes.BLACK_CIRCLE

	GeometricShapes.BLACK_DIAMOND

	GeometricShapes.BLACK_DOWN_POINTING_SMALL_TRIANGLE

	GeometricShapes.BLACK_DOWN_POINTING_TRIANGLE

	GeometricShapes.BLACK_LARGE_SQUARE

	GeometricShapes.BLACK_LEFT_POINTING_POINTER

	GeometricShapes.BLACK_LEFT_POINTING_SMALL_TRIANGLE

	GeometricShapes.BLACK_LEFT_POINTING_TRIANGLE

	GeometricShapes.BLACK_LOWER_LEFT_TRIANGLE

	GeometricShapes.BLACK_LOWER_RIGHT_TRIANGLE

	GeometricShapes.BLACK_MEDIUM_SMALL_SQUARE

	GeometricShapes.BLACK_MEDIUM_SQUARE

	GeometricShapes.BLACK_PARALLELOGRAM

	GeometricShapes.BLACK_RECTANGLE

	GeometricShapes.BLACK_RIGHT_POINTING_POINTER

	GeometricShapes.BLACK_RIGHT_POINTING_SMALL_TRIANGLE

	GeometricShapes.BLACK_RIGHT_POINTING_TRIANGLE

	GeometricShapes.BLACK_SMALL_SQUARE

	GeometricShapes.BLACK_SQUARE

	GeometricShapes.BLACK_UPPER_LEFT_TRIANGLE

	GeometricShapes.BLACK_UPPER_RIGHT_TRIANGLE

	GeometricShapes.BLACK_UP_POINTING_SMALL_TRIANGLE

	GeometricShapes.BLACK_UP_POINTING_TRIANGLE

	GeometricShapes.BLACK_VERTICAL_RECTANGLE

	GeometricShapes.BULLET

	GeometricShapes.BULLSEYE

	GeometricShapes.CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK

	GeometricShapes.CIRCLE_WITH_LEFT_HALF_BLACK

	GeometricShapes.CIRCLE_WITH_LOWER_HALF_BLACK

	GeometricShapes.CIRCLE_WITH_RIGHT_HALF_BLACK

	GeometricShapes.CIRCLE_WITH_UPPER_HALF_BLACK

	GeometricShapes.CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK

	GeometricShapes.CIRCLE_WITH_VERTICAL_FILL

	GeometricShapes.DOTTED_CIRCLE

	GeometricShapes.FISHEYE

	GeometricShapes.INVERSE_BULLET

	GeometricShapes.INVERSE_WHITE_CIRCLE

	GeometricShapes.LARGE_CIRCLE

	GeometricShapes.LEFT_HALF_BLACK_CIRCLE

	GeometricShapes.LOWER_HALF_CIRCLE

	GeometricShapes.LOWER_HALF_INVERSE_WHITE_CIRCLE

	GeometricShapes.LOWER_LEFT_QUADRANT_CIRCULAR_ARC

	GeometricShapes.LOWER_LEFT_TRIANGLE

	GeometricShapes.LOWER_RIGHT_QUADRANT_CIRCULAR_ARC

	GeometricShapes.LOWER_RIGHT_TRIANGLE

	GeometricShapes.LOZENGE

	GeometricShapes.RIGHT_HALF_BLACK_CIRCLE

	GeometricShapes.RING_OPERATOR

	GeometricShapes.SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL

	GeometricShapes.SQUARE_WITH_HORIZONTAL_FILL

	GeometricShapes.SQUARE_WITH_LEFT_HALF_BLACK

	GeometricShapes.SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK

	GeometricShapes.SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL

	GeometricShapes.SQUARE_WITH_RIGHT_HALF_BLACK

	GeometricShapes.SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK

	GeometricShapes.SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL

	GeometricShapes.SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL

	GeometricShapes.SQUARE_WITH_VERTICAL_FILL

	GeometricShapes.UPPER_HALF_CIRCLE

	GeometricShapes.UPPER_HALF_INVERSE_WHITE_CIRCLE

	GeometricShapes.UPPER_LEFT_QUADRANT_CIRCULAR_ARC

	GeometricShapes.UPPER_LEFT_TRIANGLE

	GeometricShapes.UPPER_RIGHT_QUADRANT_CIRCULAR_ARC

	GeometricShapes.UPPER_RIGHT_TRIANGLE

	GeometricShapes.UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK

	GeometricShapes.UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK

	GeometricShapes.WHITE_BULLET

	GeometricShapes.WHITE_CIRCLE

	GeometricShapes.WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT

	GeometricShapes.WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT

	GeometricShapes.WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT

	GeometricShapes.WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT

	GeometricShapes.WHITE_DIAMOND

	GeometricShapes.WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND

	GeometricShapes.WHITE_DOWN_POINTING_SMALL_TRIANGLE

	GeometricShapes.WHITE_DOWN_POINTING_TRIANGLE

	GeometricShapes.WHITE_LEFT_POINTING_POINTER

	GeometricShapes.WHITE_LEFT_POINTING_SMALL_TRIANGLE

	GeometricShapes.WHITE_LEFT_POINTING_TRIANGLE

	GeometricShapes.WHITE_MEDIUM_SMALL_SQUARE

	GeometricShapes.WHITE_MEDIUM_SQUARE

	GeometricShapes.WHITE_PARALLELOGRAM

	GeometricShapes.WHITE_RECTANGLE

	GeometricShapes.WHITE_RIGHT_POINTING_POINTER

	GeometricShapes.WHITE_RIGHT_POINTING_SMALL_TRIANGLE

	GeometricShapes.WHITE_RIGHT_POINTING_TRIANGLE

	GeometricShapes.WHITE_SMALL_SQUARE

	GeometricShapes.WHITE_SQUARE

	GeometricShapes.WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE

	GeometricShapes.WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT

	GeometricShapes.WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT

	GeometricShapes.WHITE_SQUARE_WITH_ROUNDED_CORNERS

	GeometricShapes.WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT

	GeometricShapes.WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT

	GeometricShapes.WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE

	GeometricShapes.WHITE_UP_POINTING_SMALL_TRIANGLE

	GeometricShapes.WHITE_UP_POINTING_TRIANGLE

	GeometricShapes.WHITE_UP_POINTING_TRIANGLE_WITH_DOT

	GeometricShapes.WHITE_VERTICAL_RECTANGLE









	MiscTechnicals
	MiscTechnicals
	MiscTechnicals.AC_CURRENT

	MiscTechnicals.ALARM_CLOCK

	MiscTechnicals.ALL_AROUND_PROFILE

	MiscTechnicals.ALTERNATIVE_KEY_SYMBOL

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_ALPHA

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_COMMA_BAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DELTA_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DEL_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DEL_TILDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_IOTA

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_I_BEAM

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_OMEGA

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_COLON

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DEL

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DELTA

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_SLASH

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_RHO

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_SLASH_BAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_STILE_TILDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_ZILDE

	MiscTechnicals.ARC

	MiscTechnicals.BELL_SYMBOL

	MiscTechnicals.BENZENE_RING

	MiscTechnicals.BENZENE_RING_WITH_CIRCLE

	MiscTechnicals.BLACK_CIRCLE_FOR_RECORD

	MiscTechnicals.BLACK_DOWN_POINTING_DOUBLE_TRIANGLE

	MiscTechnicals.BLACK_LEFT_POINTING_DOUBLE_TRIANGLE

	MiscTechnicals.BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR

	MiscTechnicals.BLACK_MEDIUM_DOWN_POINTING_TRIANGLE

	MiscTechnicals.BLACK_MEDIUM_LEFT_POINTING_TRIANGLE

	MiscTechnicals.BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE

	MiscTechnicals.BLACK_MEDIUM_UP_POINTING_TRIANGLE

	MiscTechnicals.BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE

	MiscTechnicals.BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR

	MiscTechnicals.BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR

	MiscTechnicals.BLACK_SQUARE_FOR_STOP

	MiscTechnicals.BLACK_UP_POINTING_DOUBLE_TRIANGLE

	MiscTechnicals.BOTTOM_CURLY_BRACKET

	MiscTechnicals.BOTTOM_HALF_INTEGRAL

	MiscTechnicals.BOTTOM_LEFT_CORNER

	MiscTechnicals.BOTTOM_LEFT_CROP

	MiscTechnicals.BOTTOM_PARENTHESIS

	MiscTechnicals.BOTTOM_RIGHT_CORNER

	MiscTechnicals.BOTTOM_RIGHT_CROP

	MiscTechnicals.BOTTOM_SQUARE_BRACKET

	MiscTechnicals.BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET

	MiscTechnicals.BOTTOM_TORTOISE_SHELL_BRACKET

	MiscTechnicals.BROKEN_CIRCLE_WITH_NORTHWEST_ARROW

	MiscTechnicals.CIRCLED_HORIZONTAL_BAR_WITH_NOTCH

	MiscTechnicals.CIRCLED_TRIANGLE_DOWN

	MiscTechnicals.CLEAR_SCREEN_SYMBOL

	MiscTechnicals.COMPOSITION_SYMBOL

	MiscTechnicals.CONICAL_TAPER

	MiscTechnicals.CONTINUOUS_UNDERLINE_SYMBOL

	MiscTechnicals.COUNTERBORE

	MiscTechnicals.COUNTERSINK

	MiscTechnicals.CURLY_BRACKET_EXTENSION

	MiscTechnicals.CYLINDRICITY

	MiscTechnicals.DECIMAL_EXPONENT_SYMBOL

	MiscTechnicals.DECIMAL_SEPARATOR_KEY_SYMBOL

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE

	MiscTechnicals.DIAMETER_SIGN

	MiscTechnicals.DIMENSION_ORIGIN

	MiscTechnicals.DIRECT_CURRENT_SYMBOL_FORM_TWO

	MiscTechnicals.DISCONTINUOUS_UNDERLINE_SYMBOL

	MiscTechnicals.DOUBLE_VERTICAL_BAR

	MiscTechnicals.DOWN_ARROWHEAD

	MiscTechnicals.EARTH_GROUND

	MiscTechnicals.EJECT_SYMBOL

	MiscTechnicals.ELECTRICAL_INTERSECTION

	MiscTechnicals.ELECTRIC_ARROW

	MiscTechnicals.EMPHASIS_SYMBOL

	MiscTechnicals.ENTER_SYMBOL

	MiscTechnicals.ERASE_TO_THE_LEFT

	MiscTechnicals.ERASE_TO_THE_RIGHT

	MiscTechnicals.FLATNESS

	MiscTechnicals.FROWN

	MiscTechnicals.FUSE

	MiscTechnicals.HELM_SYMBOL

	MiscTechnicals.HORIZONTAL_LINE_EXTENSION

	MiscTechnicals.HORIZONTAL_SCAN_LINE_1

	MiscTechnicals.HORIZONTAL_SCAN_LINE_3

	MiscTechnicals.HORIZONTAL_SCAN_LINE_7

	MiscTechnicals.HORIZONTAL_SCAN_LINE_9

	MiscTechnicals.HOURGLASS

	MiscTechnicals.HOURGLASS_WITH_FLOWING_SAND

	MiscTechnicals.HOUSE

	MiscTechnicals.HYSTERESIS_SYMBOL

	MiscTechnicals.INSERTION_SYMBOL

	MiscTechnicals.INTEGRAL_EXTENSION

	MiscTechnicals.KEYBOARD

	MiscTechnicals.LEFT_CEILING

	MiscTechnicals.LEFT_CURLY_BRACKET_LOWER_HOOK

	MiscTechnicals.LEFT_CURLY_BRACKET_MIDDLE_PIECE

	MiscTechnicals.LEFT_CURLY_BRACKET_UPPER_HOOK

	MiscTechnicals.LEFT_FLOOR

	MiscTechnicals.LEFT_PARENTHESIS_EXTENSION

	MiscTechnicals.LEFT_PARENTHESIS_LOWER_HOOK

	MiscTechnicals.LEFT_PARENTHESIS_UPPER_HOOK

	MiscTechnicals.LEFT_POINTING_ANGLE_BRACKET

	MiscTechnicals.LEFT_SQUARE_BRACKET_EXTENSION

	MiscTechnicals.LEFT_SQUARE_BRACKET_LOWER_CORNER

	MiscTechnicals.LEFT_SQUARE_BRACKET_UPPER_CORNER

	MiscTechnicals.LEFT_VERTICAL_BOX_LINE

	MiscTechnicals.METRICAL_BREVE

	MiscTechnicals.METRICAL_LONG_OVER_SHORT

	MiscTechnicals.METRICAL_LONG_OVER_TWO_SHORTS

	MiscTechnicals.METRICAL_PENTASEME

	MiscTechnicals.METRICAL_SHORT_OVER_LONG

	MiscTechnicals.METRICAL_TETRASEME

	MiscTechnicals.METRICAL_TRISEME

	MiscTechnicals.METRICAL_TWO_SHORTS_JOINED

	MiscTechnicals.METRICAL_TWO_SHORTS_OVER_LONG

	MiscTechnicals.MONOSTABLE_SYMBOL

	MiscTechnicals.NEXT_PAGE

	MiscTechnicals.NOT_CHECK_MARK

	MiscTechnicals.OBSERVER_EYE_SYMBOL

	MiscTechnicals.OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL

	MiscTechnicals.OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL

	MiscTechnicals.OPTION_KEY

	MiscTechnicals.PASSIVE_PULL_DOWN_OUTPUT_SYMBOL

	MiscTechnicals.PASSIVE_PULL_UP_OUTPUT_SYMBOL

	MiscTechnicals.PERSPECTIVE

	MiscTechnicals.PLACE_OF_INTEREST_SIGN

	MiscTechnicals.POSITION_INDICATOR

	MiscTechnicals.POWER_ON_OFF_SYMBOL

	MiscTechnicals.POWER_ON_SYMBOL

	MiscTechnicals.POWER_SLEEP_SYMBOL

	MiscTechnicals.POWER_SYMBOL

	MiscTechnicals.PREVIOUS_PAGE

	MiscTechnicals.PRINT_SCREEN_SYMBOL

	MiscTechnicals.PROJECTIVE

	MiscTechnicals.RADICAL_SYMBOL_BOTTOM

	MiscTechnicals.RETURN_SYMBOL

	MiscTechnicals.REVERSED_NOT_SIGN

	MiscTechnicals.RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW

	MiscTechnicals.RIGHT_CEILING

	MiscTechnicals.RIGHT_CURLY_BRACKET_LOWER_HOOK

	MiscTechnicals.RIGHT_CURLY_BRACKET_MIDDLE_PIECE

	MiscTechnicals.RIGHT_CURLY_BRACKET_UPPER_HOOK

	MiscTechnicals.RIGHT_FLOOR

	MiscTechnicals.RIGHT_PARENTHESIS_EXTENSION

	MiscTechnicals.RIGHT_PARENTHESIS_LOWER_HOOK

	MiscTechnicals.RIGHT_PARENTHESIS_UPPER_HOOK

	MiscTechnicals.RIGHT_POINTING_ANGLE_BRACKET

	MiscTechnicals.RIGHT_SQUARE_BRACKET_EXTENSION

	MiscTechnicals.RIGHT_SQUARE_BRACKET_LOWER_CORNER

	MiscTechnicals.RIGHT_SQUARE_BRACKET_UPPER_CORNER

	MiscTechnicals.RIGHT_VERTICAL_BOX_LINE

	MiscTechnicals.SECTOR

	MiscTechnicals.SEGMENT

	MiscTechnicals.SHOULDERED_OPEN_BOX

	MiscTechnicals.SLOPE

	MiscTechnicals.SMILE

	MiscTechnicals.SOFTWARE_FUNCTION_SYMBOL

	MiscTechnicals.SQUARE_FOOT

	MiscTechnicals.SQUARE_LOZENGE

	MiscTechnicals.STOPWATCH

	MiscTechnicals.STRAIGHTNESS

	MiscTechnicals.SUMMATION_BOTTOM

	MiscTechnicals.SUMMATION_TOP

	MiscTechnicals.SYMMETRY

	MiscTechnicals.TELEPHONE_RECORDER

	MiscTechnicals.TIMER_CLOCK

	MiscTechnicals.TOP_CURLY_BRACKET

	MiscTechnicals.TOP_HALF_INTEGRAL

	MiscTechnicals.TOP_LEFT_CORNER

	MiscTechnicals.TOP_LEFT_CROP

	MiscTechnicals.TOP_PARENTHESIS

	MiscTechnicals.TOP_RIGHT_CORNER

	MiscTechnicals.TOP_RIGHT_CROP

	MiscTechnicals.TOP_SQUARE_BRACKET

	MiscTechnicals.TOP_TORTOISE_SHELL_BRACKET

	MiscTechnicals.TOTAL_RUNOUT

	MiscTechnicals.TURNED_NOT_SIGN

	MiscTechnicals.UNDO_SYMBOL

	MiscTechnicals.UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION

	MiscTechnicals.UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION

	MiscTechnicals.UP_ARROWHEAD

	MiscTechnicals.UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS

	MiscTechnicals.VERTICAL_LINE_EXTENSION

	MiscTechnicals.VERTICAL_LINE_WITH_MIDDLE_DOT

	MiscTechnicals.VIEWDATA_SQUARE

	MiscTechnicals.WATCH

	MiscTechnicals.WAVY_LINE

	MiscTechnicals.WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE

	MiscTechnicals.WHITE_TRAPEZIUM

	MiscTechnicals.X_IN_A_RECTANGLE_BOX









	Models
	Models
	Models.__init__()

	Models.ABACUS

	Models.AB_BUTTON_BLOOD_TYPE

	Models.ACCORDION

	Models.ADHESIVE_BANDAGE

	Models.ADMISSION_TICKETS

	Models.AERIAL_TRAMWAY

	Models.AIRPLANE

	Models.AIRPLANE_ARRIVAL

	Models.AIRPLANE_DEPARTURE

	Models.ALARM_CLOCK

	Models.ALEMBIC

	Models.ALIEN

	Models.ALIEN_MONSTER

	Models.AMBULANCE

	Models.AMERICAN_FOOTBALL

	Models.AMPHORA

	Models.ANATOMICAL_HEART

	Models.ANCHOR

	Models.ANGER_SYMBOL

	Models.ANGRY_FACE

	Models.ANGRY_FACE_WITH_HORNS

	Models.ANGUISHED_FACE

	Models.ANT

	Models.ANTENNA_BARS

	Models.ANXIOUS_FACE_WITH_SWEAT

	Models.AQUARIUS

	Models.ARIES

	Models.ARTICULATED_LORRY

	Models.ARTIST_PALETTE

	Models.ASTONISHED_FACE

	Models.ATM_SIGN

	Models.ATOM_SYMBOL

	Models.AUTOMOBILE

	Models.AUTO_RICKSHAW

	Models.AVOCADO

	Models.AXE

	Models.A_BUTTON_BLOOD_TYPE

	Models.BABY

	Models.BABY_ANGEL

	Models.BABY_BOTTLE

	Models.BABY_CHICK

	Models.BABY_SYMBOL

	Models.BACKHAND_INDEX_POINTING_DOWN

	Models.BACKHAND_INDEX_POINTING_LEFT

	Models.BACKHAND_INDEX_POINTING_RIGHT

	Models.BACKHAND_INDEX_POINTING_UP

	Models.BACKPACK

	Models.BACK_ARROW

	Models.BACON

	Models.BADGER

	Models.BADMINTON

	Models.BAGEL

	Models.BAGGAGE_CLAIM

	Models.BAGUETTE_BREAD

	Models.BALANCE_SCALE

	Models.BALD

	Models.BALL

	Models.BALLET_SHOES

	Models.BALLOON

	Models.BALLOT_BOX_WITH_BALLOT

	Models.BANANA

	Models.BANJO

	Models.BANK

	Models.BARBER_POLE

	Models.BAR_CHART

	Models.BASEBALL

	Models.BASKET

	Models.BASKETBALL

	Models.BAT

	Models.BATHTUB

	Models.BATTERY

	Models.BEACH_WITH_UMBRELLA

	Models.BEAMING_FACE_WITH_SMILING_EYES

	Models.BEAR

	Models.BEATING_HEART

	Models.BEAVER

	Models.BED

	Models.BEER_MUG

	Models.BEETLE

	Models.BELL

	Models.BELLHOP_BELL

	Models.BELL_PEPPER

	Models.BELL_WITH_SLASH

	Models.BENTO_BOX

	Models.BEVERAGE_BOX

	Models.BICYCLE

	Models.BIKINI

	Models.BILLED_CAP

	Models.BIOHAZARD

	Models.BIRD

	Models.BIRTHDAY_CAKE

	Models.BISON

	Models.BLACK_CIRCLE

	Models.BLACK_FLAG

	Models.BLACK_HEART

	Models.BLACK_LARGE_SQUARE

	Models.BLACK_MEDIUM_SMALL_SQUARE

	Models.BLACK_MEDIUM_SQUARE

	Models.BLACK_NIB

	Models.BLACK_SMALL_SQUARE

	Models.BLACK_SQUARE_BUTTON

	Models.BLOSSOM

	Models.BLOWFISH

	Models.BLUEBERRIES

	Models.BLUE_BOOK

	Models.BLUE_CIRCLE

	Models.BLUE_HEART

	Models.BLUE_SQUARE

	Models.BOAR

	Models.BOMB

	Models.BONE

	Models.BOOKMARK

	Models.BOOKMARK_TABS

	Models.BOOKS

	Models.BOOMERANG

	Models.BOTTLE_WITH_POPPING_CORK

	Models.BOUQUET

	Models.BOWLING

	Models.BOWL_WITH_SPOON

	Models.BOW_AND_ARROW

	Models.BOXING_GLOVE

	Models.BOY

	Models.BRAIN

	Models.BREAD

	Models.BREAST_FEEDING

	Models.BRICK

	Models.BRIDGE_AT_NIGHT

	Models.BRIEFCASE

	Models.BRIEFS

	Models.BRIGHT_BUTTON

	Models.BROCCOLI

	Models.BROKEN_HEART

	Models.BROOM

	Models.BROWN_CIRCLE

	Models.BROWN_HEART

	Models.BROWN_SQUARE

	Models.BUBBLE_TEA

	Models.BUCKET

	Models.BUG

	Models.BUILDING_CONSTRUCTION

	Models.BULLET_TRAIN

	Models.BURRITO

	Models.BUS

	Models.BUSTS_IN_SILHOUETTE

	Models.BUST_IN_SILHOUETTE

	Models.BUS_STOP

	Models.BUTTER

	Models.BUTTERFLY

	Models.B_BUTTON_BLOOD_TYPE

	Models.CACTUS

	Models.CALENDAR

	Models.CALL_ME_HAND

	Models.CAMEL

	Models.CAMERA

	Models.CAMERA_WITH_FLASH

	Models.CAMPING

	Models.CANCER

	Models.CANDLE

	Models.CANDY

	Models.CANNED_FOOD

	Models.CANOE

	Models.CAPRICORN

	Models.CARD_FILE_BOX

	Models.CARD_INDEX

	Models.CARD_INDEX_DIVIDERS

	Models.CAROUSEL_HORSE

	Models.CARPENTRY_SAW

	Models.CARP_STREAMER

	Models.CARROT

	Models.CASTLE

	Models.CAT

	Models.CAT_FACE

	Models.CAT_WITH_TEARS_OF_JOY

	Models.CAT_WITH_WRY_SMILE

	Models.CHAINS

	Models.CHAIR

	Models.CHART_DECREASING

	Models.CHART_INCREASING

	Models.CHART_INCREASING_WITH_YEN

	Models.CHECK_BOX_WITH_CHECK

	Models.CHECK_MARK

	Models.CHECK_MARK_BUTTON

	Models.CHEESE_WEDGE

	Models.CHEQUERED_FLAG

	Models.CHERRIES

	Models.CHERRY_BLOSSOM

	Models.CHESS_PAWN

	Models.CHESTNUT

	Models.CHICKEN

	Models.CHILD

	Models.CHILDREN_CROSSING

	Models.CHIPMUNK

	Models.CHOCOLATE_BAR

	Models.CHOPSTICKS

	Models.CHRISTMAS_TREE

	Models.CHURCH

	Models.CIGARETTE

	Models.CINEMA

	Models.CIRCLED_M

	Models.CIRCUS_TENT

	Models.CITYSCAPE

	Models.CITYSCAPE_AT_DUSK

	Models.CLAMP

	Models.CLAPPER_BOARD

	Models.CLAPPING_HANDS

	Models.CLASSICAL_BUILDING

	Models.CLINKING_BEER_MUGS

	Models.CLINKING_GLASSES

	Models.CLIPBOARD

	Models.CLOCKWISE_VERTICAL_ARROWS

	Models.CLOSED_BOOK

	Models.CLOSED_MAILBOX_WITH_LOWERED_FLAG

	Models.CLOSED_MAILBOX_WITH_RAISED_FLAG

	Models.CLOSED_UMBRELLA

	Models.CLOUD

	Models.CLOUD_WITH_LIGHTNING

	Models.CLOUD_WITH_LIGHTNING_AND_RAIN

	Models.CLOUD_WITH_RAIN

	Models.CLOUD_WITH_SNOW

	Models.CLOWN_FACE

	Models.CLUB_SUIT

	Models.CLUTCH_BAG

	Models.CL_BUTTON

	Models.COAT

	Models.COCKROACH

	Models.COCKTAIL_GLASS

	Models.COCONUT

	Models.COFFIN

	Models.COIN

	Models.COLD_FACE

	Models.COLLISION

	Models.COMET

	Models.COMPASS

	Models.COMPUTER_DISK

	Models.COMPUTER_MOUSE

	Models.CONFETTI_BALL

	Models.CONFOUNDED_FACE

	Models.CONFUSED_FACE

	Models.CONSTRUCTION

	Models.CONSTRUCTION_WORKER

	Models.CONTROL_KNOBS

	Models.CONVENIENCE_STORE

	Models.COOKED_RICE

	Models.COOKIE

	Models.COOKING

	Models.COOL_BUTTON

	Models.COPYRIGHT

	Models.COUCH_AND_LAMP

	Models.COUNTERCLOCKWISE_ARROWS_BUTTON

	Models.COUPLE_WITH_HEART

	Models.COW

	Models.COWBOY_HAT_FACE

	Models.COW_FACE

	Models.CRAB

	Models.CRAYON

	Models.CREDIT_CARD

	Models.CRESCENT_MOON

	Models.CRICKET

	Models.CRICKET_GAME

	Models.CROCODILE

	Models.CROISSANT

	Models.CROSSED_FINGERS

	Models.CROSSED_FLAGS

	Models.CROSSED_SWORDS

	Models.CROSS_MARK

	Models.CROSS_MARK_BUTTON

	Models.CROWN

	Models.CRYING_CAT

	Models.CRYING_FACE

	Models.CRYSTAL_BALL

	Models.CUCUMBER

	Models.CUPCAKE

	Models.CUP_WITH_STRAW

	Models.CURLING_STONE

	Models.CURLY_HAIR

	Models.CURLY_LOOP

	Models.CURRENCY_EXCHANGE

	Models.CURRY_RICE

	Models.CUSTARD

	Models.CUSTOMS

	Models.CUT_OF_MEAT

	Models.CYCLONE

	Models.DAGGER

	Models.DANGO

	Models.DARK_SKIN_TONE

	Models.DASHING_AWAY

	Models.DEAF_PERSON

	Models.DECIDUOUS_TREE

	Models.DEER

	Models.DELIVERY_TRUCK

	Models.DEPARTMENT_STORE

	Models.DERELICT_HOUSE

	Models.DESERT

	Models.DESERT_ISLAND

	Models.DESKTOP_COMPUTER

	Models.DETECTIVE

	Models.DIAMOND_SUIT

	Models.DIAMOND_WITH_A_DOT

	Models.DIM_BUTTON

	Models.DIRECT_HIT

	Models.DISAPPOINTED_FACE

	Models.DISGUISED_FACE

	Models.DIVIDE

	Models.DIVING_MASK

	Models.DIYA_LAMP

	Models.DIZZY

	Models.DIZZY_FACE

	Models.DNA

	Models.DODO

	Models.DOG

	Models.DOG_FACE

	Models.DOLLAR_BANKNOTE

	Models.DOLPHIN

	Models.DOOR

	Models.DOTTED_SIX_POINTED_STAR

	Models.DOUBLE_CURLY_LOOP

	Models.DOUBLE_EXCLAMATION_MARK

	Models.DOUGHNUT

	Models.DOVE

	Models.DOWNCAST_FACE_WITH_SWEAT

	Models.DOWNWARDS_BUTTON

	Models.DOWN_ARROW

	Models.DOWN_LEFT_ARROW

	Models.DOWN_RIGHT_ARROW

	Models.DRAGON

	Models.DRAGON_FACE

	Models.DRESS

	Models.DROOLING_FACE

	Models.DROPLET

	Models.DROP_OF_BLOOD

	Models.DRUM

	Models.DUCK

	Models.DUMPLING

	Models.DVD

	Models.EAGLE

	Models.EAR

	Models.EAR_OF_CORN

	Models.EAR_WITH_HEARING_AID

	Models.EGG

	Models.EGGPLANT

	Models.EIGHT_OCLOCK

	Models.EIGHT_POINTED_STAR

	Models.EIGHT_SPOKED_ASTERISK

	Models.EIGHT_THIRTY

	Models.EJECT_BUTTON

	Models.ELECTRIC_PLUG

	Models.ELEPHANT

	Models.ELEVATOR

	Models.ELEVEN_OCLOCK

	Models.ELEVEN_THIRTY

	Models.ELF

	Models.END_ARROW

	Models.ENVELOPE

	Models.ENVELOPE_WITH_ARROW

	Models.EURO_BANKNOTE

	Models.EVERGREEN_TREE

	Models.EWE

	Models.EXCLAMATION_MARK

	Models.EXCLAMATION_QUESTION_MARK

	Models.EXPLODING_HEAD

	Models.EXPRESSIONLESS_FACE

	Models.EYE

	Models.EYES

	Models.E_MAIL

	Models.FACE_BLOWING_A_KISS

	Models.FACE_SAVORING_FOOD

	Models.FACE_SCREAMING_IN_FEAR

	Models.FACE_VOMITING

	Models.FACE_WITHOUT_MOUTH

	Models.FACE_WITH_HAND_OVER_MOUTH

	Models.FACE_WITH_HEAD_BANDAGE

	Models.FACE_WITH_MEDICAL_MASK

	Models.FACE_WITH_MONOCLE

	Models.FACE_WITH_OPEN_MOUTH

	Models.FACE_WITH_RAISED_EYEBROW

	Models.FACE_WITH_ROLLING_EYES

	Models.FACE_WITH_STEAM_FROM_NOSE

	Models.FACE_WITH_SYMBOLS_ON_MOUTH

	Models.FACE_WITH_TEARS_OF_JOY

	Models.FACE_WITH_THERMOMETER

	Models.FACE_WITH_TONGUE

	Models.FACTORY

	Models.FAIRY

	Models.FALAFEL

	Models.FALLEN_LEAF

	Models.FAMILY

	Models.FAST_DOWN_BUTTON

	Models.FAST_FORWARD_BUTTON

	Models.FAST_REVERSE_BUTTON

	Models.FAST_UP_BUTTON

	Models.FAX_MACHINE

	Models.FEARFUL_FACE

	Models.FEATHER

	Models.FEMALE_SIGN

	Models.FERRIS_WHEEL

	Models.FERRY

	Models.FIELD_HOCKEY

	Models.FILE_CABINET

	Models.FILE_FOLDER

	Models.FILM_FRAMES

	Models.FILM_PROJECTOR

	Models.FIRE

	Models.FIRECRACKER

	Models.FIREWORKS

	Models.FIRE_ENGINE

	Models.FIRE_EXTINGUISHER

	Models.FIRST_PLACE_MEDAL

	Models.FIRST_QUARTER_MOON

	Models.FIRST_QUARTER_MOON_FACE

	Models.FISH

	Models.FISHING_POLE

	Models.FISH_CAKE_WITH_SWIRL

	Models.FIVE_OCLOCK

	Models.FIVE_THIRTY

	Models.FLAG_IN_HOLE

	Models.FLAMINGO

	Models.FLASHLIGHT

	Models.FLATBREAD

	Models.FLAT_SHOE

	Models.FLEUR_DE_LIS

	Models.FLEXED_BICEPS

	Models.FLOPPY_DISK

	Models.FLOWER_PLAYING_CARDS

	Models.FLUSHED_FACE

	Models.FLY

	Models.FLYING_DISC

	Models.FLYING_SAUCER

	Models.FOG

	Models.FOGGY

	Models.FOLDED_HANDS

	Models.FONDUE

	Models.FOOT

	Models.FOOTPRINTS

	Models.FORK_AND_KNIFE

	Models.FORK_AND_KNIFE_WITH_PLATE

	Models.FORTUNE_COOKIE

	Models.FOUNTAIN

	Models.FOUNTAIN_PEN

	Models.FOUR_LEAF_CLOVER

	Models.FOUR_OCLOCK

	Models.FOUR_THIRTY

	Models.FOX

	Models.FRAMED_PICTURE

	Models.FREE_BUTTON

	Models.FRENCH_FRIES

	Models.FRIED_SHRIMP

	Models.FROG

	Models.FRONT_FACING_BABY_CHICK

	Models.FROWNING_FACE

	Models.FROWNING_FACE_WITH_OPEN_MOUTH

	Models.FUEL_PUMP

	Models.FULL_MOON

	Models.FULL_MOON_FACE

	Models.FUNERAL_URN

	Models.GAME_DIE

	Models.GARLIC

	Models.GEAR

	Models.GEMINI

	Models.GEM_STONE

	Models.GENIE

	Models.GHOST

	Models.GIRAFFE

	Models.GIRL

	Models.GLASSES

	Models.GLASS_OF_MILK

	Models.GLOBE_SHOWING_AMERICAS

	Models.GLOBE_SHOWING_ASIA_AUSTRALIA

	Models.GLOBE_SHOWING_EUROPE_AFRICA

	Models.GLOBE_WITH_MERIDIANS

	Models.GLOVES

	Models.GLOWING_STAR

	Models.GOAL_NET

	Models.GOAT

	Models.GOBLIN

	Models.GOGGLES

	Models.GORILLA

	Models.GRADUATION_CAP

	Models.GRAPES

	Models.GREEN_APPLE

	Models.GREEN_BOOK

	Models.GREEN_CIRCLE

	Models.GREEN_HEART

	Models.GREEN_SALAD

	Models.GREEN_SQUARE

	Models.GRIMACING_FACE

	Models.GRINNING_CAT

	Models.GRINNING_CAT_WITH_SMILING_EYES

	Models.GRINNING_FACE

	Models.GRINNING_FACE_WITH_BIG_EYES

	Models.GRINNING_FACE_WITH_SMILING_EYES

	Models.GRINNING_FACE_WITH_SWEAT

	Models.GRINNING_SQUINTING_FACE

	Models.GROWING_HEART

	Models.GUARD

	Models.GUIDE_DOG

	Models.GUITAR

	Models.HAMBURGER

	Models.HAMMER

	Models.HAMMER_AND_PICK

	Models.HAMMER_AND_WRENCH

	Models.HAMSTER

	Models.HANDBAG

	Models.HANDSHAKE

	Models.HAND_WITH_FINGERS_SPLAYED

	Models.HATCHING_CHICK

	Models.HEADPHONE

	Models.HEADSTONE

	Models.HEART_DECORATION

	Models.HEART_EXCLAMATION

	Models.HEART_SUIT

	Models.HEART_WITH_ARROW

	Models.HEART_WITH_RIBBON

	Models.HEAR_NO_EVIL_MONKEY

	Models.HEAVY_DOLLAR_SIGN

	Models.HEDGEHOG

	Models.HELICOPTER

	Models.HERB

	Models.HIBISCUS

	Models.HIGH_HEELED_SHOE

	Models.HIGH_SPEED_TRAIN

	Models.HIGH_VOLTAGE

	Models.HIKING_BOOT

	Models.HINDU_TEMPLE

	Models.HIPPOPOTAMUS

	Models.HOLE

	Models.HOLLOW_RED_CIRCLE

	Models.HONEYBEE

	Models.HONEY_POT

	Models.HOOK

	Models.HORIZONTAL_TRAFFIC_LIGHT

	Models.HORSE

	Models.HORSE_FACE

	Models.HORSE_RACING

	Models.HOSPITAL

	Models.HOTEL

	Models.HOT_BEVERAGE

	Models.HOT_DOG

	Models.HOT_FACE

	Models.HOT_PEPPER

	Models.HOT_SPRINGS

	Models.HOURGLASS_DONE

	Models.HOURGLASS_NOT_DONE

	Models.HOUSE

	Models.HOUSES

	Models.HOUSE_WITH_GARDEN

	Models.HUGGING_FACE

	Models.HUNDRED_POINTS

	Models.HUSHED_FACE

	Models.HUT

	Models.ICE

	Models.ICE_CREAM

	Models.ICE_HOCKEY

	Models.ICE_SKATE

	Models.ID_BUTTON

	Models.INBOX_TRAY

	Models.INCOMING_ENVELOPE

	Models.INDEX_POINTING_UP

	Models.INFINITY

	Models.INFORMATION

	Models.INPUT_LATIN_LETTERS

	Models.INPUT_LATIN_LOWERCASE

	Models.INPUT_LATIN_UPPERCASE

	Models.INPUT_NUMBERS

	Models.INPUT_SYMBOLS

	Models.JACK_O_LANTERN

	Models.JAPANESE_ACCEPTABLE_BUTTON

	Models.JAPANESE_APPLICATION_BUTTON

	Models.JAPANESE_BARGAIN_BUTTON

	Models.JAPANESE_CASTLE

	Models.JAPANESE_CONGRATULATIONS_BUTTON

	Models.JAPANESE_DISCOUNT_BUTTON

	Models.JAPANESE_DOLLS

	Models.JAPANESE_FREE_OF_CHARGE_BUTTON

	Models.JAPANESE_HERE_BUTTON

	Models.JAPANESE_MONTHLY_AMOUNT_BUTTON

	Models.JAPANESE_NOT_FREE_OF_CHARGE_BUTTON

	Models.JAPANESE_NO_VACANCY_BUTTON

	Models.JAPANESE_OPEN_FOR_BUSINESS_BUTTON

	Models.JAPANESE_PASSING_GRADE_BUTTON

	Models.JAPANESE_POST_OFFICE

	Models.JAPANESE_PROHIBITED_BUTTON

	Models.JAPANESE_RESERVED_BUTTON

	Models.JAPANESE_SECRET_BUTTON

	Models.JAPANESE_SERVICE_CHARGE_BUTTON

	Models.JAPANESE_SYMBOL_FOR_BEGINNER

	Models.JAPANESE_VACANCY_BUTTON

	Models.JEANS

	Models.JOKER

	Models.JOYSTICK

	Models.KAABA

	Models.KANGAROO

	Models.KEY

	Models.KEYBOARD

	Models.KICK_SCOOTER

	Models.KIMONO

	Models.KISS

	Models.KISSING_CAT

	Models.KISSING_FACE

	Models.KISSING_FACE_WITH_CLOSED_EYES

	Models.KISSING_FACE_WITH_SMILING_EYES

	Models.KISS_MARK

	Models.KITCHEN_KNIFE

	Models.KITE

	Models.KIWI_FRUIT

	Models.KNOT

	Models.KOALA

	Models.LABEL

	Models.LAB_COAT

	Models.LACROSSE

	Models.LADDER

	Models.LADY_BEETLE

	Models.LAPTOP

	Models.LARGE_BLUE_DIAMOND

	Models.LARGE_ORANGE_DIAMOND

	Models.LAST_QUARTER_MOON

	Models.LAST_QUARTER_MOON_FACE

	Models.LAST_TRACK_BUTTON

	Models.LATIN_CROSS

	Models.LEAFY_GREEN

	Models.LEAF_FLUTTERING_IN_WIND

	Models.LEDGER

	Models.LEFT_ARROW

	Models.LEFT_ARROW_CURVING_RIGHT

	Models.LEFT_FACING_FIST

	Models.LEFT_LUGGAGE

	Models.LEFT_RIGHT_ARROW

	Models.LEFT_SPEECH_BUBBLE

	Models.LEG

	Models.LEMON

	Models.LEO

	Models.LEOPARD

	Models.LEVEL_SLIDER

	Models.LIBRA

	Models.LIGHT_BULB

	Models.LIGHT_RAIL

	Models.LIGHT_SKIN_TONE

	Models.LINK

	Models.LINKED_PAPERCLIPS

	Models.LION

	Models.LIPSTICK

	Models.LITTER_IN_BIN_SIGN

	Models.LIZARD

	Models.LLAMA

	Models.LOBSTER

	Models.LOCKED

	Models.LOCKED_WITH_KEY

	Models.LOCKED_WITH_PEN

	Models.LOCOMOTIVE

	Models.LOLLIPOP

	Models.LONG_DRUM

	Models.LOTION_BOTTLE

	Models.LOUDLY_CRYING_FACE

	Models.LOUDSPEAKER

	Models.LOVE_HOTEL

	Models.LOVE_LETTER

	Models.LOVE_YOU_GESTURE

	Models.LUGGAGE

	Models.LUNGS

	Models.LYING_FACE

	Models.MAGE

	Models.MAGIC_WAND

	Models.MAGNET

	Models.MAGNIFYING_GLASS_TILTED_LEFT

	Models.MAGNIFYING_GLASS_TILTED_RIGHT

	Models.MAHJONG_RED_DRAGON

	Models.MALE_SIGN

	Models.MAMMOTH

	Models.MAN

	Models.MANGO

	Models.MANS_SHOE

	Models.MANTELPIECE_CLOCK

	Models.MANUAL_WHEELCHAIR

	Models.MAN_BEARD

	Models.MAN_DANCING

	Models.MAPLE_LEAF

	Models.MAP_OF_JAPAN

	Models.MARTIAL_ARTS_UNIFORM

	Models.MATE

	Models.MEAT_ON_BONE

	Models.MECHANICAL_ARM

	Models.MECHANICAL_LEG

	Models.MEDICAL_SYMBOL

	Models.MEDIUM_DARK_SKIN_TONE

	Models.MEDIUM_LIGHT_SKIN_TONE

	Models.MEDIUM_SKIN_TONE

	Models.MEGAPHONE

	Models.MELON

	Models.MEMO

	Models.MENORAH

	Models.MENS_ROOM

	Models.MEN_HOLDING_HANDS

	Models.MERPERSON

	Models.METRO

	Models.MICROBE

	Models.MICROPHONE

	Models.MICROSCOPE

	Models.MIDDLE_FINGER

	Models.MILITARY_HELMET

	Models.MILITARY_MEDAL

	Models.MILKY_WAY

	Models.MINIBUS

	Models.MINUS

	Models.MIRROR

	Models.MOAI

	Models.MOBILE_PHONE

	Models.MOBILE_PHONE_OFF

	Models.MOBILE_PHONE_WITH_ARROW

	Models.MONEY_BAG

	Models.MONEY_MOUTH_FACE

	Models.MONEY_WITH_WINGS

	Models.MONKEY

	Models.MONKEY_FACE

	Models.MONORAIL

	Models.MOON_CAKE

	Models.MOON_VIEWING_CEREMONY

	Models.MOSQUE

	Models.MOSQUITO

	Models.MOTORCYCLE

	Models.MOTORIZED_WHEELCHAIR

	Models.MOTORWAY

	Models.MOTOR_BOAT

	Models.MOTOR_SCOOTER

	Models.MOUNTAIN

	Models.MOUNTAIN_CABLEWAY

	Models.MOUNTAIN_RAILWAY

	Models.MOUNT_FUJI

	Models.MOUSE

	Models.MOUSE_FACE

	Models.MOUSE_TRAP

	Models.MOUTH

	Models.MOVIE_CAMERA

	Models.MRS_CLAUS

	Models.MULTIPLY

	Models.MUSHROOM

	Models.MUSICAL_KEYBOARD

	Models.MUSICAL_NOTE

	Models.MUSICAL_NOTES

	Models.MUSICAL_SCORE

	Models.MUTED_SPEAKER

	Models.NAIL_POLISH

	Models.NAME_BADGE

	Models.NATIONAL_PARK

	Models.NAUSEATED_FACE

	Models.NAZAR_AMULET

	Models.NECKTIE

	Models.NERD_FACE

	Models.NESTING_DOLLS

	Models.NEUTRAL_FACE

	Models.NEWSPAPER

	Models.NEW_BUTTON

	Models.NEW_MOON

	Models.NEW_MOON_FACE

	Models.NEXT_TRACK_BUTTON

	Models.NG_BUTTON

	Models.NIGHT_WITH_STARS

	Models.NINE_OCLOCK

	Models.NINE_THIRTY

	Models.NINJA

	Models.NON_POTABLE_WATER

	Models.NOSE

	Models.NOTEBOOK

	Models.NOTEBOOK_WITH_DECORATIVE_COVER

	Models.NO_BICYCLES

	Models.NO_ENTRY

	Models.NO_LITTERING

	Models.NO_MOBILE_PHONES

	Models.NO_ONE_UNDER_EIGHTEEN

	Models.NO_PEDESTRIANS

	Models.NO_SMOKING

	Models.NUT_AND_BOLT

	Models.OCTOPUS

	Models.ODEN

	Models.OFFICE_BUILDING

	Models.OGRE

	Models.OIL_DRUM

	Models.OK_BUTTON

	Models.OK_HAND

	Models.OLDER_PERSON

	Models.OLD_KEY

	Models.OLD_MAN

	Models.OLD_WOMAN

	Models.OLIVE

	Models.OM

	Models.ONCOMING_AUTOMOBILE

	Models.ONCOMING_BUS

	Models.ONCOMING_FIST

	Models.ONCOMING_POLICE_CAR

	Models.ONCOMING_TAXI

	Models.ONE_OCLOCK

	Models.ONE_PIECE_SWIMSUIT

	Models.ONE_THIRTY

	Models.ONION

	Models.ON_ARROW

	Models.OPEN_BOOK

	Models.OPEN_FILE_FOLDER

	Models.OPEN_HANDS

	Models.OPEN_MAILBOX_WITH_LOWERED_FLAG

	Models.OPEN_MAILBOX_WITH_RAISED_FLAG

	Models.OPHIUCHUS

	Models.OPTICAL_DISK

	Models.ORANGE_BOOK

	Models.ORANGE_CIRCLE

	Models.ORANGE_HEART

	Models.ORANGE_SQUARE

	Models.ORANGUTAN

	Models.ORTHODOX_CROSS

	Models.OTTER

	Models.OUTBOX_TRAY

	Models.OWL

	Models.OX

	Models.OYSTER

	Models.O_BUTTON_BLOOD_TYPE

	Models.PACKAGE

	Models.PAGER

	Models.PAGE_FACING_UP

	Models.PAGE_WITH_CURL

	Models.PAINTBRUSH

	Models.PALMS_UP_TOGETHER

	Models.PALM_TREE

	Models.PANCAKES

	Models.PANDA

	Models.PAPERCLIP

	Models.PARACHUTE

	Models.PARROT

	Models.PARTYING_FACE

	Models.PARTY_POPPER

	Models.PART_ALTERNATION_MARK

	Models.PASSENGER_SHIP

	Models.PASSPORT_CONTROL

	Models.PAUSE_BUTTON

	Models.PAW_PRINTS

	Models.PEACE_SYMBOL

	Models.PEACH

	Models.PEACOCK

	Models.PEANUTS

	Models.PEAR

	Models.PEN

	Models.PENCIL

	Models.PENGUIN

	Models.PENSIVE_FACE

	Models.PEOPLE_HUGGING

	Models.PEOPLE_WITH_BUNNY_EARS

	Models.PEOPLE_WRESTLING

	Models.PERFORMING_ARTS

	Models.PERSEVERING_FACE

	Models.PERSON

	Models.PERSON_BIKING

	Models.PERSON_BLOND_HAIR

	Models.PERSON_BOUNCING_BALL

	Models.PERSON_BOWING

	Models.PERSON_CARTWHEELING

	Models.PERSON_CLIMBING

	Models.PERSON_FACEPALMING

	Models.PERSON_FENCING

	Models.PERSON_FROWNING

	Models.PERSON_GESTURING_NO

	Models.PERSON_GESTURING_OK

	Models.PERSON_GETTING_HAIRCUT

	Models.PERSON_GETTING_MASSAGE

	Models.PERSON_GOLFING

	Models.PERSON_IN_BED

	Models.PERSON_IN_LOTUS_POSITION

	Models.PERSON_IN_STEAMY_ROOM

	Models.PERSON_IN_SUIT_LEVITATING

	Models.PERSON_IN_TUXEDO

	Models.PERSON_JUGGLING

	Models.PERSON_KNEELING

	Models.PERSON_LIFTING_WEIGHTS

	Models.PERSON_MOUNTAIN_BIKING

	Models.PERSON_PLAYING_HANDBALL

	Models.PERSON_PLAYING_WATER_POLO

	Models.PERSON_POUTING

	Models.PERSON_RAISING_HAND

	Models.PERSON_ROWING_BOAT

	Models.PERSON_RUNNING

	Models.PERSON_SHRUGGING

	Models.PERSON_STANDING

	Models.PERSON_SURFING

	Models.PERSON_SWIMMING

	Models.PERSON_TAKING_BATH

	Models.PERSON_TIPPING_HAND

	Models.PERSON_WALKING

	Models.PERSON_WEARING_TURBAN

	Models.PERSON_WITH_SKULLCAP

	Models.PERSON_WITH_VEIL

	Models.PETRI_DISH

	Models.PICK

	Models.PICKUP_TRUCK

	Models.PIE

	Models.PIG

	Models.PIG_FACE

	Models.PIG_NOSE

	Models.PILE_OF_POO

	Models.PILL

	Models.PINCHED_FINGERS

	Models.PINCHING_HAND

	Models.PINEAPPLE

	Models.PINE_DECORATION

	Models.PING_PONG

	Models.PISCES

	Models.PISTOL

	Models.PIZZA

	Models.PIñATA

	Models.PLACARD

	Models.PLACE_OF_WORSHIP

	Models.PLAY_BUTTON

	Models.PLAY_OR_PAUSE_BUTTON

	Models.PLEADING_FACE

	Models.PLUNGER

	Models.PLUS

	Models.POLICE_CAR

	Models.POLICE_CAR_LIGHT

	Models.POLICE_OFFICER

	Models.POODLE

	Models.POPCORN

	Models.POSTAL_HORN

	Models.POSTBOX

	Models.POST_OFFICE

	Models.POTABLE_WATER

	Models.POTATO

	Models.POTTED_PLANT

	Models.POT_OF_FOOD

	Models.POULTRY_LEG

	Models.POUND_BANKNOTE

	Models.POUTING_CAT

	Models.POUTING_FACE

	Models.PRAYER_BEADS

	Models.PREGNANT_WOMAN

	Models.PRETZEL

	Models.PRINCE

	Models.PRINCESS

	Models.PRINTER

	Models.PROHIBITED

	Models.PURPLE_CIRCLE

	Models.PURPLE_HEART

	Models.PURPLE_SQUARE

	Models.PURSE

	Models.PUSHPIN

	Models.PUZZLE_PIECE

	Models.P_BUTTON

	Models.QUESTION_MARK

	Models.RABBIT

	Models.RABBIT_FACE

	Models.RACCOON

	Models.RACING_CAR

	Models.RADIO

	Models.RADIOACTIVE

	Models.RADIO_BUTTON

	Models.RAILWAY_CAR

	Models.RAILWAY_TRACK

	Models.RAINBOW

	Models.RAISED_BACK_OF_HAND

	Models.RAISED_FIST

	Models.RAISED_HAND

	Models.RAISING_HANDS

	Models.RAM

	Models.RAT

	Models.RAZOR

	Models.RECEIPT

	Models.RECORD_BUTTON

	Models.RECYCLING_SYMBOL

	Models.RED_APPLE

	Models.RED_CIRCLE

	Models.RED_ENVELOPE

	Models.RED_HAIR

	Models.RED_HEART

	Models.RED_PAPER_LANTERN

	Models.RED_SQUARE

	Models.RED_TRIANGLE_POINTED_DOWN

	Models.RED_TRIANGLE_POINTED_UP

	Models.REGISTERED

	Models.RELIEVED_FACE

	Models.REMINDER_RIBBON

	Models.REPEAT_BUTTON

	Models.REPEAT_SINGLE_BUTTON

	Models.RESCUE_WORKERS_HELMET

	Models.RESTROOM

	Models.REVERSE_BUTTON

	Models.REVOLVING_HEARTS

	Models.RHINOCEROS

	Models.RIBBON

	Models.RICE_BALL

	Models.RICE_CRACKER

	Models.RIGHT_ANGER_BUBBLE

	Models.RIGHT_ARROW

	Models.RIGHT_ARROW_CURVING_DOWN

	Models.RIGHT_ARROW_CURVING_LEFT

	Models.RIGHT_ARROW_CURVING_UP

	Models.RIGHT_FACING_FIST

	Models.RING

	Models.RINGED_PLANET

	Models.ROASTED_SWEET_POTATO

	Models.ROBOT

	Models.ROCK

	Models.ROCKET

	Models.ROLLED_UP_NEWSPAPER

	Models.ROLLER_COASTER

	Models.ROLLER_SKATE

	Models.ROLLING_ON_THE_FLOOR_LAUGHING

	Models.ROLL_OF_PAPER

	Models.ROOSTER

	Models.ROSE

	Models.ROSETTE

	Models.ROUND_PUSHPIN

	Models.RUGBY_FOOTBALL

	Models.RUNNING_SHIRT

	Models.RUNNING_SHOE

	Models.SAD_BUT_RELIEVED_FACE

	Models.SAFETY_PIN

	Models.SAFETY_VEST

	Models.SAGITTARIUS

	Models.SAILBOAT

	Models.SAKE

	Models.SALT

	Models.SANDWICH

	Models.SANTA_CLAUS

	Models.SARI

	Models.SATELLITE

	Models.SATELLITE_ANTENNA

	Models.SAUROPOD

	Models.SAXOPHONE

	Models.SCARF

	Models.SCHOOL

	Models.SCISSORS

	Models.SCORPIO

	Models.SCORPION

	Models.SCREWDRIVER

	Models.SCROLL

	Models.SEAL

	Models.SEAT

	Models.SECOND_PLACE_MEDAL

	Models.SEEDLING

	Models.SEE_NO_EVIL_MONKEY

	Models.SELFIE

	Models.SEVEN_OCLOCK

	Models.SEVEN_THIRTY

	Models.SEWING_NEEDLE

	Models.SHALLOW_PAN_OF_FOOD

	Models.SHAMROCK

	Models.SHARK

	Models.SHAVED_ICE

	Models.SHEAF_OF_RICE

	Models.SHIELD

	Models.SHINTO_SHRINE

	Models.SHIP

	Models.SHOOTING_STAR

	Models.SHOPPING_BAGS

	Models.SHOPPING_CART

	Models.SHORTCAKE

	Models.SHORTS

	Models.SHOWER

	Models.SHRIMP

	Models.SHUFFLE_TRACKS_BUTTON

	Models.SHUSHING_FACE

	Models.SIGN_OF_THE_HORNS

	Models.SIX_OCLOCK

	Models.SIX_THIRTY

	Models.SKATEBOARD

	Models.SKIER

	Models.SKIS

	Models.SKULL

	Models.SKULL_AND_CROSSBONES

	Models.SKUNK

	Models.SLED

	Models.SLEEPING_FACE

	Models.SLEEPY_FACE

	Models.SLIGHTLY_FROWNING_FACE

	Models.SLIGHTLY_SMILING_FACE

	Models.SLOTH

	Models.SLOT_MACHINE

	Models.SMALL_AIRPLANE

	Models.SMALL_BLUE_DIAMOND

	Models.SMALL_ORANGE_DIAMOND

	Models.SMILING_CAT_WITH_HEART_EYES

	Models.SMILING_FACE

	Models.SMILING_FACE_WITH_HALO

	Models.SMILING_FACE_WITH_HEARTS

	Models.SMILING_FACE_WITH_HEART_EYES

	Models.SMILING_FACE_WITH_HORNS

	Models.SMILING_FACE_WITH_SMILING_EYES

	Models.SMILING_FACE_WITH_SUNGLASSES

	Models.SMILING_FACE_WITH_TEAR

	Models.SMIRKING_FACE

	Models.SNAIL

	Models.SNAKE

	Models.SNEEZING_FACE

	Models.SNOWBOARDER

	Models.SNOWFLAKE

	Models.SNOWMAN

	Models.SNOWMAN_WITHOUT_SNOW

	Models.SNOW_CAPPED_MOUNTAIN

	Models.SOAP

	Models.SOCCER_BALL

	Models.SOCKS

	Models.SOFTBALL

	Models.SOFT_ICE_CREAM

	Models.SOON_ARROW

	Models.SOS_BUTTON

	Models.SPADE_SUIT

	Models.SPAGHETTI

	Models.SPARKLE

	Models.SPARKLER

	Models.SPARKLES

	Models.SPARKLING_HEART

	Models.SPEAKER_HIGH_VOLUME

	Models.SPEAKER_LOW_VOLUME

	Models.SPEAKER_MEDIUM_VOLUME

	Models.SPEAKING_HEAD

	Models.SPEAK_NO_EVIL_MONKEY

	Models.SPEECH_BALLOON

	Models.SPEEDBOAT

	Models.SPIDER

	Models.SPIDER_WEB

	Models.SPIRAL_CALENDAR

	Models.SPIRAL_NOTEPAD

	Models.SPIRAL_SHELL

	Models.SPONGE

	Models.SPOON

	Models.SPORTS_MEDAL

	Models.SPORT_UTILITY_VEHICLE

	Models.SPOUTING_WHALE

	Models.SQUID

	Models.SQUINTING_FACE_WITH_TONGUE

	Models.STADIUM

	Models.STAR

	Models.STAR_AND_CRESCENT

	Models.STAR_OF_DAVID

	Models.STAR_STRUCK

	Models.STATION

	Models.STATUE_OF_LIBERTY

	Models.STEAMING_BOWL

	Models.STETHOSCOPE

	Models.STOPWATCH

	Models.STOP_BUTTON

	Models.STOP_SIGN

	Models.STRAIGHT_RULER

	Models.STRAWBERRY

	Models.STUDIO_MICROPHONE

	Models.STUFFED_FLATBREAD

	Models.SUN

	Models.SUNFLOWER

	Models.SUNGLASSES

	Models.SUNRISE

	Models.SUNRISE_OVER_MOUNTAINS

	Models.SUNSET

	Models.SUN_BEHIND_CLOUD

	Models.SUN_BEHIND_LARGE_CLOUD

	Models.SUN_BEHIND_RAIN_CLOUD

	Models.SUN_BEHIND_SMALL_CLOUD

	Models.SUN_WITH_FACE

	Models.SUPERHERO

	Models.SUPERVILLAIN

	Models.SUSHI

	Models.SUSPENSION_RAILWAY

	Models.SWAN

	Models.SWEAT_DROPLETS

	Models.SYNAGOGUE

	Models.SYRINGE

	Models.TACO

	Models.TAKEOUT_BOX

	Models.TAMALE

	Models.TANABATA_TREE

	Models.TANGERINE

	Models.TAURUS

	Models.TAXI

	Models.TEACUP_WITHOUT_HANDLE

	Models.TEAPOT

	Models.TEAR_OFF_CALENDAR

	Models.TEDDY_BEAR

	Models.TELEPHONE

	Models.TELEPHONE_RECEIVER

	Models.TELESCOPE

	Models.TELEVISION

	Models.TENNIS

	Models.TENT

	Models.TEN_OCLOCK

	Models.TEN_THIRTY

	Models.TEST_TUBE

	Models.THERMOMETER

	Models.THINKING_FACE

	Models.THIRD_PLACE_MEDAL

	Models.THONG_SANDAL

	Models.THOUGHT_BALLOON

	Models.THREAD

	Models.THREE_OCLOCK

	Models.THREE_THIRTY

	Models.THUMBS_DOWN

	Models.THUMBS_UP

	Models.TICKET

	Models.TIGER

	Models.TIGER_FACE

	Models.TIMER_CLOCK

	Models.TIRED_FACE

	Models.TOILET

	Models.TOKYO_TOWER

	Models.TOMATO

	Models.TONGUE

	Models.TOOLBOX

	Models.TOOTH

	Models.TOOTHBRUSH

	Models.TOP_ARROW

	Models.TOP_HAT

	Models.TORNADO

	Models.TRACKBALL

	Models.TRACTOR

	Models.TRADE_MARK

	Models.TRAIN

	Models.TRAM

	Models.TRAM_CAR

	Models.TRANSGENDER_SYMBOL

	Models.TRIANGULAR_FLAG

	Models.TRIANGULAR_RULER

	Models.TRIDENT_EMBLEM

	Models.TROLLEYBUS

	Models.TROPHY

	Models.TROPICAL_DRINK

	Models.TROPICAL_FISH

	Models.TRUMPET

	Models.TULIP

	Models.TUMBLER_GLASS

	Models.TURKEY

	Models.TURTLE

	Models.TWELVE_OCLOCK

	Models.TWELVE_THIRTY

	Models.TWO_HEARTS

	Models.TWO_HUMP_CAMEL

	Models.TWO_OCLOCK

	Models.TWO_THIRTY

	Models.T_REX

	Models.T_SHIRT

	Models.UMBRELLA

	Models.UMBRELLA_ON_GROUND

	Models.UMBRELLA_WITH_RAIN_DROPS

	Models.UNAMUSED_FACE

	Models.UNICORN

	Models.UNLOCKED

	Models.UPSIDE_DOWN_FACE

	Models.UPWARDS_BUTTON

	Models.UP_ARROW

	Models.UP_BUTTON

	Models.UP_DOWN_ARROW

	Models.UP_LEFT_ARROW

	Models.UP_RIGHT_ARROW

	Models.VAMPIRE

	Models.VERTICAL_TRAFFIC_LIGHT

	Models.VIBRATION_MODE

	Models.VICTORY_HAND

	Models.VIDEOCASSETTE

	Models.VIDEO_CAMERA

	Models.VIDEO_GAME

	Models.VIOLIN

	Models.VIRGO

	Models.VOLCANO

	Models.VOLLEYBALL

	Models.VS_BUTTON

	Models.VULCAN_SALUTE

	Models.WAFFLE

	Models.WANING_CRESCENT_MOON

	Models.WANING_GIBBOUS_MOON

	Models.WARNING

	Models.WASTEBASKET

	Models.WATCH

	Models.WATERMELON

	Models.WATER_BUFFALO

	Models.WATER_CLOSET

	Models.WATER_WAVE

	Models.WAVING_HAND

	Models.WAVY_DASH

	Models.WAXING_CRESCENT_MOON

	Models.WAXING_GIBBOUS_MOON

	Models.WEARY_CAT

	Models.WEARY_FACE

	Models.WEDDING

	Models.WHALE

	Models.WHEELCHAIR_SYMBOL

	Models.WHEEL_OF_DHARMA

	Models.WHITE_CANE

	Models.WHITE_CIRCLE

	Models.WHITE_EXCLAMATION_MARK

	Models.WHITE_FLAG

	Models.WHITE_FLOWER

	Models.WHITE_HAIR

	Models.WHITE_HEART

	Models.WHITE_LARGE_SQUARE

	Models.WHITE_MEDIUM_SMALL_SQUARE

	Models.WHITE_MEDIUM_SQUARE

	Models.WHITE_QUESTION_MARK

	Models.WHITE_SMALL_SQUARE

	Models.WHITE_SQUARE_BUTTON

	Models.WILTED_FLOWER

	Models.WINDOW

	Models.WIND_CHIME

	Models.WIND_FACE

	Models.WINE_GLASS

	Models.WINKING_FACE

	Models.WINKING_FACE_WITH_TONGUE

	Models.WOLF

	Models.WOMAN

	Models.WOMANS_BOOT

	Models.WOMANS_CLOTHES

	Models.WOMANS_HAT

	Models.WOMANS_SANDAL

	Models.WOMAN_AND_MAN_HOLDING_HANDS

	Models.WOMAN_DANCING

	Models.WOMAN_WITH_HEADSCARF

	Models.WOMENS_ROOM

	Models.WOMEN_HOLDING_HANDS

	Models.WOOD

	Models.WOOZY_FACE

	Models.WORLD_MAP

	Models.WORM

	Models.WORRIED_FACE

	Models.WRAPPED_GIFT

	Models.WRENCH

	Models.WRITING_HAND

	Models.YARN

	Models.YAWNING_FACE

	Models.YELLOW_CIRCLE

	Models.YELLOW_HEART

	Models.YELLOW_SQUARE

	Models.YEN_BANKNOTE

	Models.YIN_YANG

	Models.YO_YO

	Models.ZANY_FACE

	Models.ZEBRA

	Models.ZIPPER_MOUTH_FACE

	Models.ZOMBIE

	Models.ZZZ













	Fonts
	8bits
	How to use?

	What does it look like?





	figlet-caligraphy
	How to use?

	What does it look like?

	More





	figlet-doom
	How to use?

	What does it look like?

	More





	figlet-graffiti
	How to use?

	What does it look like?

	More





	figlet-mirror
	How to use?

	What does it look like?

	More





	figlet-pepper
	How to use?

	What does it look like?

	More





	figlet-poison
	How to use?

	What does it look like?

	More





	figlet-puffy
	How to use?

	What does it look like?

	More





	figlet-rounded
	How to use?

	What does it look like?

	More





	figlet-stampatello
	How to use?

	What does it look like?

	More





	figlet-univers
	How to use?

	What does it look like?

	More





	figlet-wavy
	How to use?

	What does it look like?

	More
















            

          

      

      

    

  

  
    
    

    graphics
    

    

    
 
  

    
      
          
            
  
graphics


Important

The Graphics module was introduced in version 1.1.0.



The Graphics module hold many variables that aims at simplifying the use of
unicode characters in the game development process.

This module also import colorama. All styling features are accessible through:



	Graphics.Fore for Foreground colors.


	Graphics.Back for Background colors.


	Graphics.Style for styling options.







For convenience, the different entities are scattered in grouping classes:



	All emojis are in the Models class.


	The UI/box drawings are grouped into the BoxDrawings class.


	The block glyphs are in the Blocks class.


	The geometric shapes are in the GeometricShapes class.







This modules defines a couple of colored squares and rectangles that should displays
correctly in all terminals.

These are kept for legacy purpose (I personally have a lot of kids that are still using
it), but for anyone starting fresh, it is better to use the <color>_rect() and
<color>_square() static methods of the Sprixel class.
Particularly if you are going to use them as background for your Board.

Colored rectangles:



	WHITE_RECT


	BLUE_RECT


	RED_RECT


	MAGENTA_RECT


	GREEN_RECT


	YELLOW_RECT


	BLACK_RECT


	CYAN_RECT







Then colored squares:



	WHITE_SQUARE


	MAGENTA_SQUARE


	GREEN_SQUARE


	RED_SQUARE


	BLUE_SQUARE


	YELLOW_SQUARE


	BLACK_SQUARE


	CYAN_SQUARE







And finally an example of composition of rectangles to make different colored squares:



	RED_BLUE_SQUARE = RED_RECT+BLUE_RECT


	YELLOW_CYAN_SQUARE = YELLOW_RECT+CYAN_RECT







The Graphics module contains the following classes:



	Blocks
	Blocks
	Blocks.__init__()

	Blocks.DARK_SHADE

	Blocks.FULL_BLOCK

	Blocks.LEFT_FIVE_EIGHTHS_BLOCK

	Blocks.LEFT_HALF_BLOCK

	Blocks.LEFT_ONE_EIGHTH_BLOCK

	Blocks.LEFT_ONE_QUARTER_BLOCK

	Blocks.LEFT_SEVEN_EIGHTHS_BLOCK

	Blocks.LEFT_THREE_EIGHTHS_BLOCK

	Blocks.LEFT_THREE_QUARTERS_BLOCK

	Blocks.LIGHT_SHADE

	Blocks.LOWER_FIVE_EIGHTHS_BLOCK

	Blocks.LOWER_HALF_BLOCK

	Blocks.LOWER_ONE_EIGHTH_BLOCK

	Blocks.LOWER_ONE_QUARTER_BLOCK

	Blocks.LOWER_SEVEN_EIGHTHS_BLOCK

	Blocks.LOWER_THREE_EIGHTHS_BLOCK

	Blocks.LOWER_THREE_QUARTERS_BLOCK

	Blocks.MEDIUM_SHADE

	Blocks.QUADRANT_LOWER_LEFT

	Blocks.QUADRANT_LOWER_RIGHT

	Blocks.QUADRANT_UPPER_LEFT

	Blocks.QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT

	Blocks.QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT

	Blocks.QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT

	Blocks.QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT

	Blocks.QUADRANT_UPPER_RIGHT

	Blocks.QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT

	Blocks.QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT

	Blocks.RIGHT_HALF_BLOCK

	Blocks.RIGHT_ONE_EIGHTH_BLOCK

	Blocks.UPPER_HALF_BLOCK

	Blocks.UPPER_ONE_EIGHTH_BLOCK









	BoxDrawings
	BoxDrawings
	BoxDrawings.__init__()

	BoxDrawings.DOUBLE_DOWN_AND_HORIZONTAL

	BoxDrawings.DOUBLE_DOWN_AND_LEFT

	BoxDrawings.DOUBLE_DOWN_AND_RIGHT

	BoxDrawings.DOUBLE_HORIZONTAL

	BoxDrawings.DOUBLE_UP_AND_HORIZONTAL

	BoxDrawings.DOUBLE_UP_AND_LEFT

	BoxDrawings.DOUBLE_UP_AND_RIGHT

	BoxDrawings.DOUBLE_VERTICAL

	BoxDrawings.DOUBLE_VERTICAL_AND_HORIZONTAL

	BoxDrawings.DOUBLE_VERTICAL_AND_LEFT

	BoxDrawings.DOUBLE_VERTICAL_AND_RIGHT

	BoxDrawings.DOWN_DOUBLE_AND_HORIZONTAL_SINGLE

	BoxDrawings.DOWN_DOUBLE_AND_LEFT_SINGLE

	BoxDrawings.DOWN_DOUBLE_AND_RIGHT_SINGLE

	BoxDrawings.DOWN_HEAVY_AND_HORIZONTAL_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_LEFT_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_LEFT_UP_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_RIGHT_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_RIGHT_UP_LIGHT

	BoxDrawings.DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT

	BoxDrawings.DOWN_LIGHT_AND_HORIZONTAL_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_LEFT_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_LEFT_UP_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_RIGHT_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_RIGHT_UP_HEAVY

	BoxDrawings.DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY

	BoxDrawings.DOWN_SINGLE_AND_HORIZONTAL_DOUBLE

	BoxDrawings.DOWN_SINGLE_AND_LEFT_DOUBLE

	BoxDrawings.DOWN_SINGLE_AND_RIGHT_DOUBLE

	BoxDrawings.HEAVY_DOUBLE_DASH_HORIZONTAL

	BoxDrawings.HEAVY_DOUBLE_DASH_VERTICAL

	BoxDrawings.HEAVY_DOWN

	BoxDrawings.HEAVY_DOWN_AND_HORIZONTAL

	BoxDrawings.HEAVY_DOWN_AND_LEFT

	BoxDrawings.HEAVY_DOWN_AND_RIGHT

	BoxDrawings.HEAVY_HORIZONTAL

	BoxDrawings.HEAVY_LEFT

	BoxDrawings.HEAVY_LEFT_AND_LIGHT_RIGHT

	BoxDrawings.HEAVY_QUADRUPLE_DASH_HORIZONTAL

	BoxDrawings.HEAVY_QUADRUPLE_DASH_VERTICAL

	BoxDrawings.HEAVY_RIGHT

	BoxDrawings.HEAVY_TRIPLE_DASH_HORIZONTAL

	BoxDrawings.HEAVY_TRIPLE_DASH_VERTICAL

	BoxDrawings.HEAVY_UP

	BoxDrawings.HEAVY_UP_AND_HORIZONTAL

	BoxDrawings.HEAVY_UP_AND_LEFT

	BoxDrawings.HEAVY_UP_AND_LIGHT_DOWN

	BoxDrawings.HEAVY_UP_AND_RIGHT

	BoxDrawings.HEAVY_VERTICAL

	BoxDrawings.HEAVY_VERTICAL_AND_HORIZONTAL

	BoxDrawings.HEAVY_VERTICAL_AND_LEFT

	BoxDrawings.HEAVY_VERTICAL_AND_RIGHT

	BoxDrawings.LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT

	BoxDrawings.LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT

	BoxDrawings.LEFT_HEAVY_AND_RIGHT_UP_LIGHT

	BoxDrawings.LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT

	BoxDrawings.LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY

	BoxDrawings.LEFT_LIGHT_AND_RIGHT_UP_HEAVY

	BoxDrawings.LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY

	BoxDrawings.LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT

	BoxDrawings.LIGHT_ARC_DOWN_AND_LEFT

	BoxDrawings.LIGHT_ARC_DOWN_AND_RIGHT

	BoxDrawings.LIGHT_ARC_UP_AND_LEFT

	BoxDrawings.LIGHT_ARC_UP_AND_RIGHT

	BoxDrawings.LIGHT_DIAGONAL_CROSS

	BoxDrawings.LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT

	BoxDrawings.LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT

	BoxDrawings.LIGHT_DOUBLE_DASH_HORIZONTAL

	BoxDrawings.LIGHT_DOUBLE_DASH_VERTICAL

	BoxDrawings.LIGHT_DOWN

	BoxDrawings.LIGHT_DOWN_AND_HORIZONTAL

	BoxDrawings.LIGHT_DOWN_AND_LEFT

	BoxDrawings.LIGHT_DOWN_AND_RIGHT

	BoxDrawings.LIGHT_HORIZONTAL

	BoxDrawings.LIGHT_LEFT

	BoxDrawings.LIGHT_LEFT_AND_HEAVY_RIGHT

	BoxDrawings.LIGHT_QUADRUPLE_DASH_HORIZONTAL

	BoxDrawings.LIGHT_QUADRUPLE_DASH_VERTICAL

	BoxDrawings.LIGHT_RIGHT

	BoxDrawings.LIGHT_TRIPLE_DASH_HORIZONTAL

	BoxDrawings.LIGHT_TRIPLE_DASH_VERTICAL

	BoxDrawings.LIGHT_UP

	BoxDrawings.LIGHT_UP_AND_HEAVY_DOWN

	BoxDrawings.LIGHT_UP_AND_HORIZONTAL

	BoxDrawings.LIGHT_UP_AND_LEFT

	BoxDrawings.LIGHT_UP_AND_RIGHT

	BoxDrawings.LIGHT_VERTICAL

	BoxDrawings.LIGHT_VERTICAL_AND_HORIZONTAL

	BoxDrawings.LIGHT_VERTICAL_AND_LEFT

	BoxDrawings.LIGHT_VERTICAL_AND_RIGHT

	BoxDrawings.RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT

	BoxDrawings.RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT

	BoxDrawings.RIGHT_HEAVY_AND_LEFT_UP_LIGHT

	BoxDrawings.RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT

	BoxDrawings.RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY

	BoxDrawings.RIGHT_LIGHT_AND_LEFT_UP_HEAVY

	BoxDrawings.RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY

	BoxDrawings.RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT

	BoxDrawings.UP_DOUBLE_AND_HORIZONTAL_SINGLE

	BoxDrawings.UP_DOUBLE_AND_LEFT_SINGLE

	BoxDrawings.UP_DOUBLE_AND_RIGHT_SINGLE

	BoxDrawings.UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT

	BoxDrawings.UP_HEAVY_AND_HORIZONTAL_LIGHT

	BoxDrawings.UP_HEAVY_AND_LEFT_DOWN_LIGHT

	BoxDrawings.UP_HEAVY_AND_LEFT_LIGHT

	BoxDrawings.UP_HEAVY_AND_RIGHT_DOWN_LIGHT

	BoxDrawings.UP_HEAVY_AND_RIGHT_LIGHT

	BoxDrawings.UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY

	BoxDrawings.UP_LIGHT_AND_HORIZONTAL_HEAVY

	BoxDrawings.UP_LIGHT_AND_LEFT_DOWN_HEAVY

	BoxDrawings.UP_LIGHT_AND_LEFT_HEAVY

	BoxDrawings.UP_LIGHT_AND_RIGHT_DOWN_HEAVY

	BoxDrawings.UP_LIGHT_AND_RIGHT_HEAVY

	BoxDrawings.UP_SINGLE_AND_HORIZONTAL_DOUBLE

	BoxDrawings.UP_SINGLE_AND_LEFT_DOUBLE

	BoxDrawings.UP_SINGLE_AND_RIGHT_DOUBLE

	BoxDrawings.VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE

	BoxDrawings.VERTICAL_DOUBLE_AND_LEFT_SINGLE

	BoxDrawings.VERTICAL_DOUBLE_AND_RIGHT_SINGLE

	BoxDrawings.VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT

	BoxDrawings.VERTICAL_HEAVY_AND_LEFT_LIGHT

	BoxDrawings.VERTICAL_HEAVY_AND_RIGHT_LIGHT

	BoxDrawings.VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY

	BoxDrawings.VERTICAL_LIGHT_AND_LEFT_HEAVY

	BoxDrawings.VERTICAL_LIGHT_AND_RIGHT_HEAVY

	BoxDrawings.VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE

	BoxDrawings.VERTICAL_SINGLE_AND_LEFT_DOUBLE

	BoxDrawings.VERTICAL_SINGLE_AND_RIGHT_DOUBLE









	GeometricShapes
	GeometricShapes
	GeometricShapes.__init__()

	GeometricShapes.BLACK_CIRCLE

	GeometricShapes.BLACK_DIAMOND

	GeometricShapes.BLACK_DOWN_POINTING_SMALL_TRIANGLE

	GeometricShapes.BLACK_DOWN_POINTING_TRIANGLE

	GeometricShapes.BLACK_LARGE_SQUARE

	GeometricShapes.BLACK_LEFT_POINTING_POINTER

	GeometricShapes.BLACK_LEFT_POINTING_SMALL_TRIANGLE

	GeometricShapes.BLACK_LEFT_POINTING_TRIANGLE

	GeometricShapes.BLACK_LOWER_LEFT_TRIANGLE

	GeometricShapes.BLACK_LOWER_RIGHT_TRIANGLE

	GeometricShapes.BLACK_MEDIUM_SMALL_SQUARE

	GeometricShapes.BLACK_MEDIUM_SQUARE

	GeometricShapes.BLACK_PARALLELOGRAM

	GeometricShapes.BLACK_RECTANGLE

	GeometricShapes.BLACK_RIGHT_POINTING_POINTER

	GeometricShapes.BLACK_RIGHT_POINTING_SMALL_TRIANGLE

	GeometricShapes.BLACK_RIGHT_POINTING_TRIANGLE

	GeometricShapes.BLACK_SMALL_SQUARE

	GeometricShapes.BLACK_SQUARE

	GeometricShapes.BLACK_UPPER_LEFT_TRIANGLE

	GeometricShapes.BLACK_UPPER_RIGHT_TRIANGLE

	GeometricShapes.BLACK_UP_POINTING_SMALL_TRIANGLE

	GeometricShapes.BLACK_UP_POINTING_TRIANGLE

	GeometricShapes.BLACK_VERTICAL_RECTANGLE

	GeometricShapes.BULLET

	GeometricShapes.BULLSEYE

	GeometricShapes.CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK

	GeometricShapes.CIRCLE_WITH_LEFT_HALF_BLACK

	GeometricShapes.CIRCLE_WITH_LOWER_HALF_BLACK

	GeometricShapes.CIRCLE_WITH_RIGHT_HALF_BLACK

	GeometricShapes.CIRCLE_WITH_UPPER_HALF_BLACK

	GeometricShapes.CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK

	GeometricShapes.CIRCLE_WITH_VERTICAL_FILL

	GeometricShapes.DOTTED_CIRCLE

	GeometricShapes.FISHEYE

	GeometricShapes.INVERSE_BULLET

	GeometricShapes.INVERSE_WHITE_CIRCLE

	GeometricShapes.LARGE_CIRCLE

	GeometricShapes.LEFT_HALF_BLACK_CIRCLE

	GeometricShapes.LOWER_HALF_CIRCLE

	GeometricShapes.LOWER_HALF_INVERSE_WHITE_CIRCLE

	GeometricShapes.LOWER_LEFT_QUADRANT_CIRCULAR_ARC

	GeometricShapes.LOWER_LEFT_TRIANGLE

	GeometricShapes.LOWER_RIGHT_QUADRANT_CIRCULAR_ARC

	GeometricShapes.LOWER_RIGHT_TRIANGLE

	GeometricShapes.LOZENGE

	GeometricShapes.RIGHT_HALF_BLACK_CIRCLE

	GeometricShapes.RING_OPERATOR

	GeometricShapes.SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL

	GeometricShapes.SQUARE_WITH_HORIZONTAL_FILL

	GeometricShapes.SQUARE_WITH_LEFT_HALF_BLACK

	GeometricShapes.SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK

	GeometricShapes.SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL

	GeometricShapes.SQUARE_WITH_RIGHT_HALF_BLACK

	GeometricShapes.SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK

	GeometricShapes.SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL

	GeometricShapes.SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL

	GeometricShapes.SQUARE_WITH_VERTICAL_FILL

	GeometricShapes.UPPER_HALF_CIRCLE

	GeometricShapes.UPPER_HALF_INVERSE_WHITE_CIRCLE

	GeometricShapes.UPPER_LEFT_QUADRANT_CIRCULAR_ARC

	GeometricShapes.UPPER_LEFT_TRIANGLE

	GeometricShapes.UPPER_RIGHT_QUADRANT_CIRCULAR_ARC

	GeometricShapes.UPPER_RIGHT_TRIANGLE

	GeometricShapes.UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK

	GeometricShapes.UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK

	GeometricShapes.WHITE_BULLET

	GeometricShapes.WHITE_CIRCLE

	GeometricShapes.WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT

	GeometricShapes.WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT

	GeometricShapes.WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT

	GeometricShapes.WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT

	GeometricShapes.WHITE_DIAMOND

	GeometricShapes.WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND

	GeometricShapes.WHITE_DOWN_POINTING_SMALL_TRIANGLE

	GeometricShapes.WHITE_DOWN_POINTING_TRIANGLE

	GeometricShapes.WHITE_LEFT_POINTING_POINTER

	GeometricShapes.WHITE_LEFT_POINTING_SMALL_TRIANGLE

	GeometricShapes.WHITE_LEFT_POINTING_TRIANGLE

	GeometricShapes.WHITE_MEDIUM_SMALL_SQUARE

	GeometricShapes.WHITE_MEDIUM_SQUARE

	GeometricShapes.WHITE_PARALLELOGRAM

	GeometricShapes.WHITE_RECTANGLE

	GeometricShapes.WHITE_RIGHT_POINTING_POINTER

	GeometricShapes.WHITE_RIGHT_POINTING_SMALL_TRIANGLE

	GeometricShapes.WHITE_RIGHT_POINTING_TRIANGLE

	GeometricShapes.WHITE_SMALL_SQUARE

	GeometricShapes.WHITE_SQUARE

	GeometricShapes.WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE

	GeometricShapes.WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT

	GeometricShapes.WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT

	GeometricShapes.WHITE_SQUARE_WITH_ROUNDED_CORNERS

	GeometricShapes.WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT

	GeometricShapes.WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT

	GeometricShapes.WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE

	GeometricShapes.WHITE_UP_POINTING_SMALL_TRIANGLE

	GeometricShapes.WHITE_UP_POINTING_TRIANGLE

	GeometricShapes.WHITE_UP_POINTING_TRIANGLE_WITH_DOT

	GeometricShapes.WHITE_VERTICAL_RECTANGLE









	MiscTechnicals
	MiscTechnicals
	MiscTechnicals.AC_CURRENT

	MiscTechnicals.ALARM_CLOCK

	MiscTechnicals.ALL_AROUND_PROFILE

	MiscTechnicals.ALTERNATIVE_KEY_SYMBOL

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_ALPHA

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_COMMA_BAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DELTA_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DEL_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DEL_TILDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_IOTA

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_I_BEAM

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_OMEGA

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_COLON

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DEL

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DELTA

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_SLASH

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_RHO

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_SLASH_BAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_STILE_TILDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR

	MiscTechnicals.APL_FUNCTIONAL_SYMBOL_ZILDE

	MiscTechnicals.ARC

	MiscTechnicals.BELL_SYMBOL

	MiscTechnicals.BENZENE_RING

	MiscTechnicals.BENZENE_RING_WITH_CIRCLE

	MiscTechnicals.BLACK_CIRCLE_FOR_RECORD

	MiscTechnicals.BLACK_DOWN_POINTING_DOUBLE_TRIANGLE

	MiscTechnicals.BLACK_LEFT_POINTING_DOUBLE_TRIANGLE

	MiscTechnicals.BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR

	MiscTechnicals.BLACK_MEDIUM_DOWN_POINTING_TRIANGLE

	MiscTechnicals.BLACK_MEDIUM_LEFT_POINTING_TRIANGLE

	MiscTechnicals.BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE

	MiscTechnicals.BLACK_MEDIUM_UP_POINTING_TRIANGLE

	MiscTechnicals.BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE

	MiscTechnicals.BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR

	MiscTechnicals.BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR

	MiscTechnicals.BLACK_SQUARE_FOR_STOP

	MiscTechnicals.BLACK_UP_POINTING_DOUBLE_TRIANGLE

	MiscTechnicals.BOTTOM_CURLY_BRACKET

	MiscTechnicals.BOTTOM_HALF_INTEGRAL

	MiscTechnicals.BOTTOM_LEFT_CORNER

	MiscTechnicals.BOTTOM_LEFT_CROP

	MiscTechnicals.BOTTOM_PARENTHESIS

	MiscTechnicals.BOTTOM_RIGHT_CORNER

	MiscTechnicals.BOTTOM_RIGHT_CROP

	MiscTechnicals.BOTTOM_SQUARE_BRACKET

	MiscTechnicals.BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET

	MiscTechnicals.BOTTOM_TORTOISE_SHELL_BRACKET

	MiscTechnicals.BROKEN_CIRCLE_WITH_NORTHWEST_ARROW

	MiscTechnicals.CIRCLED_HORIZONTAL_BAR_WITH_NOTCH

	MiscTechnicals.CIRCLED_TRIANGLE_DOWN

	MiscTechnicals.CLEAR_SCREEN_SYMBOL

	MiscTechnicals.COMPOSITION_SYMBOL

	MiscTechnicals.CONICAL_TAPER

	MiscTechnicals.CONTINUOUS_UNDERLINE_SYMBOL

	MiscTechnicals.COUNTERBORE

	MiscTechnicals.COUNTERSINK

	MiscTechnicals.CURLY_BRACKET_EXTENSION

	MiscTechnicals.CYLINDRICITY

	MiscTechnicals.DECIMAL_EXPONENT_SYMBOL

	MiscTechnicals.DECIMAL_SEPARATOR_KEY_SYMBOL

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE

	MiscTechnicals.DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE

	MiscTechnicals.DIAMETER_SIGN

	MiscTechnicals.DIMENSION_ORIGIN

	MiscTechnicals.DIRECT_CURRENT_SYMBOL_FORM_TWO

	MiscTechnicals.DISCONTINUOUS_UNDERLINE_SYMBOL

	MiscTechnicals.DOUBLE_VERTICAL_BAR

	MiscTechnicals.DOWN_ARROWHEAD

	MiscTechnicals.EARTH_GROUND

	MiscTechnicals.EJECT_SYMBOL

	MiscTechnicals.ELECTRICAL_INTERSECTION

	MiscTechnicals.ELECTRIC_ARROW

	MiscTechnicals.EMPHASIS_SYMBOL

	MiscTechnicals.ENTER_SYMBOL

	MiscTechnicals.ERASE_TO_THE_LEFT

	MiscTechnicals.ERASE_TO_THE_RIGHT

	MiscTechnicals.FLATNESS

	MiscTechnicals.FROWN

	MiscTechnicals.FUSE

	MiscTechnicals.HELM_SYMBOL

	MiscTechnicals.HORIZONTAL_LINE_EXTENSION

	MiscTechnicals.HORIZONTAL_SCAN_LINE_1

	MiscTechnicals.HORIZONTAL_SCAN_LINE_3

	MiscTechnicals.HORIZONTAL_SCAN_LINE_7

	MiscTechnicals.HORIZONTAL_SCAN_LINE_9

	MiscTechnicals.HOURGLASS

	MiscTechnicals.HOURGLASS_WITH_FLOWING_SAND

	MiscTechnicals.HOUSE

	MiscTechnicals.HYSTERESIS_SYMBOL

	MiscTechnicals.INSERTION_SYMBOL

	MiscTechnicals.INTEGRAL_EXTENSION

	MiscTechnicals.KEYBOARD

	MiscTechnicals.LEFT_CEILING

	MiscTechnicals.LEFT_CURLY_BRACKET_LOWER_HOOK

	MiscTechnicals.LEFT_CURLY_BRACKET_MIDDLE_PIECE

	MiscTechnicals.LEFT_CURLY_BRACKET_UPPER_HOOK

	MiscTechnicals.LEFT_FLOOR

	MiscTechnicals.LEFT_PARENTHESIS_EXTENSION

	MiscTechnicals.LEFT_PARENTHESIS_LOWER_HOOK

	MiscTechnicals.LEFT_PARENTHESIS_UPPER_HOOK

	MiscTechnicals.LEFT_POINTING_ANGLE_BRACKET

	MiscTechnicals.LEFT_SQUARE_BRACKET_EXTENSION

	MiscTechnicals.LEFT_SQUARE_BRACKET_LOWER_CORNER

	MiscTechnicals.LEFT_SQUARE_BRACKET_UPPER_CORNER

	MiscTechnicals.LEFT_VERTICAL_BOX_LINE

	MiscTechnicals.METRICAL_BREVE

	MiscTechnicals.METRICAL_LONG_OVER_SHORT

	MiscTechnicals.METRICAL_LONG_OVER_TWO_SHORTS

	MiscTechnicals.METRICAL_PENTASEME

	MiscTechnicals.METRICAL_SHORT_OVER_LONG

	MiscTechnicals.METRICAL_TETRASEME

	MiscTechnicals.METRICAL_TRISEME

	MiscTechnicals.METRICAL_TWO_SHORTS_JOINED

	MiscTechnicals.METRICAL_TWO_SHORTS_OVER_LONG

	MiscTechnicals.MONOSTABLE_SYMBOL

	MiscTechnicals.NEXT_PAGE

	MiscTechnicals.NOT_CHECK_MARK

	MiscTechnicals.OBSERVER_EYE_SYMBOL

	MiscTechnicals.OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL

	MiscTechnicals.OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL

	MiscTechnicals.OPTION_KEY

	MiscTechnicals.PASSIVE_PULL_DOWN_OUTPUT_SYMBOL

	MiscTechnicals.PASSIVE_PULL_UP_OUTPUT_SYMBOL

	MiscTechnicals.PERSPECTIVE

	MiscTechnicals.PLACE_OF_INTEREST_SIGN

	MiscTechnicals.POSITION_INDICATOR

	MiscTechnicals.POWER_ON_OFF_SYMBOL

	MiscTechnicals.POWER_ON_SYMBOL

	MiscTechnicals.POWER_SLEEP_SYMBOL

	MiscTechnicals.POWER_SYMBOL

	MiscTechnicals.PREVIOUS_PAGE

	MiscTechnicals.PRINT_SCREEN_SYMBOL

	MiscTechnicals.PROJECTIVE

	MiscTechnicals.RADICAL_SYMBOL_BOTTOM

	MiscTechnicals.RETURN_SYMBOL

	MiscTechnicals.REVERSED_NOT_SIGN

	MiscTechnicals.RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW

	MiscTechnicals.RIGHT_CEILING

	MiscTechnicals.RIGHT_CURLY_BRACKET_LOWER_HOOK

	MiscTechnicals.RIGHT_CURLY_BRACKET_MIDDLE_PIECE

	MiscTechnicals.RIGHT_CURLY_BRACKET_UPPER_HOOK

	MiscTechnicals.RIGHT_FLOOR

	MiscTechnicals.RIGHT_PARENTHESIS_EXTENSION

	MiscTechnicals.RIGHT_PARENTHESIS_LOWER_HOOK

	MiscTechnicals.RIGHT_PARENTHESIS_UPPER_HOOK

	MiscTechnicals.RIGHT_POINTING_ANGLE_BRACKET

	MiscTechnicals.RIGHT_SQUARE_BRACKET_EXTENSION

	MiscTechnicals.RIGHT_SQUARE_BRACKET_LOWER_CORNER

	MiscTechnicals.RIGHT_SQUARE_BRACKET_UPPER_CORNER

	MiscTechnicals.RIGHT_VERTICAL_BOX_LINE

	MiscTechnicals.SECTOR

	MiscTechnicals.SEGMENT

	MiscTechnicals.SHOULDERED_OPEN_BOX

	MiscTechnicals.SLOPE

	MiscTechnicals.SMILE

	MiscTechnicals.SOFTWARE_FUNCTION_SYMBOL

	MiscTechnicals.SQUARE_FOOT

	MiscTechnicals.SQUARE_LOZENGE

	MiscTechnicals.STOPWATCH

	MiscTechnicals.STRAIGHTNESS

	MiscTechnicals.SUMMATION_BOTTOM

	MiscTechnicals.SUMMATION_TOP

	MiscTechnicals.SYMMETRY

	MiscTechnicals.TELEPHONE_RECORDER

	MiscTechnicals.TIMER_CLOCK

	MiscTechnicals.TOP_CURLY_BRACKET

	MiscTechnicals.TOP_HALF_INTEGRAL

	MiscTechnicals.TOP_LEFT_CORNER

	MiscTechnicals.TOP_LEFT_CROP

	MiscTechnicals.TOP_PARENTHESIS

	MiscTechnicals.TOP_RIGHT_CORNER

	MiscTechnicals.TOP_RIGHT_CROP

	MiscTechnicals.TOP_SQUARE_BRACKET

	MiscTechnicals.TOP_TORTOISE_SHELL_BRACKET

	MiscTechnicals.TOTAL_RUNOUT

	MiscTechnicals.TURNED_NOT_SIGN

	MiscTechnicals.UNDO_SYMBOL

	MiscTechnicals.UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION

	MiscTechnicals.UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION

	MiscTechnicals.UP_ARROWHEAD

	MiscTechnicals.UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS

	MiscTechnicals.VERTICAL_LINE_EXTENSION

	MiscTechnicals.VERTICAL_LINE_WITH_MIDDLE_DOT

	MiscTechnicals.VIEWDATA_SQUARE

	MiscTechnicals.WATCH

	MiscTechnicals.WAVY_LINE

	MiscTechnicals.WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE

	MiscTechnicals.WHITE_TRAPEZIUM

	MiscTechnicals.X_IN_A_RECTANGLE_BOX









	Models
	Models
	Models.__init__()

	Models.ABACUS

	Models.AB_BUTTON_BLOOD_TYPE

	Models.ACCORDION

	Models.ADHESIVE_BANDAGE

	Models.ADMISSION_TICKETS

	Models.AERIAL_TRAMWAY

	Models.AIRPLANE

	Models.AIRPLANE_ARRIVAL

	Models.AIRPLANE_DEPARTURE

	Models.ALARM_CLOCK

	Models.ALEMBIC

	Models.ALIEN

	Models.ALIEN_MONSTER

	Models.AMBULANCE

	Models.AMERICAN_FOOTBALL

	Models.AMPHORA

	Models.ANATOMICAL_HEART

	Models.ANCHOR

	Models.ANGER_SYMBOL

	Models.ANGRY_FACE

	Models.ANGRY_FACE_WITH_HORNS

	Models.ANGUISHED_FACE

	Models.ANT

	Models.ANTENNA_BARS

	Models.ANXIOUS_FACE_WITH_SWEAT

	Models.AQUARIUS

	Models.ARIES

	Models.ARTICULATED_LORRY

	Models.ARTIST_PALETTE

	Models.ASTONISHED_FACE

	Models.ATM_SIGN

	Models.ATOM_SYMBOL

	Models.AUTOMOBILE

	Models.AUTO_RICKSHAW

	Models.AVOCADO

	Models.AXE

	Models.A_BUTTON_BLOOD_TYPE

	Models.BABY

	Models.BABY_ANGEL

	Models.BABY_BOTTLE

	Models.BABY_CHICK

	Models.BABY_SYMBOL

	Models.BACKHAND_INDEX_POINTING_DOWN

	Models.BACKHAND_INDEX_POINTING_LEFT

	Models.BACKHAND_INDEX_POINTING_RIGHT

	Models.BACKHAND_INDEX_POINTING_UP

	Models.BACKPACK

	Models.BACK_ARROW

	Models.BACON

	Models.BADGER

	Models.BADMINTON

	Models.BAGEL

	Models.BAGGAGE_CLAIM

	Models.BAGUETTE_BREAD

	Models.BALANCE_SCALE

	Models.BALD

	Models.BALL

	Models.BALLET_SHOES

	Models.BALLOON

	Models.BALLOT_BOX_WITH_BALLOT

	Models.BANANA

	Models.BANJO

	Models.BANK

	Models.BARBER_POLE

	Models.BAR_CHART

	Models.BASEBALL

	Models.BASKET

	Models.BASKETBALL

	Models.BAT

	Models.BATHTUB

	Models.BATTERY

	Models.BEACH_WITH_UMBRELLA

	Models.BEAMING_FACE_WITH_SMILING_EYES

	Models.BEAR

	Models.BEATING_HEART

	Models.BEAVER

	Models.BED

	Models.BEER_MUG

	Models.BEETLE

	Models.BELL

	Models.BELLHOP_BELL

	Models.BELL_PEPPER

	Models.BELL_WITH_SLASH

	Models.BENTO_BOX

	Models.BEVERAGE_BOX

	Models.BICYCLE

	Models.BIKINI

	Models.BILLED_CAP

	Models.BIOHAZARD

	Models.BIRD

	Models.BIRTHDAY_CAKE

	Models.BISON

	Models.BLACK_CIRCLE

	Models.BLACK_FLAG

	Models.BLACK_HEART

	Models.BLACK_LARGE_SQUARE

	Models.BLACK_MEDIUM_SMALL_SQUARE

	Models.BLACK_MEDIUM_SQUARE

	Models.BLACK_NIB

	Models.BLACK_SMALL_SQUARE

	Models.BLACK_SQUARE_BUTTON

	Models.BLOSSOM

	Models.BLOWFISH

	Models.BLUEBERRIES

	Models.BLUE_BOOK

	Models.BLUE_CIRCLE

	Models.BLUE_HEART

	Models.BLUE_SQUARE

	Models.BOAR

	Models.BOMB

	Models.BONE

	Models.BOOKMARK

	Models.BOOKMARK_TABS

	Models.BOOKS

	Models.BOOMERANG

	Models.BOTTLE_WITH_POPPING_CORK

	Models.BOUQUET

	Models.BOWLING

	Models.BOWL_WITH_SPOON

	Models.BOW_AND_ARROW

	Models.BOXING_GLOVE

	Models.BOY

	Models.BRAIN

	Models.BREAD

	Models.BREAST_FEEDING

	Models.BRICK

	Models.BRIDGE_AT_NIGHT

	Models.BRIEFCASE

	Models.BRIEFS

	Models.BRIGHT_BUTTON

	Models.BROCCOLI

	Models.BROKEN_HEART

	Models.BROOM

	Models.BROWN_CIRCLE

	Models.BROWN_HEART

	Models.BROWN_SQUARE

	Models.BUBBLE_TEA

	Models.BUCKET

	Models.BUG

	Models.BUILDING_CONSTRUCTION

	Models.BULLET_TRAIN

	Models.BURRITO

	Models.BUS

	Models.BUSTS_IN_SILHOUETTE

	Models.BUST_IN_SILHOUETTE

	Models.BUS_STOP

	Models.BUTTER

	Models.BUTTERFLY

	Models.B_BUTTON_BLOOD_TYPE

	Models.CACTUS

	Models.CALENDAR

	Models.CALL_ME_HAND

	Models.CAMEL

	Models.CAMERA

	Models.CAMERA_WITH_FLASH

	Models.CAMPING

	Models.CANCER

	Models.CANDLE

	Models.CANDY

	Models.CANNED_FOOD

	Models.CANOE

	Models.CAPRICORN

	Models.CARD_FILE_BOX

	Models.CARD_INDEX

	Models.CARD_INDEX_DIVIDERS

	Models.CAROUSEL_HORSE

	Models.CARPENTRY_SAW

	Models.CARP_STREAMER

	Models.CARROT

	Models.CASTLE

	Models.CAT

	Models.CAT_FACE

	Models.CAT_WITH_TEARS_OF_JOY

	Models.CAT_WITH_WRY_SMILE

	Models.CHAINS

	Models.CHAIR

	Models.CHART_DECREASING

	Models.CHART_INCREASING

	Models.CHART_INCREASING_WITH_YEN

	Models.CHECK_BOX_WITH_CHECK

	Models.CHECK_MARK

	Models.CHECK_MARK_BUTTON

	Models.CHEESE_WEDGE

	Models.CHEQUERED_FLAG

	Models.CHERRIES

	Models.CHERRY_BLOSSOM

	Models.CHESS_PAWN

	Models.CHESTNUT

	Models.CHICKEN

	Models.CHILD

	Models.CHILDREN_CROSSING

	Models.CHIPMUNK

	Models.CHOCOLATE_BAR

	Models.CHOPSTICKS

	Models.CHRISTMAS_TREE

	Models.CHURCH

	Models.CIGARETTE

	Models.CINEMA

	Models.CIRCLED_M

	Models.CIRCUS_TENT

	Models.CITYSCAPE

	Models.CITYSCAPE_AT_DUSK

	Models.CLAMP

	Models.CLAPPER_BOARD

	Models.CLAPPING_HANDS

	Models.CLASSICAL_BUILDING

	Models.CLINKING_BEER_MUGS

	Models.CLINKING_GLASSES

	Models.CLIPBOARD

	Models.CLOCKWISE_VERTICAL_ARROWS

	Models.CLOSED_BOOK

	Models.CLOSED_MAILBOX_WITH_LOWERED_FLAG

	Models.CLOSED_MAILBOX_WITH_RAISED_FLAG

	Models.CLOSED_UMBRELLA

	Models.CLOUD

	Models.CLOUD_WITH_LIGHTNING

	Models.CLOUD_WITH_LIGHTNING_AND_RAIN

	Models.CLOUD_WITH_RAIN

	Models.CLOUD_WITH_SNOW

	Models.CLOWN_FACE

	Models.CLUB_SUIT

	Models.CLUTCH_BAG

	Models.CL_BUTTON

	Models.COAT

	Models.COCKROACH

	Models.COCKTAIL_GLASS

	Models.COCONUT

	Models.COFFIN

	Models.COIN

	Models.COLD_FACE

	Models.COLLISION

	Models.COMET

	Models.COMPASS

	Models.COMPUTER_DISK

	Models.COMPUTER_MOUSE

	Models.CONFETTI_BALL

	Models.CONFOUNDED_FACE

	Models.CONFUSED_FACE

	Models.CONSTRUCTION

	Models.CONSTRUCTION_WORKER

	Models.CONTROL_KNOBS

	Models.CONVENIENCE_STORE

	Models.COOKED_RICE

	Models.COOKIE

	Models.COOKING

	Models.COOL_BUTTON

	Models.COPYRIGHT

	Models.COUCH_AND_LAMP

	Models.COUNTERCLOCKWISE_ARROWS_BUTTON

	Models.COUPLE_WITH_HEART

	Models.COW

	Models.COWBOY_HAT_FACE

	Models.COW_FACE

	Models.CRAB

	Models.CRAYON

	Models.CREDIT_CARD

	Models.CRESCENT_MOON

	Models.CRICKET

	Models.CRICKET_GAME

	Models.CROCODILE

	Models.CROISSANT

	Models.CROSSED_FINGERS

	Models.CROSSED_FLAGS

	Models.CROSSED_SWORDS

	Models.CROSS_MARK

	Models.CROSS_MARK_BUTTON

	Models.CROWN

	Models.CRYING_CAT

	Models.CRYING_FACE

	Models.CRYSTAL_BALL

	Models.CUCUMBER

	Models.CUPCAKE

	Models.CUP_WITH_STRAW

	Models.CURLING_STONE

	Models.CURLY_HAIR

	Models.CURLY_LOOP

	Models.CURRENCY_EXCHANGE

	Models.CURRY_RICE

	Models.CUSTARD

	Models.CUSTOMS

	Models.CUT_OF_MEAT

	Models.CYCLONE

	Models.DAGGER

	Models.DANGO

	Models.DARK_SKIN_TONE

	Models.DASHING_AWAY

	Models.DEAF_PERSON

	Models.DECIDUOUS_TREE

	Models.DEER

	Models.DELIVERY_TRUCK

	Models.DEPARTMENT_STORE

	Models.DERELICT_HOUSE

	Models.DESERT

	Models.DESERT_ISLAND

	Models.DESKTOP_COMPUTER

	Models.DETECTIVE

	Models.DIAMOND_SUIT

	Models.DIAMOND_WITH_A_DOT

	Models.DIM_BUTTON

	Models.DIRECT_HIT

	Models.DISAPPOINTED_FACE

	Models.DISGUISED_FACE

	Models.DIVIDE

	Models.DIVING_MASK

	Models.DIYA_LAMP

	Models.DIZZY

	Models.DIZZY_FACE

	Models.DNA

	Models.DODO

	Models.DOG

	Models.DOG_FACE

	Models.DOLLAR_BANKNOTE

	Models.DOLPHIN

	Models.DOOR

	Models.DOTTED_SIX_POINTED_STAR

	Models.DOUBLE_CURLY_LOOP

	Models.DOUBLE_EXCLAMATION_MARK

	Models.DOUGHNUT

	Models.DOVE

	Models.DOWNCAST_FACE_WITH_SWEAT

	Models.DOWNWARDS_BUTTON

	Models.DOWN_ARROW

	Models.DOWN_LEFT_ARROW

	Models.DOWN_RIGHT_ARROW

	Models.DRAGON

	Models.DRAGON_FACE

	Models.DRESS

	Models.DROOLING_FACE

	Models.DROPLET

	Models.DROP_OF_BLOOD

	Models.DRUM

	Models.DUCK

	Models.DUMPLING

	Models.DVD

	Models.EAGLE

	Models.EAR

	Models.EAR_OF_CORN

	Models.EAR_WITH_HEARING_AID

	Models.EGG

	Models.EGGPLANT

	Models.EIGHT_OCLOCK

	Models.EIGHT_POINTED_STAR

	Models.EIGHT_SPOKED_ASTERISK

	Models.EIGHT_THIRTY

	Models.EJECT_BUTTON

	Models.ELECTRIC_PLUG

	Models.ELEPHANT

	Models.ELEVATOR

	Models.ELEVEN_OCLOCK

	Models.ELEVEN_THIRTY

	Models.ELF

	Models.END_ARROW

	Models.ENVELOPE

	Models.ENVELOPE_WITH_ARROW

	Models.EURO_BANKNOTE

	Models.EVERGREEN_TREE

	Models.EWE

	Models.EXCLAMATION_MARK

	Models.EXCLAMATION_QUESTION_MARK

	Models.EXPLODING_HEAD

	Models.EXPRESSIONLESS_FACE

	Models.EYE

	Models.EYES

	Models.E_MAIL

	Models.FACE_BLOWING_A_KISS

	Models.FACE_SAVORING_FOOD

	Models.FACE_SCREAMING_IN_FEAR

	Models.FACE_VOMITING

	Models.FACE_WITHOUT_MOUTH

	Models.FACE_WITH_HAND_OVER_MOUTH

	Models.FACE_WITH_HEAD_BANDAGE

	Models.FACE_WITH_MEDICAL_MASK

	Models.FACE_WITH_MONOCLE

	Models.FACE_WITH_OPEN_MOUTH

	Models.FACE_WITH_RAISED_EYEBROW

	Models.FACE_WITH_ROLLING_EYES

	Models.FACE_WITH_STEAM_FROM_NOSE

	Models.FACE_WITH_SYMBOLS_ON_MOUTH

	Models.FACE_WITH_TEARS_OF_JOY

	Models.FACE_WITH_THERMOMETER

	Models.FACE_WITH_TONGUE

	Models.FACTORY

	Models.FAIRY

	Models.FALAFEL

	Models.FALLEN_LEAF

	Models.FAMILY

	Models.FAST_DOWN_BUTTON

	Models.FAST_FORWARD_BUTTON

	Models.FAST_REVERSE_BUTTON

	Models.FAST_UP_BUTTON

	Models.FAX_MACHINE

	Models.FEARFUL_FACE

	Models.FEATHER

	Models.FEMALE_SIGN

	Models.FERRIS_WHEEL

	Models.FERRY

	Models.FIELD_HOCKEY

	Models.FILE_CABINET

	Models.FILE_FOLDER

	Models.FILM_FRAMES

	Models.FILM_PROJECTOR

	Models.FIRE

	Models.FIRECRACKER

	Models.FIREWORKS

	Models.FIRE_ENGINE

	Models.FIRE_EXTINGUISHER

	Models.FIRST_PLACE_MEDAL

	Models.FIRST_QUARTER_MOON

	Models.FIRST_QUARTER_MOON_FACE

	Models.FISH

	Models.FISHING_POLE

	Models.FISH_CAKE_WITH_SWIRL

	Models.FIVE_OCLOCK

	Models.FIVE_THIRTY

	Models.FLAG_IN_HOLE

	Models.FLAMINGO

	Models.FLASHLIGHT

	Models.FLATBREAD

	Models.FLAT_SHOE

	Models.FLEUR_DE_LIS

	Models.FLEXED_BICEPS

	Models.FLOPPY_DISK

	Models.FLOWER_PLAYING_CARDS

	Models.FLUSHED_FACE

	Models.FLY

	Models.FLYING_DISC

	Models.FLYING_SAUCER

	Models.FOG

	Models.FOGGY

	Models.FOLDED_HANDS

	Models.FONDUE

	Models.FOOT

	Models.FOOTPRINTS

	Models.FORK_AND_KNIFE

	Models.FORK_AND_KNIFE_WITH_PLATE

	Models.FORTUNE_COOKIE

	Models.FOUNTAIN

	Models.FOUNTAIN_PEN

	Models.FOUR_LEAF_CLOVER

	Models.FOUR_OCLOCK

	Models.FOUR_THIRTY

	Models.FOX

	Models.FRAMED_PICTURE

	Models.FREE_BUTTON

	Models.FRENCH_FRIES

	Models.FRIED_SHRIMP

	Models.FROG

	Models.FRONT_FACING_BABY_CHICK

	Models.FROWNING_FACE

	Models.FROWNING_FACE_WITH_OPEN_MOUTH

	Models.FUEL_PUMP

	Models.FULL_MOON

	Models.FULL_MOON_FACE

	Models.FUNERAL_URN

	Models.GAME_DIE

	Models.GARLIC

	Models.GEAR

	Models.GEMINI

	Models.GEM_STONE

	Models.GENIE

	Models.GHOST

	Models.GIRAFFE

	Models.GIRL

	Models.GLASSES

	Models.GLASS_OF_MILK

	Models.GLOBE_SHOWING_AMERICAS

	Models.GLOBE_SHOWING_ASIA_AUSTRALIA

	Models.GLOBE_SHOWING_EUROPE_AFRICA

	Models.GLOBE_WITH_MERIDIANS

	Models.GLOVES

	Models.GLOWING_STAR

	Models.GOAL_NET

	Models.GOAT

	Models.GOBLIN

	Models.GOGGLES

	Models.GORILLA

	Models.GRADUATION_CAP

	Models.GRAPES

	Models.GREEN_APPLE

	Models.GREEN_BOOK

	Models.GREEN_CIRCLE

	Models.GREEN_HEART

	Models.GREEN_SALAD

	Models.GREEN_SQUARE

	Models.GRIMACING_FACE

	Models.GRINNING_CAT

	Models.GRINNING_CAT_WITH_SMILING_EYES

	Models.GRINNING_FACE

	Models.GRINNING_FACE_WITH_BIG_EYES

	Models.GRINNING_FACE_WITH_SMILING_EYES

	Models.GRINNING_FACE_WITH_SWEAT

	Models.GRINNING_SQUINTING_FACE

	Models.GROWING_HEART

	Models.GUARD

	Models.GUIDE_DOG

	Models.GUITAR

	Models.HAMBURGER

	Models.HAMMER

	Models.HAMMER_AND_PICK

	Models.HAMMER_AND_WRENCH

	Models.HAMSTER

	Models.HANDBAG

	Models.HANDSHAKE

	Models.HAND_WITH_FINGERS_SPLAYED

	Models.HATCHING_CHICK

	Models.HEADPHONE

	Models.HEADSTONE

	Models.HEART_DECORATION

	Models.HEART_EXCLAMATION

	Models.HEART_SUIT

	Models.HEART_WITH_ARROW

	Models.HEART_WITH_RIBBON

	Models.HEAR_NO_EVIL_MONKEY

	Models.HEAVY_DOLLAR_SIGN

	Models.HEDGEHOG

	Models.HELICOPTER

	Models.HERB

	Models.HIBISCUS

	Models.HIGH_HEELED_SHOE

	Models.HIGH_SPEED_TRAIN

	Models.HIGH_VOLTAGE

	Models.HIKING_BOOT

	Models.HINDU_TEMPLE

	Models.HIPPOPOTAMUS

	Models.HOLE

	Models.HOLLOW_RED_CIRCLE

	Models.HONEYBEE

	Models.HONEY_POT

	Models.HOOK

	Models.HORIZONTAL_TRAFFIC_LIGHT

	Models.HORSE

	Models.HORSE_FACE

	Models.HORSE_RACING

	Models.HOSPITAL

	Models.HOTEL

	Models.HOT_BEVERAGE

	Models.HOT_DOG

	Models.HOT_FACE

	Models.HOT_PEPPER

	Models.HOT_SPRINGS

	Models.HOURGLASS_DONE

	Models.HOURGLASS_NOT_DONE

	Models.HOUSE

	Models.HOUSES

	Models.HOUSE_WITH_GARDEN

	Models.HUGGING_FACE

	Models.HUNDRED_POINTS

	Models.HUSHED_FACE

	Models.HUT

	Models.ICE

	Models.ICE_CREAM

	Models.ICE_HOCKEY

	Models.ICE_SKATE

	Models.ID_BUTTON

	Models.INBOX_TRAY

	Models.INCOMING_ENVELOPE

	Models.INDEX_POINTING_UP

	Models.INFINITY

	Models.INFORMATION

	Models.INPUT_LATIN_LETTERS

	Models.INPUT_LATIN_LOWERCASE

	Models.INPUT_LATIN_UPPERCASE

	Models.INPUT_NUMBERS

	Models.INPUT_SYMBOLS

	Models.JACK_O_LANTERN

	Models.JAPANESE_ACCEPTABLE_BUTTON

	Models.JAPANESE_APPLICATION_BUTTON

	Models.JAPANESE_BARGAIN_BUTTON

	Models.JAPANESE_CASTLE

	Models.JAPANESE_CONGRATULATIONS_BUTTON

	Models.JAPANESE_DISCOUNT_BUTTON

	Models.JAPANESE_DOLLS

	Models.JAPANESE_FREE_OF_CHARGE_BUTTON

	Models.JAPANESE_HERE_BUTTON

	Models.JAPANESE_MONTHLY_AMOUNT_BUTTON

	Models.JAPANESE_NOT_FREE_OF_CHARGE_BUTTON

	Models.JAPANESE_NO_VACANCY_BUTTON

	Models.JAPANESE_OPEN_FOR_BUSINESS_BUTTON

	Models.JAPANESE_PASSING_GRADE_BUTTON

	Models.JAPANESE_POST_OFFICE

	Models.JAPANESE_PROHIBITED_BUTTON

	Models.JAPANESE_RESERVED_BUTTON

	Models.JAPANESE_SECRET_BUTTON

	Models.JAPANESE_SERVICE_CHARGE_BUTTON

	Models.JAPANESE_SYMBOL_FOR_BEGINNER

	Models.JAPANESE_VACANCY_BUTTON

	Models.JEANS

	Models.JOKER

	Models.JOYSTICK

	Models.KAABA

	Models.KANGAROO

	Models.KEY

	Models.KEYBOARD

	Models.KICK_SCOOTER

	Models.KIMONO

	Models.KISS

	Models.KISSING_CAT

	Models.KISSING_FACE

	Models.KISSING_FACE_WITH_CLOSED_EYES

	Models.KISSING_FACE_WITH_SMILING_EYES

	Models.KISS_MARK

	Models.KITCHEN_KNIFE

	Models.KITE

	Models.KIWI_FRUIT

	Models.KNOT

	Models.KOALA

	Models.LABEL

	Models.LAB_COAT

	Models.LACROSSE

	Models.LADDER

	Models.LADY_BEETLE

	Models.LAPTOP

	Models.LARGE_BLUE_DIAMOND

	Models.LARGE_ORANGE_DIAMOND

	Models.LAST_QUARTER_MOON

	Models.LAST_QUARTER_MOON_FACE

	Models.LAST_TRACK_BUTTON

	Models.LATIN_CROSS

	Models.LEAFY_GREEN

	Models.LEAF_FLUTTERING_IN_WIND

	Models.LEDGER

	Models.LEFT_ARROW

	Models.LEFT_ARROW_CURVING_RIGHT

	Models.LEFT_FACING_FIST

	Models.LEFT_LUGGAGE

	Models.LEFT_RIGHT_ARROW

	Models.LEFT_SPEECH_BUBBLE

	Models.LEG

	Models.LEMON

	Models.LEO

	Models.LEOPARD

	Models.LEVEL_SLIDER

	Models.LIBRA

	Models.LIGHT_BULB

	Models.LIGHT_RAIL

	Models.LIGHT_SKIN_TONE

	Models.LINK

	Models.LINKED_PAPERCLIPS

	Models.LION

	Models.LIPSTICK

	Models.LITTER_IN_BIN_SIGN

	Models.LIZARD

	Models.LLAMA

	Models.LOBSTER

	Models.LOCKED

	Models.LOCKED_WITH_KEY

	Models.LOCKED_WITH_PEN

	Models.LOCOMOTIVE

	Models.LOLLIPOP

	Models.LONG_DRUM

	Models.LOTION_BOTTLE

	Models.LOUDLY_CRYING_FACE

	Models.LOUDSPEAKER

	Models.LOVE_HOTEL

	Models.LOVE_LETTER

	Models.LOVE_YOU_GESTURE

	Models.LUGGAGE

	Models.LUNGS

	Models.LYING_FACE

	Models.MAGE

	Models.MAGIC_WAND

	Models.MAGNET

	Models.MAGNIFYING_GLASS_TILTED_LEFT

	Models.MAGNIFYING_GLASS_TILTED_RIGHT

	Models.MAHJONG_RED_DRAGON

	Models.MALE_SIGN

	Models.MAMMOTH

	Models.MAN

	Models.MANGO

	Models.MANS_SHOE

	Models.MANTELPIECE_CLOCK

	Models.MANUAL_WHEELCHAIR

	Models.MAN_BEARD

	Models.MAN_DANCING

	Models.MAPLE_LEAF

	Models.MAP_OF_JAPAN

	Models.MARTIAL_ARTS_UNIFORM

	Models.MATE

	Models.MEAT_ON_BONE

	Models.MECHANICAL_ARM

	Models.MECHANICAL_LEG

	Models.MEDICAL_SYMBOL

	Models.MEDIUM_DARK_SKIN_TONE

	Models.MEDIUM_LIGHT_SKIN_TONE

	Models.MEDIUM_SKIN_TONE

	Models.MEGAPHONE

	Models.MELON

	Models.MEMO

	Models.MENORAH

	Models.MENS_ROOM

	Models.MEN_HOLDING_HANDS

	Models.MERPERSON

	Models.METRO

	Models.MICROBE

	Models.MICROPHONE

	Models.MICROSCOPE

	Models.MIDDLE_FINGER

	Models.MILITARY_HELMET

	Models.MILITARY_MEDAL

	Models.MILKY_WAY

	Models.MINIBUS

	Models.MINUS

	Models.MIRROR

	Models.MOAI

	Models.MOBILE_PHONE

	Models.MOBILE_PHONE_OFF

	Models.MOBILE_PHONE_WITH_ARROW

	Models.MONEY_BAG

	Models.MONEY_MOUTH_FACE

	Models.MONEY_WITH_WINGS

	Models.MONKEY

	Models.MONKEY_FACE

	Models.MONORAIL

	Models.MOON_CAKE

	Models.MOON_VIEWING_CEREMONY

	Models.MOSQUE

	Models.MOSQUITO

	Models.MOTORCYCLE

	Models.MOTORIZED_WHEELCHAIR

	Models.MOTORWAY

	Models.MOTOR_BOAT

	Models.MOTOR_SCOOTER

	Models.MOUNTAIN

	Models.MOUNTAIN_CABLEWAY

	Models.MOUNTAIN_RAILWAY

	Models.MOUNT_FUJI

	Models.MOUSE

	Models.MOUSE_FACE

	Models.MOUSE_TRAP

	Models.MOUTH

	Models.MOVIE_CAMERA

	Models.MRS_CLAUS

	Models.MULTIPLY

	Models.MUSHROOM

	Models.MUSICAL_KEYBOARD

	Models.MUSICAL_NOTE

	Models.MUSICAL_NOTES

	Models.MUSICAL_SCORE

	Models.MUTED_SPEAKER

	Models.NAIL_POLISH

	Models.NAME_BADGE

	Models.NATIONAL_PARK

	Models.NAUSEATED_FACE

	Models.NAZAR_AMULET

	Models.NECKTIE

	Models.NERD_FACE

	Models.NESTING_DOLLS

	Models.NEUTRAL_FACE

	Models.NEWSPAPER

	Models.NEW_BUTTON

	Models.NEW_MOON

	Models.NEW_MOON_FACE

	Models.NEXT_TRACK_BUTTON

	Models.NG_BUTTON

	Models.NIGHT_WITH_STARS

	Models.NINE_OCLOCK

	Models.NINE_THIRTY

	Models.NINJA

	Models.NON_POTABLE_WATER

	Models.NOSE

	Models.NOTEBOOK

	Models.NOTEBOOK_WITH_DECORATIVE_COVER

	Models.NO_BICYCLES

	Models.NO_ENTRY

	Models.NO_LITTERING

	Models.NO_MOBILE_PHONES

	Models.NO_ONE_UNDER_EIGHTEEN

	Models.NO_PEDESTRIANS

	Models.NO_SMOKING

	Models.NUT_AND_BOLT

	Models.OCTOPUS

	Models.ODEN

	Models.OFFICE_BUILDING

	Models.OGRE

	Models.OIL_DRUM

	Models.OK_BUTTON

	Models.OK_HAND

	Models.OLDER_PERSON

	Models.OLD_KEY

	Models.OLD_MAN

	Models.OLD_WOMAN

	Models.OLIVE

	Models.OM

	Models.ONCOMING_AUTOMOBILE

	Models.ONCOMING_BUS

	Models.ONCOMING_FIST

	Models.ONCOMING_POLICE_CAR

	Models.ONCOMING_TAXI

	Models.ONE_OCLOCK

	Models.ONE_PIECE_SWIMSUIT

	Models.ONE_THIRTY

	Models.ONION

	Models.ON_ARROW

	Models.OPEN_BOOK

	Models.OPEN_FILE_FOLDER

	Models.OPEN_HANDS

	Models.OPEN_MAILBOX_WITH_LOWERED_FLAG

	Models.OPEN_MAILBOX_WITH_RAISED_FLAG

	Models.OPHIUCHUS

	Models.OPTICAL_DISK

	Models.ORANGE_BOOK

	Models.ORANGE_CIRCLE

	Models.ORANGE_HEART

	Models.ORANGE_SQUARE

	Models.ORANGUTAN

	Models.ORTHODOX_CROSS

	Models.OTTER

	Models.OUTBOX_TRAY

	Models.OWL

	Models.OX

	Models.OYSTER

	Models.O_BUTTON_BLOOD_TYPE

	Models.PACKAGE

	Models.PAGER

	Models.PAGE_FACING_UP

	Models.PAGE_WITH_CURL

	Models.PAINTBRUSH

	Models.PALMS_UP_TOGETHER

	Models.PALM_TREE

	Models.PANCAKES

	Models.PANDA

	Models.PAPERCLIP

	Models.PARACHUTE

	Models.PARROT

	Models.PARTYING_FACE

	Models.PARTY_POPPER

	Models.PART_ALTERNATION_MARK

	Models.PASSENGER_SHIP

	Models.PASSPORT_CONTROL

	Models.PAUSE_BUTTON

	Models.PAW_PRINTS

	Models.PEACE_SYMBOL

	Models.PEACH

	Models.PEACOCK

	Models.PEANUTS

	Models.PEAR

	Models.PEN

	Models.PENCIL

	Models.PENGUIN

	Models.PENSIVE_FACE

	Models.PEOPLE_HUGGING

	Models.PEOPLE_WITH_BUNNY_EARS

	Models.PEOPLE_WRESTLING

	Models.PERFORMING_ARTS

	Models.PERSEVERING_FACE

	Models.PERSON

	Models.PERSON_BIKING

	Models.PERSON_BLOND_HAIR

	Models.PERSON_BOUNCING_BALL

	Models.PERSON_BOWING

	Models.PERSON_CARTWHEELING

	Models.PERSON_CLIMBING

	Models.PERSON_FACEPALMING

	Models.PERSON_FENCING

	Models.PERSON_FROWNING

	Models.PERSON_GESTURING_NO

	Models.PERSON_GESTURING_OK

	Models.PERSON_GETTING_HAIRCUT

	Models.PERSON_GETTING_MASSAGE

	Models.PERSON_GOLFING

	Models.PERSON_IN_BED

	Models.PERSON_IN_LOTUS_POSITION

	Models.PERSON_IN_STEAMY_ROOM

	Models.PERSON_IN_SUIT_LEVITATING

	Models.PERSON_IN_TUXEDO

	Models.PERSON_JUGGLING

	Models.PERSON_KNEELING

	Models.PERSON_LIFTING_WEIGHTS

	Models.PERSON_MOUNTAIN_BIKING

	Models.PERSON_PLAYING_HANDBALL

	Models.PERSON_PLAYING_WATER_POLO

	Models.PERSON_POUTING

	Models.PERSON_RAISING_HAND

	Models.PERSON_ROWING_BOAT

	Models.PERSON_RUNNING

	Models.PERSON_SHRUGGING

	Models.PERSON_STANDING

	Models.PERSON_SURFING

	Models.PERSON_SWIMMING

	Models.PERSON_TAKING_BATH

	Models.PERSON_TIPPING_HAND

	Models.PERSON_WALKING

	Models.PERSON_WEARING_TURBAN

	Models.PERSON_WITH_SKULLCAP

	Models.PERSON_WITH_VEIL

	Models.PETRI_DISH

	Models.PICK

	Models.PICKUP_TRUCK

	Models.PIE

	Models.PIG

	Models.PIG_FACE

	Models.PIG_NOSE

	Models.PILE_OF_POO

	Models.PILL

	Models.PINCHED_FINGERS

	Models.PINCHING_HAND

	Models.PINEAPPLE

	Models.PINE_DECORATION

	Models.PING_PONG

	Models.PISCES

	Models.PISTOL

	Models.PIZZA

	Models.PIñATA

	Models.PLACARD

	Models.PLACE_OF_WORSHIP

	Models.PLAY_BUTTON

	Models.PLAY_OR_PAUSE_BUTTON

	Models.PLEADING_FACE

	Models.PLUNGER

	Models.PLUS

	Models.POLICE_CAR

	Models.POLICE_CAR_LIGHT

	Models.POLICE_OFFICER

	Models.POODLE

	Models.POPCORN

	Models.POSTAL_HORN

	Models.POSTBOX

	Models.POST_OFFICE

	Models.POTABLE_WATER

	Models.POTATO

	Models.POTTED_PLANT

	Models.POT_OF_FOOD

	Models.POULTRY_LEG

	Models.POUND_BANKNOTE

	Models.POUTING_CAT

	Models.POUTING_FACE

	Models.PRAYER_BEADS

	Models.PREGNANT_WOMAN

	Models.PRETZEL

	Models.PRINCE

	Models.PRINCESS

	Models.PRINTER

	Models.PROHIBITED

	Models.PURPLE_CIRCLE

	Models.PURPLE_HEART

	Models.PURPLE_SQUARE

	Models.PURSE

	Models.PUSHPIN

	Models.PUZZLE_PIECE

	Models.P_BUTTON

	Models.QUESTION_MARK

	Models.RABBIT

	Models.RABBIT_FACE

	Models.RACCOON

	Models.RACING_CAR

	Models.RADIO

	Models.RADIOACTIVE

	Models.RADIO_BUTTON

	Models.RAILWAY_CAR

	Models.RAILWAY_TRACK

	Models.RAINBOW

	Models.RAISED_BACK_OF_HAND

	Models.RAISED_FIST

	Models.RAISED_HAND

	Models.RAISING_HANDS

	Models.RAM

	Models.RAT

	Models.RAZOR

	Models.RECEIPT

	Models.RECORD_BUTTON

	Models.RECYCLING_SYMBOL

	Models.RED_APPLE

	Models.RED_CIRCLE

	Models.RED_ENVELOPE

	Models.RED_HAIR

	Models.RED_HEART

	Models.RED_PAPER_LANTERN

	Models.RED_SQUARE

	Models.RED_TRIANGLE_POINTED_DOWN

	Models.RED_TRIANGLE_POINTED_UP

	Models.REGISTERED

	Models.RELIEVED_FACE

	Models.REMINDER_RIBBON

	Models.REPEAT_BUTTON

	Models.REPEAT_SINGLE_BUTTON

	Models.RESCUE_WORKERS_HELMET

	Models.RESTROOM

	Models.REVERSE_BUTTON

	Models.REVOLVING_HEARTS

	Models.RHINOCEROS

	Models.RIBBON

	Models.RICE_BALL

	Models.RICE_CRACKER

	Models.RIGHT_ANGER_BUBBLE

	Models.RIGHT_ARROW

	Models.RIGHT_ARROW_CURVING_DOWN

	Models.RIGHT_ARROW_CURVING_LEFT

	Models.RIGHT_ARROW_CURVING_UP

	Models.RIGHT_FACING_FIST

	Models.RING

	Models.RINGED_PLANET

	Models.ROASTED_SWEET_POTATO

	Models.ROBOT

	Models.ROCK

	Models.ROCKET

	Models.ROLLED_UP_NEWSPAPER

	Models.ROLLER_COASTER

	Models.ROLLER_SKATE

	Models.ROLLING_ON_THE_FLOOR_LAUGHING

	Models.ROLL_OF_PAPER

	Models.ROOSTER

	Models.ROSE

	Models.ROSETTE

	Models.ROUND_PUSHPIN

	Models.RUGBY_FOOTBALL

	Models.RUNNING_SHIRT

	Models.RUNNING_SHOE

	Models.SAD_BUT_RELIEVED_FACE

	Models.SAFETY_PIN

	Models.SAFETY_VEST

	Models.SAGITTARIUS

	Models.SAILBOAT

	Models.SAKE

	Models.SALT

	Models.SANDWICH

	Models.SANTA_CLAUS

	Models.SARI

	Models.SATELLITE

	Models.SATELLITE_ANTENNA

	Models.SAUROPOD

	Models.SAXOPHONE

	Models.SCARF

	Models.SCHOOL

	Models.SCISSORS

	Models.SCORPIO

	Models.SCORPION

	Models.SCREWDRIVER

	Models.SCROLL

	Models.SEAL

	Models.SEAT

	Models.SECOND_PLACE_MEDAL

	Models.SEEDLING

	Models.SEE_NO_EVIL_MONKEY

	Models.SELFIE

	Models.SEVEN_OCLOCK

	Models.SEVEN_THIRTY

	Models.SEWING_NEEDLE

	Models.SHALLOW_PAN_OF_FOOD

	Models.SHAMROCK

	Models.SHARK

	Models.SHAVED_ICE

	Models.SHEAF_OF_RICE

	Models.SHIELD

	Models.SHINTO_SHRINE

	Models.SHIP

	Models.SHOOTING_STAR

	Models.SHOPPING_BAGS

	Models.SHOPPING_CART

	Models.SHORTCAKE

	Models.SHORTS

	Models.SHOWER

	Models.SHRIMP

	Models.SHUFFLE_TRACKS_BUTTON

	Models.SHUSHING_FACE

	Models.SIGN_OF_THE_HORNS

	Models.SIX_OCLOCK

	Models.SIX_THIRTY

	Models.SKATEBOARD

	Models.SKIER

	Models.SKIS

	Models.SKULL

	Models.SKULL_AND_CROSSBONES

	Models.SKUNK

	Models.SLED

	Models.SLEEPING_FACE

	Models.SLEEPY_FACE

	Models.SLIGHTLY_FROWNING_FACE

	Models.SLIGHTLY_SMILING_FACE

	Models.SLOTH

	Models.SLOT_MACHINE

	Models.SMALL_AIRPLANE

	Models.SMALL_BLUE_DIAMOND

	Models.SMALL_ORANGE_DIAMOND

	Models.SMILING_CAT_WITH_HEART_EYES

	Models.SMILING_FACE

	Models.SMILING_FACE_WITH_HALO

	Models.SMILING_FACE_WITH_HEARTS

	Models.SMILING_FACE_WITH_HEART_EYES

	Models.SMILING_FACE_WITH_HORNS

	Models.SMILING_FACE_WITH_SMILING_EYES

	Models.SMILING_FACE_WITH_SUNGLASSES

	Models.SMILING_FACE_WITH_TEAR

	Models.SMIRKING_FACE

	Models.SNAIL

	Models.SNAKE

	Models.SNEEZING_FACE

	Models.SNOWBOARDER

	Models.SNOWFLAKE

	Models.SNOWMAN

	Models.SNOWMAN_WITHOUT_SNOW

	Models.SNOW_CAPPED_MOUNTAIN

	Models.SOAP

	Models.SOCCER_BALL

	Models.SOCKS

	Models.SOFTBALL

	Models.SOFT_ICE_CREAM

	Models.SOON_ARROW

	Models.SOS_BUTTON

	Models.SPADE_SUIT

	Models.SPAGHETTI

	Models.SPARKLE

	Models.SPARKLER

	Models.SPARKLES

	Models.SPARKLING_HEART

	Models.SPEAKER_HIGH_VOLUME

	Models.SPEAKER_LOW_VOLUME

	Models.SPEAKER_MEDIUM_VOLUME

	Models.SPEAKING_HEAD

	Models.SPEAK_NO_EVIL_MONKEY

	Models.SPEECH_BALLOON

	Models.SPEEDBOAT

	Models.SPIDER

	Models.SPIDER_WEB

	Models.SPIRAL_CALENDAR

	Models.SPIRAL_NOTEPAD

	Models.SPIRAL_SHELL

	Models.SPONGE

	Models.SPOON

	Models.SPORTS_MEDAL

	Models.SPORT_UTILITY_VEHICLE

	Models.SPOUTING_WHALE

	Models.SQUID

	Models.SQUINTING_FACE_WITH_TONGUE

	Models.STADIUM

	Models.STAR

	Models.STAR_AND_CRESCENT

	Models.STAR_OF_DAVID

	Models.STAR_STRUCK

	Models.STATION

	Models.STATUE_OF_LIBERTY

	Models.STEAMING_BOWL

	Models.STETHOSCOPE

	Models.STOPWATCH

	Models.STOP_BUTTON

	Models.STOP_SIGN

	Models.STRAIGHT_RULER

	Models.STRAWBERRY

	Models.STUDIO_MICROPHONE

	Models.STUFFED_FLATBREAD

	Models.SUN

	Models.SUNFLOWER

	Models.SUNGLASSES

	Models.SUNRISE

	Models.SUNRISE_OVER_MOUNTAINS

	Models.SUNSET

	Models.SUN_BEHIND_CLOUD

	Models.SUN_BEHIND_LARGE_CLOUD

	Models.SUN_BEHIND_RAIN_CLOUD

	Models.SUN_BEHIND_SMALL_CLOUD

	Models.SUN_WITH_FACE

	Models.SUPERHERO

	Models.SUPERVILLAIN

	Models.SUSHI

	Models.SUSPENSION_RAILWAY

	Models.SWAN

	Models.SWEAT_DROPLETS

	Models.SYNAGOGUE

	Models.SYRINGE

	Models.TACO

	Models.TAKEOUT_BOX

	Models.TAMALE

	Models.TANABATA_TREE

	Models.TANGERINE

	Models.TAURUS

	Models.TAXI

	Models.TEACUP_WITHOUT_HANDLE

	Models.TEAPOT

	Models.TEAR_OFF_CALENDAR

	Models.TEDDY_BEAR

	Models.TELEPHONE

	Models.TELEPHONE_RECEIVER

	Models.TELESCOPE

	Models.TELEVISION

	Models.TENNIS

	Models.TENT

	Models.TEN_OCLOCK

	Models.TEN_THIRTY

	Models.TEST_TUBE

	Models.THERMOMETER

	Models.THINKING_FACE

	Models.THIRD_PLACE_MEDAL

	Models.THONG_SANDAL

	Models.THOUGHT_BALLOON

	Models.THREAD

	Models.THREE_OCLOCK

	Models.THREE_THIRTY

	Models.THUMBS_DOWN

	Models.THUMBS_UP

	Models.TICKET

	Models.TIGER

	Models.TIGER_FACE

	Models.TIMER_CLOCK

	Models.TIRED_FACE

	Models.TOILET

	Models.TOKYO_TOWER

	Models.TOMATO

	Models.TONGUE

	Models.TOOLBOX

	Models.TOOTH

	Models.TOOTHBRUSH

	Models.TOP_ARROW

	Models.TOP_HAT

	Models.TORNADO

	Models.TRACKBALL

	Models.TRACTOR

	Models.TRADE_MARK

	Models.TRAIN

	Models.TRAM

	Models.TRAM_CAR

	Models.TRANSGENDER_SYMBOL

	Models.TRIANGULAR_FLAG

	Models.TRIANGULAR_RULER

	Models.TRIDENT_EMBLEM

	Models.TROLLEYBUS

	Models.TROPHY

	Models.TROPICAL_DRINK

	Models.TROPICAL_FISH

	Models.TRUMPET

	Models.TULIP

	Models.TUMBLER_GLASS

	Models.TURKEY

	Models.TURTLE

	Models.TWELVE_OCLOCK

	Models.TWELVE_THIRTY

	Models.TWO_HEARTS

	Models.TWO_HUMP_CAMEL

	Models.TWO_OCLOCK

	Models.TWO_THIRTY

	Models.T_REX

	Models.T_SHIRT

	Models.UMBRELLA

	Models.UMBRELLA_ON_GROUND

	Models.UMBRELLA_WITH_RAIN_DROPS

	Models.UNAMUSED_FACE

	Models.UNICORN

	Models.UNLOCKED

	Models.UPSIDE_DOWN_FACE

	Models.UPWARDS_BUTTON

	Models.UP_ARROW

	Models.UP_BUTTON

	Models.UP_DOWN_ARROW

	Models.UP_LEFT_ARROW

	Models.UP_RIGHT_ARROW

	Models.VAMPIRE

	Models.VERTICAL_TRAFFIC_LIGHT

	Models.VIBRATION_MODE

	Models.VICTORY_HAND

	Models.VIDEOCASSETTE

	Models.VIDEO_CAMERA

	Models.VIDEO_GAME

	Models.VIOLIN

	Models.VIRGO

	Models.VOLCANO

	Models.VOLLEYBALL

	Models.VS_BUTTON

	Models.VULCAN_SALUTE

	Models.WAFFLE

	Models.WANING_CRESCENT_MOON

	Models.WANING_GIBBOUS_MOON

	Models.WARNING

	Models.WASTEBASKET

	Models.WATCH

	Models.WATERMELON

	Models.WATER_BUFFALO

	Models.WATER_CLOSET

	Models.WATER_WAVE

	Models.WAVING_HAND

	Models.WAVY_DASH

	Models.WAXING_CRESCENT_MOON

	Models.WAXING_GIBBOUS_MOON

	Models.WEARY_CAT

	Models.WEARY_FACE

	Models.WEDDING

	Models.WHALE

	Models.WHEELCHAIR_SYMBOL

	Models.WHEEL_OF_DHARMA

	Models.WHITE_CANE

	Models.WHITE_CIRCLE

	Models.WHITE_EXCLAMATION_MARK

	Models.WHITE_FLAG

	Models.WHITE_FLOWER

	Models.WHITE_HAIR

	Models.WHITE_HEART

	Models.WHITE_LARGE_SQUARE

	Models.WHITE_MEDIUM_SMALL_SQUARE

	Models.WHITE_MEDIUM_SQUARE

	Models.WHITE_QUESTION_MARK

	Models.WHITE_SMALL_SQUARE

	Models.WHITE_SQUARE_BUTTON

	Models.WILTED_FLOWER

	Models.WINDOW

	Models.WIND_CHIME

	Models.WIND_FACE

	Models.WINE_GLASS

	Models.WINKING_FACE

	Models.WINKING_FACE_WITH_TONGUE

	Models.WOLF

	Models.WOMAN

	Models.WOMANS_BOOT

	Models.WOMANS_CLOTHES

	Models.WOMANS_HAT

	Models.WOMANS_SANDAL

	Models.WOMAN_AND_MAN_HOLDING_HANDS

	Models.WOMAN_DANCING

	Models.WOMAN_WITH_HEADSCARF

	Models.WOMENS_ROOM

	Models.WOMEN_HOLDING_HANDS

	Models.WOOD

	Models.WOOZY_FACE

	Models.WORLD_MAP

	Models.WORM

	Models.WORRIED_FACE

	Models.WRAPPED_GIFT

	Models.WRENCH

	Models.WRITING_HAND

	Models.YARN

	Models.YAWNING_FACE

	Models.YELLOW_CIRCLE

	Models.YELLOW_HEART

	Models.YELLOW_SQUARE

	Models.YEN_BANKNOTE

	Models.YIN_YANG

	Models.YO_YO

	Models.ZANY_FACE

	Models.ZEBRA

	Models.ZIPPER_MOUTH_FACE

	Models.ZOMBIE

	Models.ZZZ
















            

          

      

      

    

  

  
    
    

    Blocks
    

    

    
 
  

    
      
          
            
  
Blocks


	
class pygamelib.assets.graphics.Blocks

	Bases: object

Block elements (unicode)

Here is the list of supported glyphs:



	UPPER_HALF_BLOCK = ▀


	LOWER_ONE_EIGHTH_BLOCK = ▁


	LOWER_ONE_QUARTER_BLOCK = ▂


	LOWER_THREE_EIGHTHS_BLOCK = ▃


	LOWER_HALF_BLOCK = ▄


	LOWER_FIVE_EIGHTHS_BLOCK = ▅


	LOWER_THREE_QUARTERS_BLOCK = ▆


	LOWER_SEVEN_EIGHTHS_BLOCK = ▇


	FULL_BLOCK = █


	LEFT_SEVEN_EIGHTHS_BLOCK = ▉


	LEFT_THREE_QUARTERS_BLOCK = ▊


	LEFT_FIVE_EIGHTHS_BLOCK = ▋


	LEFT_HALF_BLOCK = ▌


	LEFT_THREE_EIGHTHS_BLOCK = ▍


	LEFT_ONE_QUARTER_BLOCK = ▎


	LEFT_ONE_EIGHTH_BLOCK = ▏


	RIGHT_HALF_BLOCK = ▐


	LIGHT_SHADE = ░


	MEDIUM_SHADE = ▒


	DARK_SHADE = ▓


	UPPER_ONE_EIGHTH_BLOCK = ▔


	RIGHT_ONE_EIGHTH_BLOCK = ▕


	QUADRANT_LOWER_LEFT = ▖


	QUADRANT_LOWER_RIGHT = ▗


	QUADRANT_UPPER_LEFT = ▘


	QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT = ▙


	QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT = ▚


	QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT = ▛


	QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT = ▜


	QUADRANT_UPPER_RIGHT = ▝


	QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT = ▞


	QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT = ▟








	
__init__()

	



Methods



	__init__()

	






Attributes



	DARK_SHADE

	



	FULL_BLOCK

	



	LEFT_FIVE_EIGHTHS_BLOCK

	



	LEFT_HALF_BLOCK

	



	LEFT_ONE_EIGHTH_BLOCK

	



	LEFT_ONE_QUARTER_BLOCK

	



	LEFT_SEVEN_EIGHTHS_BLOCK

	



	LEFT_THREE_EIGHTHS_BLOCK

	



	LEFT_THREE_QUARTERS_BLOCK

	



	LIGHT_SHADE

	



	LOWER_FIVE_EIGHTHS_BLOCK

	



	LOWER_HALF_BLOCK

	



	LOWER_ONE_EIGHTH_BLOCK

	



	LOWER_ONE_QUARTER_BLOCK

	



	LOWER_SEVEN_EIGHTHS_BLOCK

	



	LOWER_THREE_EIGHTHS_BLOCK

	



	LOWER_THREE_QUARTERS_BLOCK

	



	MEDIUM_SHADE

	



	QUADRANT_LOWER_LEFT

	



	QUADRANT_LOWER_RIGHT

	



	QUADRANT_UPPER_LEFT

	



	QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT

	



	QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT

	



	QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT

	



	QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT

	



	QUADRANT_UPPER_RIGHT

	



	QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT

	



	QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT

	



	RIGHT_HALF_BLOCK

	



	RIGHT_ONE_EIGHTH_BLOCK

	



	UPPER_HALF_BLOCK

	



	UPPER_ONE_EIGHTH_BLOCK

	







	
DARK_SHADE = '▓'

	




	
FULL_BLOCK = '█'

	




	
LEFT_FIVE_EIGHTHS_BLOCK = '▋'

	




	
LEFT_HALF_BLOCK = '▌'

	




	
LEFT_ONE_EIGHTH_BLOCK = '▏'

	




	
LEFT_ONE_QUARTER_BLOCK = '▎'

	




	
LEFT_SEVEN_EIGHTHS_BLOCK = '▉'

	




	
LEFT_THREE_EIGHTHS_BLOCK = '▍'

	




	
LEFT_THREE_QUARTERS_BLOCK = '▊'

	




	
LIGHT_SHADE = '░'

	




	
LOWER_FIVE_EIGHTHS_BLOCK = '▅'

	




	
LOWER_HALF_BLOCK = '▄'

	




	
LOWER_ONE_EIGHTH_BLOCK = '▁'

	




	
LOWER_ONE_QUARTER_BLOCK = '▂'

	




	
LOWER_SEVEN_EIGHTHS_BLOCK = '▇'

	




	
LOWER_THREE_EIGHTHS_BLOCK = '▃'

	




	
LOWER_THREE_QUARTERS_BLOCK = '▆'

	




	
MEDIUM_SHADE = '▒'

	




	
QUADRANT_LOWER_LEFT = '▖'

	




	
QUADRANT_LOWER_RIGHT = '▗'

	




	
QUADRANT_UPPER_LEFT = '▘'

	




	
QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT = '▙'

	




	
QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT = '▚'

	




	
QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT = '▛'

	




	
QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT = '▜'

	




	
QUADRANT_UPPER_RIGHT = '▝'

	




	
QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT = '▞'

	




	
QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT = '▟'

	




	
RIGHT_HALF_BLOCK = '▐'

	




	
RIGHT_ONE_EIGHTH_BLOCK = '▕'

	




	
UPPER_HALF_BLOCK = '▀'

	




	
UPPER_ONE_EIGHTH_BLOCK = '▔'

	










            

          

      

      

    

  

  
    
    

    BoxDrawings
    

    

    
 
  

    
      
          
            
  
BoxDrawings


	
class pygamelib.assets.graphics.BoxDrawings

	Bases: object

Box drawing elements (unicode)

Here is the list of supported glyphs:



	LIGHT_HORIZONTAL = ─


	HEAVY_HORIZONTAL = ━


	LIGHT_VERTICAL = │


	HEAVY_VERTICAL = ┃


	LIGHT_TRIPLE_DASH_HORIZONTAL = ┄


	HEAVY_TRIPLE_DASH_HORIZONTAL = ┅


	LIGHT_TRIPLE_DASH_VERTICAL = ┆


	HEAVY_TRIPLE_DASH_VERTICAL = ┇


	LIGHT_QUADRUPLE_DASH_HORIZONTAL = ┈


	HEAVY_QUADRUPLE_DASH_HORIZONTAL = ┉


	LIGHT_QUADRUPLE_DASH_VERTICAL = ┊


	HEAVY_QUADRUPLE_DASH_VERTICAL = ┋


	LIGHT_DOWN_AND_RIGHT = ┌


	DOWN_LIGHT_AND_RIGHT_HEAVY = ┍


	DOWN_HEAVY_AND_RIGHT_LIGHT = ┎


	HEAVY_DOWN_AND_RIGHT = ┏


	LIGHT_DOWN_AND_LEFT = ┐


	DOWN_LIGHT_AND_LEFT_HEAVY = ┑


	DOWN_HEAVY_AND_LEFT_LIGHT = ┒


	HEAVY_DOWN_AND_LEFT = ┓


	LIGHT_UP_AND_RIGHT = └


	UP_LIGHT_AND_RIGHT_HEAVY = ┕


	UP_HEAVY_AND_RIGHT_LIGHT = ┖


	HEAVY_UP_AND_RIGHT = ┗


	LIGHT_UP_AND_LEFT = ┘


	UP_LIGHT_AND_LEFT_HEAVY = ┙


	UP_HEAVY_AND_LEFT_LIGHT = ┚


	HEAVY_UP_AND_LEFT = ┛


	LIGHT_VERTICAL_AND_RIGHT = ├


	VERTICAL_LIGHT_AND_RIGHT_HEAVY = ┝


	UP_HEAVY_AND_RIGHT_DOWN_LIGHT = ┞


	DOWN_HEAVY_AND_RIGHT_UP_LIGHT = ┟


	VERTICAL_HEAVY_AND_RIGHT_LIGHT = ┠


	DOWN_LIGHT_AND_RIGHT_UP_HEAVY = ┡


	UP_LIGHT_AND_RIGHT_DOWN_HEAVY = ┢


	HEAVY_VERTICAL_AND_RIGHT = ┣


	LIGHT_VERTICAL_AND_LEFT = ┤


	VERTICAL_LIGHT_AND_LEFT_HEAVY = ┥


	UP_HEAVY_AND_LEFT_DOWN_LIGHT = ┦


	DOWN_HEAVY_AND_LEFT_UP_LIGHT = ┧


	VERTICAL_HEAVY_AND_LEFT_LIGHT = ┨


	DOWN_LIGHT_AND_LEFT_UP_HEAVY = ┩


	UP_LIGHT_AND_LEFT_DOWN_HEAVY = ┪


	HEAVY_VERTICAL_AND_LEFT = ┫


	LIGHT_DOWN_AND_HORIZONTAL = ┬


	LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT = ┭


	RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT = ┮


	DOWN_LIGHT_AND_HORIZONTAL_HEAVY = ┯


	DOWN_HEAVY_AND_HORIZONTAL_LIGHT = ┰


	RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY = ┱


	LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY = ┲


	HEAVY_DOWN_AND_HORIZONTAL = ┳


	LIGHT_UP_AND_HORIZONTAL = ┴


	LEFT_HEAVY_AND_RIGHT_UP_LIGHT = ┵


	RIGHT_HEAVY_AND_LEFT_UP_LIGHT = ┶


	UP_LIGHT_AND_HORIZONTAL_HEAVY = ┷


	UP_HEAVY_AND_HORIZONTAL_LIGHT = ┸


	RIGHT_LIGHT_AND_LEFT_UP_HEAVY = ┹


	LEFT_LIGHT_AND_RIGHT_UP_HEAVY = ┺


	HEAVY_UP_AND_HORIZONTAL = ┻


	LIGHT_VERTICAL_AND_HORIZONTAL = ┼


	LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT = ┽


	RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT = ┾


	VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY = ┿


	UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT = ╀


	DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT = ╁


	VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT = ╂


	LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT = ╃


	RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT = ╄


	LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT = ╅


	RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT = ╆


	DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY = ╇


	UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY = ╈


	RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY = ╉


	LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY = ╊


	HEAVY_VERTICAL_AND_HORIZONTAL = ╋


	LIGHT_DOUBLE_DASH_HORIZONTAL = ╌


	HEAVY_DOUBLE_DASH_HORIZONTAL = ╍


	LIGHT_DOUBLE_DASH_VERTICAL = ╎


	HEAVY_DOUBLE_DASH_VERTICAL = ╏


	DOUBLE_HORIZONTAL = ═


	DOUBLE_VERTICAL = ║


	DOWN_SINGLE_AND_RIGHT_DOUBLE = ╒


	DOWN_DOUBLE_AND_RIGHT_SINGLE = ╓


	DOUBLE_DOWN_AND_RIGHT = ╔


	DOWN_SINGLE_AND_LEFT_DOUBLE = ╕


	DOWN_DOUBLE_AND_LEFT_SINGLE = ╖


	DOUBLE_DOWN_AND_LEFT = ╗


	UP_SINGLE_AND_RIGHT_DOUBLE = ╘


	UP_DOUBLE_AND_RIGHT_SINGLE = ╙


	DOUBLE_UP_AND_RIGHT = ╚


	UP_SINGLE_AND_LEFT_DOUBLE = ╛


	UP_DOUBLE_AND_LEFT_SINGLE = ╜


	DOUBLE_UP_AND_LEFT = ╝


	VERTICAL_SINGLE_AND_RIGHT_DOUBLE = ╞


	VERTICAL_DOUBLE_AND_RIGHT_SINGLE = ╟


	DOUBLE_VERTICAL_AND_RIGHT = ╠


	VERTICAL_SINGLE_AND_LEFT_DOUBLE = ╡


	VERTICAL_DOUBLE_AND_LEFT_SINGLE = ╢


	DOUBLE_VERTICAL_AND_LEFT = ╣


	DOWN_SINGLE_AND_HORIZONTAL_DOUBLE = ╤


	DOWN_DOUBLE_AND_HORIZONTAL_SINGLE = ╥


	DOUBLE_DOWN_AND_HORIZONTAL = ╦


	UP_SINGLE_AND_HORIZONTAL_DOUBLE = ╧


	UP_DOUBLE_AND_HORIZONTAL_SINGLE = ╨


	DOUBLE_UP_AND_HORIZONTAL = ╩


	VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE = ╪


	VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE = ╫


	DOUBLE_VERTICAL_AND_HORIZONTAL = ╬


	LIGHT_ARC_DOWN_AND_RIGHT = ╭


	LIGHT_ARC_DOWN_AND_LEFT = ╮


	LIGHT_ARC_UP_AND_LEFT = ╯


	LIGHT_ARC_UP_AND_RIGHT = ╰


	LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT = ╱


	LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT = ╲


	LIGHT_DIAGONAL_CROSS = ╳


	LIGHT_LEFT = ╴


	LIGHT_UP = ╵


	LIGHT_RIGHT = ╶


	LIGHT_DOWN = ╷


	HEAVY_LEFT = ╸


	HEAVY_UP = ╹


	HEAVY_RIGHT = ╺


	HEAVY_DOWN = ╻


	LIGHT_LEFT_AND_HEAVY_RIGHT = ╼


	LIGHT_UP_AND_HEAVY_DOWN = ╽


	HEAVY_LEFT_AND_LIGHT_RIGHT = ╾


	HEAVY_UP_AND_LIGHT_DOWN = ╿








	
__init__()

	



Methods



	__init__()

	






Attributes



	DOUBLE_DOWN_AND_HORIZONTAL

	



	DOUBLE_DOWN_AND_LEFT

	



	DOUBLE_DOWN_AND_RIGHT

	



	DOUBLE_HORIZONTAL

	



	DOUBLE_UP_AND_HORIZONTAL

	



	DOUBLE_UP_AND_LEFT

	



	DOUBLE_UP_AND_RIGHT

	



	DOUBLE_VERTICAL

	



	DOUBLE_VERTICAL_AND_HORIZONTAL

	



	DOUBLE_VERTICAL_AND_LEFT

	



	DOUBLE_VERTICAL_AND_RIGHT

	



	DOWN_DOUBLE_AND_HORIZONTAL_SINGLE

	



	DOWN_DOUBLE_AND_LEFT_SINGLE

	



	DOWN_DOUBLE_AND_RIGHT_SINGLE

	



	DOWN_HEAVY_AND_HORIZONTAL_LIGHT

	



	DOWN_HEAVY_AND_LEFT_LIGHT

	



	DOWN_HEAVY_AND_LEFT_UP_LIGHT

	



	DOWN_HEAVY_AND_RIGHT_LIGHT

	



	DOWN_HEAVY_AND_RIGHT_UP_LIGHT

	



	DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT

	



	DOWN_LIGHT_AND_HORIZONTAL_HEAVY

	



	DOWN_LIGHT_AND_LEFT_HEAVY

	



	DOWN_LIGHT_AND_LEFT_UP_HEAVY

	



	DOWN_LIGHT_AND_RIGHT_HEAVY

	



	DOWN_LIGHT_AND_RIGHT_UP_HEAVY

	



	DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY

	



	DOWN_SINGLE_AND_HORIZONTAL_DOUBLE

	



	DOWN_SINGLE_AND_LEFT_DOUBLE

	



	DOWN_SINGLE_AND_RIGHT_DOUBLE

	



	HEAVY_DOUBLE_DASH_HORIZONTAL

	



	HEAVY_DOUBLE_DASH_VERTICAL

	



	HEAVY_DOWN

	



	HEAVY_DOWN_AND_HORIZONTAL

	



	HEAVY_DOWN_AND_LEFT

	



	HEAVY_DOWN_AND_RIGHT

	



	HEAVY_HORIZONTAL

	



	HEAVY_LEFT

	



	HEAVY_LEFT_AND_LIGHT_RIGHT

	



	HEAVY_QUADRUPLE_DASH_HORIZONTAL

	



	HEAVY_QUADRUPLE_DASH_VERTICAL

	



	HEAVY_RIGHT

	



	HEAVY_TRIPLE_DASH_HORIZONTAL

	



	HEAVY_TRIPLE_DASH_VERTICAL

	



	HEAVY_UP

	



	HEAVY_UP_AND_HORIZONTAL

	



	HEAVY_UP_AND_LEFT

	



	HEAVY_UP_AND_LIGHT_DOWN

	



	HEAVY_UP_AND_RIGHT

	



	HEAVY_VERTICAL

	



	HEAVY_VERTICAL_AND_HORIZONTAL

	



	HEAVY_VERTICAL_AND_LEFT

	



	HEAVY_VERTICAL_AND_RIGHT

	



	LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT

	



	LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT

	



	LEFT_HEAVY_AND_RIGHT_UP_LIGHT

	



	LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT

	



	LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY

	



	LEFT_LIGHT_AND_RIGHT_UP_HEAVY

	



	LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY

	



	LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT

	



	LIGHT_ARC_DOWN_AND_LEFT

	



	LIGHT_ARC_DOWN_AND_RIGHT

	



	LIGHT_ARC_UP_AND_LEFT

	



	LIGHT_ARC_UP_AND_RIGHT

	



	LIGHT_DIAGONAL_CROSS

	



	LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT

	



	LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT

	



	LIGHT_DOUBLE_DASH_HORIZONTAL

	



	LIGHT_DOUBLE_DASH_VERTICAL

	



	LIGHT_DOWN

	



	LIGHT_DOWN_AND_HORIZONTAL

	



	LIGHT_DOWN_AND_LEFT

	



	LIGHT_DOWN_AND_RIGHT

	



	LIGHT_HORIZONTAL

	



	LIGHT_LEFT

	



	LIGHT_LEFT_AND_HEAVY_RIGHT

	



	LIGHT_QUADRUPLE_DASH_HORIZONTAL

	



	LIGHT_QUADRUPLE_DASH_VERTICAL

	



	LIGHT_RIGHT

	



	LIGHT_TRIPLE_DASH_HORIZONTAL

	



	LIGHT_TRIPLE_DASH_VERTICAL

	



	LIGHT_UP

	



	LIGHT_UP_AND_HEAVY_DOWN

	



	LIGHT_UP_AND_HORIZONTAL

	



	LIGHT_UP_AND_LEFT

	



	LIGHT_UP_AND_RIGHT

	



	LIGHT_VERTICAL

	



	LIGHT_VERTICAL_AND_HORIZONTAL

	



	LIGHT_VERTICAL_AND_LEFT

	



	LIGHT_VERTICAL_AND_RIGHT

	



	RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT

	



	RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT

	



	RIGHT_HEAVY_AND_LEFT_UP_LIGHT

	



	RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT

	



	RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY

	



	RIGHT_LIGHT_AND_LEFT_UP_HEAVY

	



	RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY

	



	RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT

	



	UP_DOUBLE_AND_HORIZONTAL_SINGLE

	



	UP_DOUBLE_AND_LEFT_SINGLE

	



	UP_DOUBLE_AND_RIGHT_SINGLE

	



	UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT

	



	UP_HEAVY_AND_HORIZONTAL_LIGHT

	



	UP_HEAVY_AND_LEFT_DOWN_LIGHT

	



	UP_HEAVY_AND_LEFT_LIGHT

	



	UP_HEAVY_AND_RIGHT_DOWN_LIGHT

	



	UP_HEAVY_AND_RIGHT_LIGHT

	



	UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY

	



	UP_LIGHT_AND_HORIZONTAL_HEAVY

	



	UP_LIGHT_AND_LEFT_DOWN_HEAVY

	



	UP_LIGHT_AND_LEFT_HEAVY

	



	UP_LIGHT_AND_RIGHT_DOWN_HEAVY

	



	UP_LIGHT_AND_RIGHT_HEAVY

	



	UP_SINGLE_AND_HORIZONTAL_DOUBLE

	



	UP_SINGLE_AND_LEFT_DOUBLE

	



	UP_SINGLE_AND_RIGHT_DOUBLE

	



	VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE

	



	VERTICAL_DOUBLE_AND_LEFT_SINGLE

	



	VERTICAL_DOUBLE_AND_RIGHT_SINGLE

	



	VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT

	



	VERTICAL_HEAVY_AND_LEFT_LIGHT

	



	VERTICAL_HEAVY_AND_RIGHT_LIGHT

	



	VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY

	



	VERTICAL_LIGHT_AND_LEFT_HEAVY

	



	VERTICAL_LIGHT_AND_RIGHT_HEAVY

	



	VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE

	



	VERTICAL_SINGLE_AND_LEFT_DOUBLE

	



	VERTICAL_SINGLE_AND_RIGHT_DOUBLE

	







	
DOUBLE_DOWN_AND_HORIZONTAL = '╦'

	




	
DOUBLE_DOWN_AND_LEFT = '╗'

	




	
DOUBLE_DOWN_AND_RIGHT = '╔'

	




	
DOUBLE_HORIZONTAL = '═'

	




	
DOUBLE_UP_AND_HORIZONTAL = '╩'

	




	
DOUBLE_UP_AND_LEFT = '╝'

	




	
DOUBLE_UP_AND_RIGHT = '╚'

	




	
DOUBLE_VERTICAL = '║'

	




	
DOUBLE_VERTICAL_AND_HORIZONTAL = '╬'

	




	
DOUBLE_VERTICAL_AND_LEFT = '╣'

	




	
DOUBLE_VERTICAL_AND_RIGHT = '╠'

	




	
DOWN_DOUBLE_AND_HORIZONTAL_SINGLE = '╥'

	




	
DOWN_DOUBLE_AND_LEFT_SINGLE = '╖'

	




	
DOWN_DOUBLE_AND_RIGHT_SINGLE = '╓'

	




	
DOWN_HEAVY_AND_HORIZONTAL_LIGHT = '┰'

	




	
DOWN_HEAVY_AND_LEFT_LIGHT = '┒'

	




	
DOWN_HEAVY_AND_LEFT_UP_LIGHT = '┧'

	




	
DOWN_HEAVY_AND_RIGHT_LIGHT = '┎'

	




	
DOWN_HEAVY_AND_RIGHT_UP_LIGHT = '┟'

	




	
DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT = '╁'

	




	
DOWN_LIGHT_AND_HORIZONTAL_HEAVY = '┯'

	




	
DOWN_LIGHT_AND_LEFT_HEAVY = '┑'

	




	
DOWN_LIGHT_AND_LEFT_UP_HEAVY = '┩'

	




	
DOWN_LIGHT_AND_RIGHT_HEAVY = '┍'

	




	
DOWN_LIGHT_AND_RIGHT_UP_HEAVY = '┡'

	




	
DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY = '╇'

	




	
DOWN_SINGLE_AND_HORIZONTAL_DOUBLE = '╤'

	




	
DOWN_SINGLE_AND_LEFT_DOUBLE = '╕'

	




	
DOWN_SINGLE_AND_RIGHT_DOUBLE = '╒'

	




	
HEAVY_DOUBLE_DASH_HORIZONTAL = '╍'

	




	
HEAVY_DOUBLE_DASH_VERTICAL = '╏'

	




	
HEAVY_DOWN = '╻'

	




	
HEAVY_DOWN_AND_HORIZONTAL = '┳'

	




	
HEAVY_DOWN_AND_LEFT = '┓'

	




	
HEAVY_DOWN_AND_RIGHT = '┏'

	




	
HEAVY_HORIZONTAL = '━'

	




	
HEAVY_LEFT = '╸'

	




	
HEAVY_LEFT_AND_LIGHT_RIGHT = '╾'

	




	
HEAVY_QUADRUPLE_DASH_HORIZONTAL = '┉'

	




	
HEAVY_QUADRUPLE_DASH_VERTICAL = '┋'

	




	
HEAVY_RIGHT = '╺'

	




	
HEAVY_TRIPLE_DASH_HORIZONTAL = '┅'

	




	
HEAVY_TRIPLE_DASH_VERTICAL = '┇'

	




	
HEAVY_UP = '╹'

	




	
HEAVY_UP_AND_HORIZONTAL = '┻'

	




	
HEAVY_UP_AND_LEFT = '┛'

	




	
HEAVY_UP_AND_LIGHT_DOWN = '╿'

	




	
HEAVY_UP_AND_RIGHT = '┗'

	




	
HEAVY_VERTICAL = '┃'

	




	
HEAVY_VERTICAL_AND_HORIZONTAL = '╋'

	




	
HEAVY_VERTICAL_AND_LEFT = '┫'

	




	
HEAVY_VERTICAL_AND_RIGHT = '┣'

	




	
LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT = '╅'

	




	
LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT = '┭'

	




	
LEFT_HEAVY_AND_RIGHT_UP_LIGHT = '┵'

	




	
LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT = '┽'

	




	
LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY = '┲'

	




	
LEFT_LIGHT_AND_RIGHT_UP_HEAVY = '┺'

	




	
LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY = '╊'

	




	
LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT = '╃'

	




	
LIGHT_ARC_DOWN_AND_LEFT = '╮'

	




	
LIGHT_ARC_DOWN_AND_RIGHT = '╭'

	




	
LIGHT_ARC_UP_AND_LEFT = '╯'

	




	
LIGHT_ARC_UP_AND_RIGHT = '╰'

	




	
LIGHT_DIAGONAL_CROSS = '╳'

	




	
LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT = '╲'

	




	
LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT = '╱'

	




	
LIGHT_DOUBLE_DASH_HORIZONTAL = '╌'

	




	
LIGHT_DOUBLE_DASH_VERTICAL = '╎'

	




	
LIGHT_DOWN = '╷'

	




	
LIGHT_DOWN_AND_HORIZONTAL = '┬'

	




	
LIGHT_DOWN_AND_LEFT = '┐'

	




	
LIGHT_DOWN_AND_RIGHT = '┌'

	




	
LIGHT_HORIZONTAL = '─'

	




	
LIGHT_LEFT = '╴'

	




	
LIGHT_LEFT_AND_HEAVY_RIGHT = '╼'

	




	
LIGHT_QUADRUPLE_DASH_HORIZONTAL = '┈'

	




	
LIGHT_QUADRUPLE_DASH_VERTICAL = '┊'

	




	
LIGHT_RIGHT = '╶'

	




	
LIGHT_TRIPLE_DASH_HORIZONTAL = '┄'

	




	
LIGHT_TRIPLE_DASH_VERTICAL = '┆'

	




	
LIGHT_UP = '╵'

	




	
LIGHT_UP_AND_HEAVY_DOWN = '╽'

	




	
LIGHT_UP_AND_HORIZONTAL = '┴'

	




	
LIGHT_UP_AND_LEFT = '┘'

	




	
LIGHT_UP_AND_RIGHT = '└'

	




	
LIGHT_VERTICAL = '│'

	




	
LIGHT_VERTICAL_AND_HORIZONTAL = '┼'

	




	
LIGHT_VERTICAL_AND_LEFT = '┤'

	




	
LIGHT_VERTICAL_AND_RIGHT = '├'

	




	
RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT = '╆'

	




	
RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT = '┮'

	




	
RIGHT_HEAVY_AND_LEFT_UP_LIGHT = '┶'

	




	
RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT = '┾'

	




	
RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY = '┱'

	




	
RIGHT_LIGHT_AND_LEFT_UP_HEAVY = '┹'

	




	
RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY = '╉'

	




	
RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT = '╄'

	




	
UP_DOUBLE_AND_HORIZONTAL_SINGLE = '╨'

	




	
UP_DOUBLE_AND_LEFT_SINGLE = '╜'

	




	
UP_DOUBLE_AND_RIGHT_SINGLE = '╙'

	




	
UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT = '╀'

	




	
UP_HEAVY_AND_HORIZONTAL_LIGHT = '┸'

	




	
UP_HEAVY_AND_LEFT_DOWN_LIGHT = '┦'

	




	
UP_HEAVY_AND_LEFT_LIGHT = '┚'

	




	
UP_HEAVY_AND_RIGHT_DOWN_LIGHT = '┞'

	




	
UP_HEAVY_AND_RIGHT_LIGHT = '┖'

	




	
UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY = '╈'

	




	
UP_LIGHT_AND_HORIZONTAL_HEAVY = '┷'

	




	
UP_LIGHT_AND_LEFT_DOWN_HEAVY = '┪'

	




	
UP_LIGHT_AND_LEFT_HEAVY = '┙'

	




	
UP_LIGHT_AND_RIGHT_DOWN_HEAVY = '┢'

	




	
UP_LIGHT_AND_RIGHT_HEAVY = '┕'

	




	
UP_SINGLE_AND_HORIZONTAL_DOUBLE = '╧'

	




	
UP_SINGLE_AND_LEFT_DOUBLE = '╛'

	




	
UP_SINGLE_AND_RIGHT_DOUBLE = '╘'

	




	
VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE = '╫'

	




	
VERTICAL_DOUBLE_AND_LEFT_SINGLE = '╢'

	




	
VERTICAL_DOUBLE_AND_RIGHT_SINGLE = '╟'

	




	
VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT = '╂'

	




	
VERTICAL_HEAVY_AND_LEFT_LIGHT = '┨'

	




	
VERTICAL_HEAVY_AND_RIGHT_LIGHT = '┠'

	




	
VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY = '┿'

	




	
VERTICAL_LIGHT_AND_LEFT_HEAVY = '┥'

	




	
VERTICAL_LIGHT_AND_RIGHT_HEAVY = '┝'

	




	
VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE = '╪'

	




	
VERTICAL_SINGLE_AND_LEFT_DOUBLE = '╡'

	




	
VERTICAL_SINGLE_AND_RIGHT_DOUBLE = '╞'

	










            

          

      

      

    

  

  
    
    

    GeometricShapes
    

    

    
 
  

    
      
          
            
  
GeometricShapes


	
class pygamelib.assets.graphics.GeometricShapes

	Bases: object

Geometric shapes elements (unicode)

Here is the list of supported glyphs:



	BLACK_SQUARE = ■


	BLACK_LARGE_SQUARE = ⬛


	WHITE_SQUARE = □


	WHITE_SQUARE_WITH_ROUNDED_CORNERS = ▢


	WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE = ▣


	SQUARE_WITH_HORIZONTAL_FILL = ▤


	SQUARE_WITH_VERTICAL_FILL = ▥


	SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL = ▦


	SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL = ▧


	SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL = ▨


	SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL = ▩


	BLACK_SMALL_SQUARE = ▪


	WHITE_SMALL_SQUARE = ▫


	BLACK_RECTANGLE = ▬


	WHITE_RECTANGLE = ▭


	BLACK_VERTICAL_RECTANGLE = ▮


	WHITE_VERTICAL_RECTANGLE = ▯


	BLACK_PARALLELOGRAM = ▰


	WHITE_PARALLELOGRAM = ▱


	BLACK_UP_POINTING_TRIANGLE = ▲


	WHITE_UP_POINTING_TRIANGLE = △


	BLACK_UP_POINTING_SMALL_TRIANGLE = ▴


	WHITE_UP_POINTING_SMALL_TRIANGLE = ▵


	BLACK_RIGHT_POINTING_TRIANGLE = ▶


	WHITE_RIGHT_POINTING_TRIANGLE = ▷


	BLACK_RIGHT_POINTING_SMALL_TRIANGLE = ▸


	WHITE_RIGHT_POINTING_SMALL_TRIANGLE = ▹


	BLACK_RIGHT_POINTING_POINTER = ►


	WHITE_RIGHT_POINTING_POINTER = ▻


	BLACK_DOWN_POINTING_TRIANGLE = ▼


	WHITE_DOWN_POINTING_TRIANGLE = ▽


	BLACK_DOWN_POINTING_SMALL_TRIANGLE = ▾


	WHITE_DOWN_POINTING_SMALL_TRIANGLE = ▿


	BLACK_LEFT_POINTING_TRIANGLE = ◀


	WHITE_LEFT_POINTING_TRIANGLE = ◁


	BLACK_LEFT_POINTING_SMALL_TRIANGLE = ◂


	WHITE_LEFT_POINTING_SMALL_TRIANGLE = ◃


	BLACK_LEFT_POINTING_POINTER = ◄


	WHITE_LEFT_POINTING_POINTER = ◅


	BLACK_DIAMOND = ◆


	WHITE_DIAMOND = ◇


	WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND = ◈


	FISHEYE = ◉


	LOZENGE = ◊


	WHITE_CIRCLE = ○


	DOTTED_CIRCLE = ◌


	CIRCLE_WITH_VERTICAL_FILL = ◍


	BULLSEYE = ◎


	BLACK_CIRCLE = ●


	CIRCLE_WITH_LEFT_HALF_BLACK = ◐


	CIRCLE_WITH_RIGHT_HALF_BLACK = ◑


	CIRCLE_WITH_LOWER_HALF_BLACK = ◒


	CIRCLE_WITH_UPPER_HALF_BLACK = ◓


	CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK = ◔


	CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK = ◕


	LEFT_HALF_BLACK_CIRCLE = ◖


	RIGHT_HALF_BLACK_CIRCLE = ◗


	INVERSE_BULLET = ◘


	INVERSE_WHITE_CIRCLE = ◙


	UPPER_HALF_INVERSE_WHITE_CIRCLE = ◚


	LOWER_HALF_INVERSE_WHITE_CIRCLE = ◛


	UPPER_LEFT_QUADRANT_CIRCULAR_ARC = ◜


	UPPER_RIGHT_QUADRANT_CIRCULAR_ARC = ◝


	LOWER_RIGHT_QUADRANT_CIRCULAR_ARC = ◞


	LOWER_LEFT_QUADRANT_CIRCULAR_ARC = ◟


	UPPER_HALF_CIRCLE = ◠


	LOWER_HALF_CIRCLE = ◡


	BLACK_LOWER_RIGHT_TRIANGLE = ◢


	BLACK_LOWER_LEFT_TRIANGLE = ◣


	BLACK_UPPER_LEFT_TRIANGLE = ◤


	BLACK_UPPER_RIGHT_TRIANGLE = ◥


	WHITE_BULLET = ◦


	BULLET = •


	RING_OPERATOR = ∘


	SQUARE_WITH_LEFT_HALF_BLACK = ◧


	SQUARE_WITH_RIGHT_HALF_BLACK = ◨


	SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK = ◩


	SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK = ◪


	WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE = ◫


	WHITE_UP_POINTING_TRIANGLE_WITH_DOT = ◬


	UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK = ◭


	UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK = ◮


	LARGE_CIRCLE = ◯


	WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT = ◰


	WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT = ◱


	WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT = ◲


	WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT = ◳


	WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT = ◴


	WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT = ◵


	WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT = ◶


	WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT = ◷


	UPPER_LEFT_TRIANGLE = ◸


	UPPER_RIGHT_TRIANGLE = ◹


	LOWER_LEFT_TRIANGLE = ◺


	WHITE_MEDIUM_SQUARE = ◻


	BLACK_MEDIUM_SQUARE = ◼


	WHITE_MEDIUM_SMALL_SQUARE = ◽


	BLACK_MEDIUM_SMALL_SQUARE = ◾


	LOWER_RIGHT_TRIANGLE = ◿








	
__init__()

	



Methods



	__init__()

	






Attributes



	BLACK_CIRCLE

	



	BLACK_DIAMOND

	



	BLACK_DOWN_POINTING_SMALL_TRIANGLE

	



	BLACK_DOWN_POINTING_TRIANGLE

	



	BLACK_LARGE_SQUARE

	



	BLACK_LEFT_POINTING_POINTER

	



	BLACK_LEFT_POINTING_SMALL_TRIANGLE

	



	BLACK_LEFT_POINTING_TRIANGLE

	



	BLACK_LOWER_LEFT_TRIANGLE

	



	BLACK_LOWER_RIGHT_TRIANGLE

	



	BLACK_MEDIUM_SMALL_SQUARE

	



	BLACK_MEDIUM_SQUARE

	



	BLACK_PARALLELOGRAM

	



	BLACK_RECTANGLE

	



	BLACK_RIGHT_POINTING_POINTER

	



	BLACK_RIGHT_POINTING_SMALL_TRIANGLE

	



	BLACK_RIGHT_POINTING_TRIANGLE

	



	BLACK_SMALL_SQUARE

	



	BLACK_SQUARE

	



	BLACK_UPPER_LEFT_TRIANGLE

	



	BLACK_UPPER_RIGHT_TRIANGLE

	



	BLACK_UP_POINTING_SMALL_TRIANGLE

	



	BLACK_UP_POINTING_TRIANGLE

	



	BLACK_VERTICAL_RECTANGLE

	



	BULLET

	



	BULLSEYE

	



	CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK

	



	CIRCLE_WITH_LEFT_HALF_BLACK

	



	CIRCLE_WITH_LOWER_HALF_BLACK

	



	CIRCLE_WITH_RIGHT_HALF_BLACK

	



	CIRCLE_WITH_UPPER_HALF_BLACK

	



	CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK

	



	CIRCLE_WITH_VERTICAL_FILL

	



	DOTTED_CIRCLE

	



	FISHEYE

	



	INVERSE_BULLET

	



	INVERSE_WHITE_CIRCLE

	



	LARGE_CIRCLE

	



	LEFT_HALF_BLACK_CIRCLE

	



	LOWER_HALF_CIRCLE

	



	LOWER_HALF_INVERSE_WHITE_CIRCLE

	



	LOWER_LEFT_QUADRANT_CIRCULAR_ARC

	



	LOWER_LEFT_TRIANGLE

	



	LOWER_RIGHT_QUADRANT_CIRCULAR_ARC

	



	LOWER_RIGHT_TRIANGLE

	



	LOZENGE

	



	RIGHT_HALF_BLACK_CIRCLE

	



	RING_OPERATOR

	



	SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL

	



	SQUARE_WITH_HORIZONTAL_FILL

	



	SQUARE_WITH_LEFT_HALF_BLACK

	



	SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK

	



	SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL

	



	SQUARE_WITH_RIGHT_HALF_BLACK

	



	SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK

	



	SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL

	



	SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL

	



	SQUARE_WITH_VERTICAL_FILL

	



	UPPER_HALF_CIRCLE

	



	UPPER_HALF_INVERSE_WHITE_CIRCLE

	



	UPPER_LEFT_QUADRANT_CIRCULAR_ARC

	



	UPPER_LEFT_TRIANGLE

	



	UPPER_RIGHT_QUADRANT_CIRCULAR_ARC

	



	UPPER_RIGHT_TRIANGLE

	



	UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK

	



	UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK

	



	WHITE_BULLET

	



	WHITE_CIRCLE

	



	WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT

	



	WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT

	



	WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT

	



	WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT

	



	WHITE_DIAMOND

	



	WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND

	



	WHITE_DOWN_POINTING_SMALL_TRIANGLE

	



	WHITE_DOWN_POINTING_TRIANGLE

	



	WHITE_LEFT_POINTING_POINTER

	



	WHITE_LEFT_POINTING_SMALL_TRIANGLE

	



	WHITE_LEFT_POINTING_TRIANGLE

	



	WHITE_MEDIUM_SMALL_SQUARE

	



	WHITE_MEDIUM_SQUARE

	



	WHITE_PARALLELOGRAM

	



	WHITE_RECTANGLE

	



	WHITE_RIGHT_POINTING_POINTER

	



	WHITE_RIGHT_POINTING_SMALL_TRIANGLE

	



	WHITE_RIGHT_POINTING_TRIANGLE

	



	WHITE_SMALL_SQUARE

	



	WHITE_SQUARE

	



	WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE

	



	WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT

	



	WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT

	



	WHITE_SQUARE_WITH_ROUNDED_CORNERS

	



	WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT

	



	WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT

	



	WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE

	



	WHITE_UP_POINTING_SMALL_TRIANGLE

	



	WHITE_UP_POINTING_TRIANGLE

	



	WHITE_UP_POINTING_TRIANGLE_WITH_DOT

	



	WHITE_VERTICAL_RECTANGLE

	







	
BLACK_CIRCLE = '●'

	




	
BLACK_DIAMOND = '◆'

	




	
BLACK_DOWN_POINTING_SMALL_TRIANGLE = '▾'

	




	
BLACK_DOWN_POINTING_TRIANGLE = '▼'

	




	
BLACK_LARGE_SQUARE = '⬛'

	




	
BLACK_LEFT_POINTING_POINTER = '◄'

	




	
BLACK_LEFT_POINTING_SMALL_TRIANGLE = '◂'

	




	
BLACK_LEFT_POINTING_TRIANGLE = '◀'

	




	
BLACK_LOWER_LEFT_TRIANGLE = '◣'

	




	
BLACK_LOWER_RIGHT_TRIANGLE = '◢'

	




	
BLACK_MEDIUM_SMALL_SQUARE = '◾'

	




	
BLACK_MEDIUM_SQUARE = '◼'

	




	
BLACK_PARALLELOGRAM = '▰'

	




	
BLACK_RECTANGLE = '▬'

	




	
BLACK_RIGHT_POINTING_POINTER = '►'

	




	
BLACK_RIGHT_POINTING_SMALL_TRIANGLE = '▸'

	




	
BLACK_RIGHT_POINTING_TRIANGLE = '▶'

	




	
BLACK_SMALL_SQUARE = '▪'

	




	
BLACK_SQUARE = '■'

	




	
BLACK_UPPER_LEFT_TRIANGLE = '◤'

	




	
BLACK_UPPER_RIGHT_TRIANGLE = '◥'

	




	
BLACK_UP_POINTING_SMALL_TRIANGLE = '▴'

	




	
BLACK_UP_POINTING_TRIANGLE = '▲'

	




	
BLACK_VERTICAL_RECTANGLE = '▮'

	




	
BULLET = '•'

	




	
BULLSEYE = '◎'

	




	
CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK = '◕'

	




	
CIRCLE_WITH_LEFT_HALF_BLACK = '◐'

	




	
CIRCLE_WITH_LOWER_HALF_BLACK = '◒'

	




	
CIRCLE_WITH_RIGHT_HALF_BLACK = '◑'

	




	
CIRCLE_WITH_UPPER_HALF_BLACK = '◓'

	




	
CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK = '◔'

	




	
CIRCLE_WITH_VERTICAL_FILL = '◍'

	




	
DOTTED_CIRCLE = '◌'

	




	
FISHEYE = '◉'

	




	
INVERSE_BULLET = '◘'

	




	
INVERSE_WHITE_CIRCLE = '◙'

	




	
LARGE_CIRCLE = '◯'

	




	
LEFT_HALF_BLACK_CIRCLE = '◖'

	




	
LOWER_HALF_CIRCLE = '◡'

	




	
LOWER_HALF_INVERSE_WHITE_CIRCLE = '◛'

	




	
LOWER_LEFT_QUADRANT_CIRCULAR_ARC = '◟'

	




	
LOWER_LEFT_TRIANGLE = '◺'

	




	
LOWER_RIGHT_QUADRANT_CIRCULAR_ARC = '◞'

	




	
LOWER_RIGHT_TRIANGLE = '◿'

	




	
LOZENGE = '◊'

	




	
RIGHT_HALF_BLACK_CIRCLE = '◗'

	




	
RING_OPERATOR = '∘'

	




	
SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL = '▩'

	




	
SQUARE_WITH_HORIZONTAL_FILL = '▤'

	




	
SQUARE_WITH_LEFT_HALF_BLACK = '◧'

	




	
SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK = '◪'

	




	
SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL = '▦'

	




	
SQUARE_WITH_RIGHT_HALF_BLACK = '◨'

	




	
SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK = '◩'

	




	
SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL = '▧'

	




	
SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL = '▨'

	




	
SQUARE_WITH_VERTICAL_FILL = '▥'

	




	
UPPER_HALF_CIRCLE = '◠'

	




	
UPPER_HALF_INVERSE_WHITE_CIRCLE = '◚'

	




	
UPPER_LEFT_QUADRANT_CIRCULAR_ARC = '◜'

	




	
UPPER_LEFT_TRIANGLE = '◸'

	




	
UPPER_RIGHT_QUADRANT_CIRCULAR_ARC = '◝'

	




	
UPPER_RIGHT_TRIANGLE = '◹'

	




	
UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK = '◭'

	




	
UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK = '◮'

	




	
WHITE_BULLET = '◦'

	




	
WHITE_CIRCLE = '○'

	




	
WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT = '◵'

	




	
WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT = '◶'

	




	
WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT = '◴'

	




	
WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT = '◷'

	




	
WHITE_DIAMOND = '◇'

	




	
WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND = '◈'

	




	
WHITE_DOWN_POINTING_SMALL_TRIANGLE = '▿'

	




	
WHITE_DOWN_POINTING_TRIANGLE = '▽'

	




	
WHITE_LEFT_POINTING_POINTER = '◅'

	




	
WHITE_LEFT_POINTING_SMALL_TRIANGLE = '◃'

	




	
WHITE_LEFT_POINTING_TRIANGLE = '◁'

	




	
WHITE_MEDIUM_SMALL_SQUARE = '◽'

	




	
WHITE_MEDIUM_SQUARE = '◻'

	




	
WHITE_PARALLELOGRAM = '▱'

	




	
WHITE_RECTANGLE = '▭'

	




	
WHITE_RIGHT_POINTING_POINTER = '▻'

	




	
WHITE_RIGHT_POINTING_SMALL_TRIANGLE = '▹'

	




	
WHITE_RIGHT_POINTING_TRIANGLE = '▷'

	




	
WHITE_SMALL_SQUARE = '▫'

	




	
WHITE_SQUARE = '□'

	




	
WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE = '▣'

	




	
WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT = '◱'

	




	
WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT = '◲'

	




	
WHITE_SQUARE_WITH_ROUNDED_CORNERS = '▢'

	




	
WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT = '◰'

	




	
WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT = '◳'

	




	
WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE = '◫'

	




	
WHITE_UP_POINTING_SMALL_TRIANGLE = '▵'

	




	
WHITE_UP_POINTING_TRIANGLE = '△'

	




	
WHITE_UP_POINTING_TRIANGLE_WITH_DOT = '◬'

	




	
WHITE_VERTICAL_RECTANGLE = '▯'

	










            

          

      

      

    

  

  
    
    

    MiscTechnicals
    

    

    
 
  

    
      
          
            
  
MiscTechnicals


	
class pygamelib.assets.graphics.MiscTechnicals

	Bases: object

Miscellanous Technical block (unicode)


	Here is the list of supported glyphs:
	
	DIAMETER_SIGN = “⌀”


	ELECTRIC_ARROW = “⌁”


	HOUSE = “⌂”


	UP_ARROWHEAD = “⌃”


	DOWN_ARROWHEAD = “⌄”


	PROJECTIVE = “⌅”


	PERSPECTIVE = “⌆”


	WAVY_LINE = “⌇”


	LEFT_CEILING = “⌈”


	RIGHT_CEILING = “⌉”


	LEFT_FLOOR = “⌊”


	RIGHT_FLOOR = “⌋”


	BOTTOM_RIGHT_CROP = “⌌”


	BOTTOM_LEFT_CROP = “⌍”


	TOP_RIGHT_CROP = “⌎”


	TOP_LEFT_CROP = “⌏”


	REVERSED_NOT_SIGN = “⌐”


	SQUARE_LOZENGE = “⌑”


	ARC = “⌒”


	SEGMENT = “⌓”


	SECTOR = “⌔”


	TELEPHONE_RECORDER = “⌕”


	POSITION_INDICATOR = “⌖”


	VIEWDATA_SQUARE = “⌗”


	PLACE_OF_INTEREST_SIGN = “⌘”


	TURNED_NOT_SIGN = “⌙”


	WATCH = “⌚”


	HOURGLASS = “⌛”


	TOP_LEFT_CORNER = “⌜”


	TOP_RIGHT_CORNER = “⌝”


	BOTTOM_LEFT_CORNER = “⌞”


	BOTTOM_RIGHT_CORNER = “⌟”


	TOP_HALF_INTEGRAL = “⌠”


	BOTTOM_HALF_INTEGRAL = “⌡”


	FROWN = “⌢”


	SMILE = “⌣”


	UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS = “⌤”


	OPTION_KEY = “⌥”


	ERASE_TO_THE_RIGHT = “⌦”


	X_IN_A_RECTANGLE_BOX = “⌧”


	KEYBOARD = “⌨”


	LEFT_POINTING_ANGLE_BRACKET = “〈”


	RIGHT_POINTING_ANGLE_BRACKET = “〉”


	ERASE_TO_THE_LEFT = “⌫”


	BENZENE_RING = “⌬”


	CYLINDRICITY = “⌭”


	ALL_AROUND_PROFILE = “⌮”


	SYMMETRY = “⌯”


	TOTAL_RUNOUT = “⌰”


	DIMENSION_ORIGIN = “⌱”


	CONICAL_TAPER = “⌲”


	SLOPE = “⌳”


	COUNTERBORE = “⌴”


	COUNTERSINK = “⌵”


	APL_FUNCTIONAL_SYMBOL_I_BEAM = “⌶”


	APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD = “⌷”


	APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL = “⌸”


	APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE = “⌹”


	APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND = “⌺”


	APL_FUNCTIONAL_SYMBOL_QUAD_JOT = “⌻”


	APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE = “⌼”


	APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE = “⌽”


	APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT = “⌾”


	APL_FUNCTIONAL_SYMBOL_SLASH_BAR = “⌿”


	APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR = “⍀”


	APL_FUNCTIONAL_SYMBOL_QUAD_SLASH = “⍁”


	APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH = “⍂”


	APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN = “⍃”


	APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN = “⍄”


	APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE = “⍅”


	APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE = “⍆”


	APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW = “⍇”


	APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW = “⍈”


	APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH = “⍉”


	APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR = “⍊”


	APL_FUNCTIONAL_SYMBOL_DELTA_STILE = “⍋”


	APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET = “⍌”


	APL_FUNCTIONAL_SYMBOL_QUAD_DELTA = “⍍”


	APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT = “⍎”


	APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE = “⍏”


	APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW = “⍐”


	APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR = “⍑”


	APL_FUNCTIONAL_SYMBOL_DEL_STILE = “⍒”


	APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET = “⍓”


	APL_FUNCTIONAL_SYMBOL_QUAD_DEL = “⍔”


	APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT = “⍕”


	APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE = “⍖”


	APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW = “⍗”


	APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR = “⍘”


	APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR = “⍙”


	APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR = “⍚”


	APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR = “⍛”


	APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR = “⍜”


	APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT = “⍝”


	APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD = “⍞”


	APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR = “⍟”


	APL_FUNCTIONAL_SYMBOL_QUAD_COLON = “⍠”


	APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS = “⍡”


	APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS = “⍢”


	APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS = “⍣”


	APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS = “⍤”


	APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS = “⍥”


	APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE = “⍦”


	APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE = “⍧”


	APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS = “⍨”


	APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS = “⍩”


	APL_FUNCTIONAL_SYMBOL_COMMA_BAR = “⍪”


	APL_FUNCTIONAL_SYMBOL_DEL_TILDE = “⍫”


	APL_FUNCTIONAL_SYMBOL_ZILDE = “⍬”


	APL_FUNCTIONAL_SYMBOL_STILE_TILDE = “⍭”


	APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR = “⍮”


	APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL = “⍯”


	APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION = “⍰”


	APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE = “⍱”


	APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE = “⍲”


	APL_FUNCTIONAL_SYMBOL_IOTA = “⍳”


	APL_FUNCTIONAL_SYMBOL_RHO = “⍴”


	APL_FUNCTIONAL_SYMBOL_OMEGA = “⍵”


	APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR = “⍶”


	APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR = “⍷”


	APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR = “⍸”


	APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR = “⍹”


	APL_FUNCTIONAL_SYMBOL_ALPHA = “⍺”


	NOT_CHECK_MARK = “⍻”


	RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW = “⍼”


	SHOULDERED_OPEN_BOX = “⍽”


	BELL_SYMBOL = “⍾”


	VERTICAL_LINE_WITH_MIDDLE_DOT = “⍿”


	INSERTION_SYMBOL = “⎀”


	CONTINUOUS_UNDERLINE_SYMBOL = “⎁”


	DISCONTINUOUS_UNDERLINE_SYMBOL = “⎂”


	EMPHASIS_SYMBOL = “⎃”


	COMPOSITION_SYMBOL = “⎄”


	WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE = “⎅”


	ENTER_SYMBOL = “⎆”


	ALTERNATIVE_KEY_SYMBOL = “⎇”


	HELM_SYMBOL = “⎈”


	CIRCLED_HORIZONTAL_BAR_WITH_NOTCH = “⎉”


	CIRCLED_TRIANGLE_DOWN = “⎊”


	BROKEN_CIRCLE_WITH_NORTHWEST_ARROW = “⎋”


	UNDO_SYMBOL = “⎌”


	MONOSTABLE_SYMBOL = “⎍”


	HYSTERESIS_SYMBOL = “⎎”


	OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL = “⎏”


	OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL = “⎐”


	PASSIVE_PULL_DOWN_OUTPUT_SYMBOL = “⎑”


	PASSIVE_PULL_UP_OUTPUT_SYMBOL = “⎒”


	DIRECT_CURRENT_SYMBOL_FORM_TWO = “⎓”


	SOFTWARE_FUNCTION_SYMBOL = “⎔”


	APL_FUNCTIONAL_SYMBOL_QUAD = “⎕”


	DECIMAL_SEPARATOR_KEY_SYMBOL = “⎖”


	PREVIOUS_PAGE = “⎗”


	NEXT_PAGE = “⎘”


	PRINT_SCREEN_SYMBOL = “⎙”


	CLEAR_SCREEN_SYMBOL = “⎚”


	LEFT_PARENTHESIS_UPPER_HOOK = “⎛”


	LEFT_PARENTHESIS_EXTENSION = “⎜”


	LEFT_PARENTHESIS_LOWER_HOOK = “⎝”


	RIGHT_PARENTHESIS_UPPER_HOOK = “⎞”


	RIGHT_PARENTHESIS_EXTENSION = “⎟”


	RIGHT_PARENTHESIS_LOWER_HOOK = “⎠”


	LEFT_SQUARE_BRACKET_UPPER_CORNER = “⎡”


	LEFT_SQUARE_BRACKET_EXTENSION = “⎢”


	LEFT_SQUARE_BRACKET_LOWER_CORNER = “⎣”


	RIGHT_SQUARE_BRACKET_UPPER_CORNER = “⎤”


	RIGHT_SQUARE_BRACKET_EXTENSION = “⎥”


	RIGHT_SQUARE_BRACKET_LOWER_CORNER = “⎦”


	LEFT_CURLY_BRACKET_UPPER_HOOK = “⎧”


	LEFT_CURLY_BRACKET_MIDDLE_PIECE = “⎨”


	LEFT_CURLY_BRACKET_LOWER_HOOK = “⎩”


	CURLY_BRACKET_EXTENSION = “⎪”


	RIGHT_CURLY_BRACKET_UPPER_HOOK = “⎫”


	RIGHT_CURLY_BRACKET_MIDDLE_PIECE = “⎬”


	RIGHT_CURLY_BRACKET_LOWER_HOOK = “⎭”


	INTEGRAL_EXTENSION = “⎮”


	HORIZONTAL_LINE_EXTENSION = “⎯”


	UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION = “⎰”


	UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION = “⎱”


	SUMMATION_TOP = “⎲”


	SUMMATION_BOTTOM = “⎳”


	TOP_SQUARE_BRACKET = “⎴”


	BOTTOM_SQUARE_BRACKET = “⎵”


	BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET = “⎶”


	RADICAL_SYMBOL_BOTTOM = “⎷”


	LEFT_VERTICAL_BOX_LINE = “⎸”


	RIGHT_VERTICAL_BOX_LINE = “⎹”


	HORIZONTAL_SCAN_LINE_1 = “⎺”


	HORIZONTAL_SCAN_LINE_3 = “⎻”


	HORIZONTAL_SCAN_LINE_7 = “⎼”


	HORIZONTAL_SCAN_LINE_9 = “⎽”


	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT = “⎾”


	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT = “⎿”


	DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE = “⏀”


	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE = “⏁”


	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE = “⏂”


	DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE = “⏃”


	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE = “⏄”


	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE = “⏅”


	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE = “⏆”


	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE = “⏇”


	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE = “⏈”


	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL = “⏉”


	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL = “⏊”


	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT = “⏋”


	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT = “⏌”


	SQUARE_FOOT = “⏍”


	RETURN_SYMBOL = “⏎”


	EJECT_SYMBOL = “⏏”


	VERTICAL_LINE_EXTENSION = “⏐”


	METRICAL_BREVE = “⏑”


	METRICAL_LONG_OVER_SHORT = “⏒”


	METRICAL_SHORT_OVER_LONG = “⏓”


	METRICAL_LONG_OVER_TWO_SHORTS = “⏔”


	METRICAL_TWO_SHORTS_OVER_LONG = “⏕”


	METRICAL_TWO_SHORTS_JOINED = “⏖”


	METRICAL_TRISEME = “⏗”


	METRICAL_TETRASEME = “⏘”


	METRICAL_PENTASEME = “⏙”


	EARTH_GROUND = “⏚”


	FUSE = “⏛”


	TOP_PARENTHESIS = “⏜”


	BOTTOM_PARENTHESIS = “⏝”


	TOP_CURLY_BRACKET = “⏞”


	BOTTOM_CURLY_BRACKET = “⏟”


	TOP_TORTOISE_SHELL_BRACKET = “⏠”


	BOTTOM_TORTOISE_SHELL_BRACKET = “⏡”


	WHITE_TRAPEZIUM = “⏢”


	BENZENE_RING_WITH_CIRCLE = “⏣”


	STRAIGHTNESS = “⏤”


	FLATNESS = “⏥”


	AC_CURRENT = “⏦”


	ELECTRICAL_INTERSECTION = “⏧”


	DECIMAL_EXPONENT_SYMBOL = “⏨”


	BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE = “⏩”


	BLACK_LEFT_POINTING_DOUBLE_TRIANGLE = “⏪”


	BLACK_UP_POINTING_DOUBLE_TRIANGLE = “⏫”


	BLACK_DOWN_POINTING_DOUBLE_TRIANGLE = “⏬”


	BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR = “⏭”


	BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR = “⏮”


	BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR = “⏯”


	ALARM_CLOCK = “⏰”


	STOPWATCH = “⏱”


	TIMER_CLOCK = “⏲”


	HOURGLASS_WITH_FLOWING_SAND = “⏳”


	BLACK_MEDIUM_LEFT_POINTING_TRIANGLE = “⏴”


	BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE = “⏵”


	BLACK_MEDIUM_UP_POINTING_TRIANGLE = “⏶”


	BLACK_MEDIUM_DOWN_POINTING_TRIANGLE = “⏷”


	DOUBLE_VERTICAL_BAR = “⏸”


	BLACK_SQUARE_FOR_STOP = “⏹”


	BLACK_CIRCLE_FOR_RECORD = “⏺”


	POWER_SYMBOL = “⏻”


	POWER_ON_OFF_SYMBOL = “⏼”


	POWER_ON_SYMBOL = “⏽”


	POWER_SLEEP_SYMBOL = “⏾”


	OBSERVER_EYE_SYMBOL = “⏿”








Attributes



	DIAMETER_SIGN

	



	ELECTRIC_ARROW

	



	HOUSE

	



	UP_ARROWHEAD

	



	DOWN_ARROWHEAD

	



	PROJECTIVE

	



	PERSPECTIVE

	



	WAVY_LINE

	



	LEFT_CEILING

	



	RIGHT_CEILING

	



	LEFT_FLOOR

	



	RIGHT_FLOOR

	



	BOTTOM_RIGHT_CROP

	



	BOTTOM_LEFT_CROP

	



	TOP_RIGHT_CROP

	



	TOP_LEFT_CROP

	



	REVERSED_NOT_SIGN

	



	SQUARE_LOZENGE

	



	ARC

	



	SEGMENT

	



	SECTOR

	



	TELEPHONE_RECORDER

	



	POSITION_INDICATOR

	



	VIEWDATA_SQUARE

	



	PLACE_OF_INTEREST_SIGN

	



	TURNED_NOT_SIGN

	



	WATCH

	



	HOURGLASS

	



	TOP_LEFT_CORNER

	



	TOP_RIGHT_CORNER

	



	BOTTOM_LEFT_CORNER

	



	BOTTOM_RIGHT_CORNER

	



	TOP_HALF_INTEGRAL

	



	BOTTOM_HALF_INTEGRAL

	



	FROWN

	



	SMILE

	



	UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS

	



	OPTION_KEY

	



	ERASE_TO_THE_RIGHT

	



	X_IN_A_RECTANGLE_BOX

	



	KEYBOARD

	



	LEFT_POINTING_ANGLE_BRACKET

	



	RIGHT_POINTING_ANGLE_BRACKET

	



	ERASE_TO_THE_LEFT

	



	BENZENE_RING

	



	CYLINDRICITY

	



	ALL_AROUND_PROFILE

	



	SYMMETRY

	



	TOTAL_RUNOUT

	



	DIMENSION_ORIGIN

	



	CONICAL_TAPER

	



	SLOPE

	



	COUNTERBORE

	



	COUNTERSINK

	



	APL_FUNCTIONAL_SYMBOL_I_BEAM

	



	APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD

	



	APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL

	



	APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE

	



	APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND

	



	APL_FUNCTIONAL_SYMBOL_QUAD_JOT

	



	APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE

	



	APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE

	



	APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT

	



	APL_FUNCTIONAL_SYMBOL_SLASH_BAR

	



	APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR

	



	APL_FUNCTIONAL_SYMBOL_QUAD_SLASH

	



	APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH

	



	APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN

	



	APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN

	



	APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE

	



	APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE

	



	APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW

	



	APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW

	



	APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH

	



	APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_DELTA_STILE

	



	APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET

	



	APL_FUNCTIONAL_SYMBOL_QUAD_DELTA

	



	APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT

	



	APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE

	



	APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW

	



	APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR

	



	APL_FUNCTIONAL_SYMBOL_DEL_STILE

	



	APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET

	



	APL_FUNCTIONAL_SYMBOL_QUAD_DEL

	



	APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT

	



	APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE

	



	APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW

	



	APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT

	



	APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD

	



	APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR

	



	APL_FUNCTIONAL_SYMBOL_QUAD_COLON

	



	APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS

	



	APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS

	



	APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS

	



	APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS

	



	APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS

	



	APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE

	



	APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE

	



	APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS

	



	APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS

	



	APL_FUNCTIONAL_SYMBOL_COMMA_BAR

	



	APL_FUNCTIONAL_SYMBOL_DEL_TILDE

	



	APL_FUNCTIONAL_SYMBOL_ZILDE

	



	APL_FUNCTIONAL_SYMBOL_STILE_TILDE

	



	APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL

	



	APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION

	



	APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE

	



	APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE

	



	APL_FUNCTIONAL_SYMBOL_IOTA

	



	APL_FUNCTIONAL_SYMBOL_RHO

	



	APL_FUNCTIONAL_SYMBOL_OMEGA

	



	APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR

	



	APL_FUNCTIONAL_SYMBOL_ALPHA

	



	NOT_CHECK_MARK

	



	RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW

	



	SHOULDERED_OPEN_BOX

	



	BELL_SYMBOL

	



	VERTICAL_LINE_WITH_MIDDLE_DOT

	



	INSERTION_SYMBOL

	



	CONTINUOUS_UNDERLINE_SYMBOL

	



	DISCONTINUOUS_UNDERLINE_SYMBOL

	



	EMPHASIS_SYMBOL

	



	COMPOSITION_SYMBOL

	



	WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE

	



	ENTER_SYMBOL

	



	ALTERNATIVE_KEY_SYMBOL

	



	HELM_SYMBOL

	



	CIRCLED_HORIZONTAL_BAR_WITH_NOTCH

	



	CIRCLED_TRIANGLE_DOWN

	



	BROKEN_CIRCLE_WITH_NORTHWEST_ARROW

	



	UNDO_SYMBOL

	



	MONOSTABLE_SYMBOL

	



	HYSTERESIS_SYMBOL

	



	OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL

	



	OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL

	



	PASSIVE_PULL_DOWN_OUTPUT_SYMBOL

	



	PASSIVE_PULL_UP_OUTPUT_SYMBOL

	



	DIRECT_CURRENT_SYMBOL_FORM_TWO

	



	SOFTWARE_FUNCTION_SYMBOL

	



	APL_FUNCTIONAL_SYMBOL_QUAD

	



	DECIMAL_SEPARATOR_KEY_SYMBOL

	



	PREVIOUS_PAGE

	



	NEXT_PAGE

	



	PRINT_SCREEN_SYMBOL

	



	CLEAR_SCREEN_SYMBOL

	



	LEFT_PARENTHESIS_UPPER_HOOK

	



	LEFT_PARENTHESIS_EXTENSION

	



	LEFT_PARENTHESIS_LOWER_HOOK

	



	RIGHT_PARENTHESIS_UPPER_HOOK

	



	RIGHT_PARENTHESIS_EXTENSION

	



	RIGHT_PARENTHESIS_LOWER_HOOK

	



	LEFT_SQUARE_BRACKET_UPPER_CORNER

	



	LEFT_SQUARE_BRACKET_EXTENSION

	



	LEFT_SQUARE_BRACKET_LOWER_CORNER

	



	RIGHT_SQUARE_BRACKET_UPPER_CORNER

	



	RIGHT_SQUARE_BRACKET_EXTENSION

	



	RIGHT_SQUARE_BRACKET_LOWER_CORNER

	



	LEFT_CURLY_BRACKET_UPPER_HOOK

	



	LEFT_CURLY_BRACKET_MIDDLE_PIECE

	



	LEFT_CURLY_BRACKET_LOWER_HOOK

	



	CURLY_BRACKET_EXTENSION

	



	RIGHT_CURLY_BRACKET_UPPER_HOOK

	



	RIGHT_CURLY_BRACKET_MIDDLE_PIECE

	



	RIGHT_CURLY_BRACKET_LOWER_HOOK

	



	INTEGRAL_EXTENSION

	



	HORIZONTAL_LINE_EXTENSION

	



	UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION

	



	UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION

	



	SUMMATION_TOP

	



	SUMMATION_BOTTOM

	



	TOP_SQUARE_BRACKET

	



	BOTTOM_SQUARE_BRACKET

	



	BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET

	



	RADICAL_SYMBOL_BOTTOM

	



	LEFT_VERTICAL_BOX_LINE

	



	RIGHT_VERTICAL_BOX_LINE

	



	HORIZONTAL_SCAN_LINE_1

	



	HORIZONTAL_SCAN_LINE_3

	



	HORIZONTAL_SCAN_LINE_7

	



	HORIZONTAL_SCAN_LINE_9

	



	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT

	



	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT

	



	DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE

	



	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE

	



	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE

	



	DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE

	



	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE

	



	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE

	



	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE

	



	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE

	



	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE

	



	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL

	



	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL

	



	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT

	



	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT

	



	SQUARE_FOOT

	



	RETURN_SYMBOL

	



	EJECT_SYMBOL

	



	VERTICAL_LINE_EXTENSION

	



	METRICAL_BREVE

	



	METRICAL_LONG_OVER_SHORT

	



	METRICAL_SHORT_OVER_LONG

	



	METRICAL_LONG_OVER_TWO_SHORTS

	



	METRICAL_TWO_SHORTS_OVER_LONG

	



	METRICAL_TWO_SHORTS_JOINED

	



	METRICAL_TRISEME

	



	METRICAL_TETRASEME

	



	METRICAL_PENTASEME

	



	EARTH_GROUND

	



	FUSE

	



	TOP_PARENTHESIS

	



	BOTTOM_PARENTHESIS

	



	TOP_CURLY_BRACKET

	



	BOTTOM_CURLY_BRACKET

	



	TOP_TORTOISE_SHELL_BRACKET

	



	BOTTOM_TORTOISE_SHELL_BRACKET

	



	WHITE_TRAPEZIUM

	



	BENZENE_RING_WITH_CIRCLE

	



	STRAIGHTNESS

	



	FLATNESS

	



	AC_CURRENT

	



	ELECTRICAL_INTERSECTION

	



	DECIMAL_EXPONENT_SYMBOL

	



	BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE

	



	BLACK_LEFT_POINTING_DOUBLE_TRIANGLE

	



	BLACK_UP_POINTING_DOUBLE_TRIANGLE

	



	BLACK_DOWN_POINTING_DOUBLE_TRIANGLE

	



	BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR

	



	BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR

	



	BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR

	



	ALARM_CLOCK

	



	STOPWATCH

	



	TIMER_CLOCK

	



	HOURGLASS_WITH_FLOWING_SAND

	



	BLACK_MEDIUM_LEFT_POINTING_TRIANGLE

	



	BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE

	



	BLACK_MEDIUM_UP_POINTING_TRIANGLE

	



	BLACK_MEDIUM_DOWN_POINTING_TRIANGLE

	



	DOUBLE_VERTICAL_BAR

	



	BLACK_SQUARE_FOR_STOP

	



	BLACK_CIRCLE_FOR_RECORD

	



	POWER_SYMBOL

	



	POWER_ON_OFF_SYMBOL

	



	POWER_ON_SYMBOL

	



	POWER_SLEEP_SYMBOL

	



	OBSERVER_EYE_SYMBOL

	







	
AC_CURRENT = '⏦'

	




	
ALARM_CLOCK = '⏰'

	




	
ALL_AROUND_PROFILE = '⌮'

	




	
ALTERNATIVE_KEY_SYMBOL = '⎇'

	




	
APL_FUNCTIONAL_SYMBOL_ALPHA = '⍺'

	




	
APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR = '⍶'

	




	
APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR = '⍀'

	




	
APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH = '⍉'

	




	
APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS = '⍥'

	




	
APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT = '⌾'

	




	
APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR = '⍟'

	




	
APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE = '⌽'

	




	
APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR = '⍜'

	




	
APL_FUNCTIONAL_SYMBOL_COMMA_BAR = '⍪'

	




	
APL_FUNCTIONAL_SYMBOL_DELTA_STILE = '⍋'

	




	
APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR = '⍙'

	




	
APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS = '⍢'

	




	
APL_FUNCTIONAL_SYMBOL_DEL_STILE = '⍒'

	




	
APL_FUNCTIONAL_SYMBOL_DEL_TILDE = '⍫'

	




	
APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR = '⍚'

	




	
APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE = '⍖'

	




	
APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE = '⍱'

	




	
APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE = '⍦'

	




	
APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT = '⍎'

	




	
APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR = '⍊'

	




	
APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR = '⍷'

	




	
APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS = '⍩'

	




	
APL_FUNCTIONAL_SYMBOL_IOTA = '⍳'

	




	
APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR = '⍸'

	




	
APL_FUNCTIONAL_SYMBOL_I_BEAM = '⌶'

	




	
APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS = '⍤'

	




	
APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR = '⍛'

	




	
APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE = '⍅'

	




	
APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE = '⍧'

	




	
APL_FUNCTIONAL_SYMBOL_OMEGA = '⍵'

	




	
APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR = '⍹'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD = '⎕'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH = '⍂'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE = '⌼'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_COLON = '⍠'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_DEL = '⍔'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_DELTA = '⍍'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND = '⌺'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE = '⌹'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW = '⍗'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET = '⍌'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL = '⌸'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN = '⍄'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_JOT = '⌻'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW = '⍇'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN = '⍃'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL = '⍯'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION = '⍰'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW = '⍈'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_SLASH = '⍁'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW = '⍐'

	




	
APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET = '⍓'

	




	
APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD = '⍞'

	




	
APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR = '⍘'

	




	
APL_FUNCTIONAL_SYMBOL_RHO = '⍴'

	




	
APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE = '⍆'

	




	
APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR = '⍮'

	




	
APL_FUNCTIONAL_SYMBOL_SLASH_BAR = '⌿'

	




	
APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD = '⌷'

	




	
APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS = '⍣'

	




	
APL_FUNCTIONAL_SYMBOL_STILE_TILDE = '⍭'

	




	
APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS = '⍨'

	




	
APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE = '⍏'

	




	
APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE = '⍲'

	




	
APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT = '⍝'

	




	
APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS = '⍡'

	




	
APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT = '⍕'

	




	
APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR = '⍑'

	




	
APL_FUNCTIONAL_SYMBOL_ZILDE = '⍬'

	




	
ARC = '⌒'

	




	
BELL_SYMBOL = '⍾'

	




	
BENZENE_RING = '⌬'

	




	
BENZENE_RING_WITH_CIRCLE = '⏣'

	




	
BLACK_CIRCLE_FOR_RECORD = '⏺'

	




	
BLACK_DOWN_POINTING_DOUBLE_TRIANGLE = '⏬'

	




	
BLACK_LEFT_POINTING_DOUBLE_TRIANGLE = '⏪'

	




	
BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR = '⏮'

	




	
BLACK_MEDIUM_DOWN_POINTING_TRIANGLE = '⏷'

	




	
BLACK_MEDIUM_LEFT_POINTING_TRIANGLE = '⏴'

	




	
BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE = '⏵'

	




	
BLACK_MEDIUM_UP_POINTING_TRIANGLE = '⏶'

	




	
BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE = '⏩'

	




	
BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR = '⏭'

	




	
BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR = '⏯'

	




	
BLACK_SQUARE_FOR_STOP = '⏹'

	




	
BLACK_UP_POINTING_DOUBLE_TRIANGLE = '⏫'

	




	
BOTTOM_CURLY_BRACKET = '⏟'

	




	
BOTTOM_HALF_INTEGRAL = '⌡'

	




	
BOTTOM_LEFT_CORNER = '⌞'

	




	
BOTTOM_LEFT_CROP = '⌍'

	




	
BOTTOM_PARENTHESIS = '⏝'

	




	
BOTTOM_RIGHT_CORNER = '⌟'

	




	
BOTTOM_RIGHT_CROP = '⌌'

	




	
BOTTOM_SQUARE_BRACKET = '⎵'

	




	
BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET = '⎶'

	




	
BOTTOM_TORTOISE_SHELL_BRACKET = '⏡'

	




	
BROKEN_CIRCLE_WITH_NORTHWEST_ARROW = '⎋'

	




	
CIRCLED_HORIZONTAL_BAR_WITH_NOTCH = '⎉'

	




	
CIRCLED_TRIANGLE_DOWN = '⎊'

	




	
CLEAR_SCREEN_SYMBOL = '⎚'

	




	
COMPOSITION_SYMBOL = '⎄'

	




	
CONICAL_TAPER = '⌲'

	




	
CONTINUOUS_UNDERLINE_SYMBOL = '⎁'

	




	
COUNTERBORE = '⌴'

	




	
COUNTERSINK = '⌵'

	




	
CURLY_BRACKET_EXTENSION = '⎪'

	




	
CYLINDRICITY = '⌭'

	




	
DECIMAL_EXPONENT_SYMBOL = '⏨'

	




	
DECIMAL_SEPARATOR_KEY_SYMBOL = '⎖'

	




	
DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL = '⏉'

	




	
DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE = '⏁'

	




	
DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE = '⏄'

	




	
DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE = '⏇'

	




	
DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL = '⏊'

	




	
DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE = '⏂'

	




	
DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE = '⏅'

	




	
DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE = '⏈'

	




	
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT = '⏌'

	




	
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT = '⎿'

	




	
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT = '⏋'

	




	
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT = '⎾'

	




	
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE = '⏆'

	




	
DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE = '⏀'

	




	
DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE = '⏃'

	




	
DIAMETER_SIGN = '⌀'

	




	
DIMENSION_ORIGIN = '⌱'

	




	
DIRECT_CURRENT_SYMBOL_FORM_TWO = '⎓'

	




	
DISCONTINUOUS_UNDERLINE_SYMBOL = '⎂'

	




	
DOUBLE_VERTICAL_BAR = '⏸'

	




	
DOWN_ARROWHEAD = '⌄'

	




	
EARTH_GROUND = '⏚'

	




	
EJECT_SYMBOL = '⏏'

	




	
ELECTRICAL_INTERSECTION = '⏧'

	




	
ELECTRIC_ARROW = '⌁'

	




	
EMPHASIS_SYMBOL = '⎃'

	




	
ENTER_SYMBOL = '⎆'

	




	
ERASE_TO_THE_LEFT = '⌫'

	




	
ERASE_TO_THE_RIGHT = '⌦'

	




	
FLATNESS = '⏥'

	




	
FROWN = '⌢'

	




	
FUSE = '⏛'

	




	
HELM_SYMBOL = '⎈'

	




	
HORIZONTAL_LINE_EXTENSION = '⎯'

	




	
HORIZONTAL_SCAN_LINE_1 = '⎺'

	




	
HORIZONTAL_SCAN_LINE_3 = '⎻'

	




	
HORIZONTAL_SCAN_LINE_7 = '⎼'

	




	
HORIZONTAL_SCAN_LINE_9 = '⎽'

	




	
HOURGLASS = '⌛'

	




	
HOURGLASS_WITH_FLOWING_SAND = '⏳'

	




	
HOUSE = '⌂'

	




	
HYSTERESIS_SYMBOL = '⎎'

	




	
INSERTION_SYMBOL = '⎀'

	




	
INTEGRAL_EXTENSION = '⎮'

	




	
KEYBOARD = '⌨'

	




	
LEFT_CEILING = '⌈'

	




	
LEFT_CURLY_BRACKET_LOWER_HOOK = '⎩'

	




	
LEFT_CURLY_BRACKET_MIDDLE_PIECE = '⎨'

	




	
LEFT_CURLY_BRACKET_UPPER_HOOK = '⎧'

	




	
LEFT_FLOOR = '⌊'

	




	
LEFT_PARENTHESIS_EXTENSION = '⎜'

	




	
LEFT_PARENTHESIS_LOWER_HOOK = '⎝'

	




	
LEFT_PARENTHESIS_UPPER_HOOK = '⎛'

	




	
LEFT_POINTING_ANGLE_BRACKET = '〈'

	




	
LEFT_SQUARE_BRACKET_EXTENSION = '⎢'

	




	
LEFT_SQUARE_BRACKET_LOWER_CORNER = '⎣'

	




	
LEFT_SQUARE_BRACKET_UPPER_CORNER = '⎡'

	




	
LEFT_VERTICAL_BOX_LINE = '⎸'

	




	
METRICAL_BREVE = '⏑'

	




	
METRICAL_LONG_OVER_SHORT = '⏒'

	




	
METRICAL_LONG_OVER_TWO_SHORTS = '⏔'

	




	
METRICAL_PENTASEME = '⏙'

	




	
METRICAL_SHORT_OVER_LONG = '⏓'

	




	
METRICAL_TETRASEME = '⏘'

	




	
METRICAL_TRISEME = '⏗'

	




	
METRICAL_TWO_SHORTS_JOINED = '⏖'

	




	
METRICAL_TWO_SHORTS_OVER_LONG = '⏕'

	




	
MONOSTABLE_SYMBOL = '⎍'

	




	
NEXT_PAGE = '⎘'

	




	
NOT_CHECK_MARK = '⍻'

	




	
OBSERVER_EYE_SYMBOL = '⏿'

	




	
OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL = '⎏'

	




	
OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL = '⎐'

	




	
OPTION_KEY = '⌥'

	




	
PASSIVE_PULL_DOWN_OUTPUT_SYMBOL = '⎑'

	




	
PASSIVE_PULL_UP_OUTPUT_SYMBOL = '⎒'

	




	
PERSPECTIVE = '⌆'

	




	
PLACE_OF_INTEREST_SIGN = '⌘'

	




	
POSITION_INDICATOR = '⌖'

	




	
POWER_ON_OFF_SYMBOL = '⏼'

	




	
POWER_ON_SYMBOL = '⏽'

	




	
POWER_SLEEP_SYMBOL = '⏾'

	




	
POWER_SYMBOL = '⏻'

	




	
PREVIOUS_PAGE = '⎗'

	




	
PRINT_SCREEN_SYMBOL = '⎙'

	




	
PROJECTIVE = '⌅'

	




	
RADICAL_SYMBOL_BOTTOM = '⎷'

	




	
RETURN_SYMBOL = '⏎'

	




	
REVERSED_NOT_SIGN = '⌐'

	




	
RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW = '⍼'

	




	
RIGHT_CEILING = '⌉'

	




	
RIGHT_CURLY_BRACKET_LOWER_HOOK = '⎭'

	




	
RIGHT_CURLY_BRACKET_MIDDLE_PIECE = '⎬'

	




	
RIGHT_CURLY_BRACKET_UPPER_HOOK = '⎫'

	




	
RIGHT_FLOOR = '⌋'

	




	
RIGHT_PARENTHESIS_EXTENSION = '⎟'

	




	
RIGHT_PARENTHESIS_LOWER_HOOK = '⎠'

	




	
RIGHT_PARENTHESIS_UPPER_HOOK = '⎞'

	




	
RIGHT_POINTING_ANGLE_BRACKET = '〉'

	




	
RIGHT_SQUARE_BRACKET_EXTENSION = '⎥'

	




	
RIGHT_SQUARE_BRACKET_LOWER_CORNER = '⎦'

	




	
RIGHT_SQUARE_BRACKET_UPPER_CORNER = '⎤'

	




	
RIGHT_VERTICAL_BOX_LINE = '⎹'

	




	
SECTOR = '⌔'

	




	
SEGMENT = '⌓'

	




	
SHOULDERED_OPEN_BOX = '⍽'

	




	
SLOPE = '⌳'

	




	
SMILE = '⌣'

	




	
SOFTWARE_FUNCTION_SYMBOL = '⎔'

	




	
SQUARE_FOOT = '⏍'

	




	
SQUARE_LOZENGE = '⌑'

	




	
STOPWATCH = '⏱'

	




	
STRAIGHTNESS = '⏤'

	




	
SUMMATION_BOTTOM = '⎳'

	




	
SUMMATION_TOP = '⎲'

	




	
SYMMETRY = '⌯'

	




	
TELEPHONE_RECORDER = '⌕'

	




	
TIMER_CLOCK = '⏲'

	




	
TOP_CURLY_BRACKET = '⏞'

	




	
TOP_HALF_INTEGRAL = '⌠'

	




	
TOP_LEFT_CORNER = '⌜'

	




	
TOP_LEFT_CROP = '⌏'

	




	
TOP_PARENTHESIS = '⏜'

	




	
TOP_RIGHT_CORNER = '⌝'

	




	
TOP_RIGHT_CROP = '⌎'

	




	
TOP_SQUARE_BRACKET = '⎴'

	




	
TOP_TORTOISE_SHELL_BRACKET = '⏠'

	




	
TOTAL_RUNOUT = '⌰'

	




	
TURNED_NOT_SIGN = '⌙'

	




	
UNDO_SYMBOL = '⎌'

	




	
UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION = '⎰'

	




	
UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION = '⎱'

	




	
UP_ARROWHEAD = '⌃'

	




	
UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS = '⌤'

	




	
VERTICAL_LINE_EXTENSION = '⏐'

	




	
VERTICAL_LINE_WITH_MIDDLE_DOT = '⍿'

	




	
VIEWDATA_SQUARE = '⌗'

	




	
WATCH = '⌚'

	




	
WAVY_LINE = '⌇'

	




	
WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE = '⎅'

	




	
WHITE_TRAPEZIUM = '⏢'

	




	
X_IN_A_RECTANGLE_BOX = '⌧'

	










            

          

      

      

    

  

  
    
    

    Models
    

    

    
 
  

    
      
          
            
  
Models


	
class pygamelib.assets.graphics.Models

	Bases: object

List of models (emojis by unicode denomination)

Models are filtered emojis. This class  does not map the entire specification.

Models replaces the previous Sprites class. Renaming that class is necessary with
the introduction of a real Sprite class in the GFX module.

This class contains 1328 emojis (this is not the full list).
All emoji codes come from: https://unicode.org/emoji/charts/full_emoji_list.html
Additional emojis can be added by codes.

The complete list of aliased emojis is:



	GRINNING_FACE = 😀


	GRINNING_FACE_WITH_BIG_EYES = 😃


	GRINNING_FACE_WITH_SMILING_EYES = 😄


	BEAMING_FACE_WITH_SMILING_EYES = 😁


	GRINNING_SQUINTING_FACE = 😆


	GRINNING_FACE_WITH_SWEAT = 😅


	ROLLING_ON_THE_FLOOR_LAUGHING = 🤣


	FACE_WITH_TEARS_OF_JOY = 😂


	SLIGHTLY_SMILING_FACE = 🙂


	UPSIDE_DOWN_FACE = 🙃


	WINKING_FACE = 😉


	SMILING_FACE_WITH_SMILING_EYES = 😊


	SMILING_FACE_WITH_HALO = 😇


	SMILING_FACE_WITH_HEARTS = 🥰


	SMILING_FACE_WITH_HEART_EYES = 😍


	STAR_STRUCK = 🤩


	FACE_BLOWING_A_KISS = 😘


	KISSING_FACE = 😗


	SMILING_FACE = ☺


	KISSING_FACE_WITH_CLOSED_EYES = 😚


	KISSING_FACE_WITH_SMILING_EYES = 😙


	SMILING_FACE_WITH_TEAR = 🥲


	FACE_SAVORING_FOOD = 😋


	FACE_WITH_TONGUE = 😛


	WINKING_FACE_WITH_TONGUE = 😜


	ZANY_FACE = 🤪


	SQUINTING_FACE_WITH_TONGUE = 😝


	MONEY_MOUTH_FACE = 🤑


	HUGGING_FACE = 🤗


	FACE_WITH_HAND_OVER_MOUTH = 🤭


	SHUSHING_FACE = 🤫


	THINKING_FACE = 🤔


	ZIPPER_MOUTH_FACE = 🤐


	FACE_WITH_RAISED_EYEBROW = 🤨


	NEUTRAL_FACE = 😐


	EXPRESSIONLESS_FACE = 😑


	FACE_WITHOUT_MOUTH = 😶


	SMIRKING_FACE = 😏


	UNAMUSED_FACE = 😒


	FACE_WITH_ROLLING_EYES = 🙄


	GRIMACING_FACE = 😬


	LYING_FACE = 🤥


	RELIEVED_FACE = 😌


	PENSIVE_FACE = 😔


	SLEEPY_FACE = 😪


	DROOLING_FACE = 🤤


	SLEEPING_FACE = 😴


	FACE_WITH_MEDICAL_MASK = 😷


	FACE_WITH_THERMOMETER = 🤒


	FACE_WITH_HEAD_BANDAGE = 🤕


	NAUSEATED_FACE = 🤢


	FACE_VOMITING = 🤮


	SNEEZING_FACE = 🤧


	HOT_FACE = 🥵


	COLD_FACE = 🥶


	WOOZY_FACE = 🥴


	DIZZY_FACE = 😵


	EXPLODING_HEAD = 🤯


	COWBOY_HAT_FACE = 🤠


	PARTYING_FACE = 🥳


	DISGUISED_FACE = 🥸


	SMILING_FACE_WITH_SUNGLASSES = 😎


	NERD_FACE = 🤓


	FACE_WITH_MONOCLE = 🧐


	CONFUSED_FACE = 😕


	WORRIED_FACE = 😟


	SLIGHTLY_FROWNING_FACE = 🙁


	FROWNING_FACE = ☹


	FACE_WITH_OPEN_MOUTH = 😮


	HUSHED_FACE = 😯


	ASTONISHED_FACE = 😲


	FLUSHED_FACE = 😳


	PLEADING_FACE = 🥺


	FROWNING_FACE_WITH_OPEN_MOUTH = 😦


	ANGUISHED_FACE = 😧


	FEARFUL_FACE = 😨


	ANXIOUS_FACE_WITH_SWEAT = 😰


	SAD_BUT_RELIEVED_FACE = 😥


	CRYING_FACE = 😢


	LOUDLY_CRYING_FACE = 😭


	FACE_SCREAMING_IN_FEAR = 😱


	CONFOUNDED_FACE = 😖


	PERSEVERING_FACE = 😣


	DISAPPOINTED_FACE = 😞


	DOWNCAST_FACE_WITH_SWEAT = 😓


	WEARY_FACE = 😩


	TIRED_FACE = 😫


	YAWNING_FACE = 🥱


	FACE_WITH_STEAM_FROM_NOSE = 😤


	POUTING_FACE = 😡


	ANGRY_FACE = 😠


	FACE_WITH_SYMBOLS_ON_MOUTH = 🤬


	SMILING_FACE_WITH_HORNS = 😈


	ANGRY_FACE_WITH_HORNS = 👿


	SKULL = 💀


	SKULL_AND_CROSSBONES = ☠


	PILE_OF_POO = 💩


	CLOWN_FACE = 🤡


	OGRE = 👹


	GOBLIN = 👺


	GHOST = 👻


	ALIEN = 👽


	ALIEN_MONSTER = 👾


	ROBOT = 🤖


	GRINNING_CAT = 😺


	GRINNING_CAT_WITH_SMILING_EYES = 😸


	CAT_WITH_TEARS_OF_JOY = 😹


	SMILING_CAT_WITH_HEART_EYES = 😻


	CAT_WITH_WRY_SMILE = 😼


	KISSING_CAT = 😽


	WEARY_CAT = 🙀


	CRYING_CAT = 😿


	POUTING_CAT = 😾


	SEE_NO_EVIL_MONKEY = 🙈


	HEAR_NO_EVIL_MONKEY = 🙉


	SPEAK_NO_EVIL_MONKEY = 🙊


	KISS_MARK = 💋


	LOVE_LETTER = 💌


	HEART_WITH_ARROW = 💘


	HEART_WITH_RIBBON = 💝


	SPARKLING_HEART = 💖


	GROWING_HEART = 💗


	BEATING_HEART = 💓


	REVOLVING_HEARTS = 💞


	TWO_HEARTS = 💕


	HEART_DECORATION = 💟


	HEART_EXCLAMATION = ❣


	BROKEN_HEART = 💔


	RED_HEART = ❤


	ORANGE_HEART = 🧡


	YELLOW_HEART = 💛


	GREEN_HEART = 💚


	BLUE_HEART = 💙


	PURPLE_HEART = 💜


	BROWN_HEART = 🤎


	BLACK_HEART = 🖤


	WHITE_HEART = 🤍


	HUNDRED_POINTS = 💯


	ANGER_SYMBOL = 💢


	COLLISION = 💥


	DIZZY = 💫


	SWEAT_DROPLETS = 💦


	DASHING_AWAY = 💨


	HOLE = 🕳


	BOMB = 💣


	SPEECH_BALLOON = 💬


	LEFT_SPEECH_BUBBLE = 🗨


	RIGHT_ANGER_BUBBLE = 🗯


	THOUGHT_BALLOON = 💭


	ZZZ = 💤


	WAVING_HAND = 👋


	RAISED_BACK_OF_HAND = 🤚


	HAND_WITH_FINGERS_SPLAYED = 🖐


	RAISED_HAND = ✋


	VULCAN_SALUTE = 🖖


	OK_HAND = 👌


	PINCHED_FINGERS = 🤌


	PINCHING_HAND = 🤏


	VICTORY_HAND = ✌


	CROSSED_FINGERS = 🤞


	LOVE_YOU_GESTURE = 🤟


	SIGN_OF_THE_HORNS = 🤘


	CALL_ME_HAND = 🤙


	BACKHAND_INDEX_POINTING_LEFT = 👈


	BACKHAND_INDEX_POINTING_RIGHT = 👉


	BACKHAND_INDEX_POINTING_UP = 👆


	MIDDLE_FINGER = 🖕


	BACKHAND_INDEX_POINTING_DOWN = 👇


	INDEX_POINTING_UP = ☝


	THUMBS_UP = 👍


	THUMBS_DOWN = 👎


	RAISED_FIST = ✊


	ONCOMING_FIST = 👊


	LEFT_FACING_FIST = 🤛


	RIGHT_FACING_FIST = 🤜


	CLAPPING_HANDS = 👏


	RAISING_HANDS = 🙌


	OPEN_HANDS = 👐


	PALMS_UP_TOGETHER = 🤲


	HANDSHAKE = 🤝


	FOLDED_HANDS = 🙏


	WRITING_HAND = ✍


	NAIL_POLISH = 💅


	SELFIE = 🤳


	FLEXED_BICEPS = 💪


	MECHANICAL_ARM = 🦾


	MECHANICAL_LEG = 🦿


	LEG = 🦵


	FOOT = 🦶


	EAR = 👂


	EAR_WITH_HEARING_AID = 🦻


	NOSE = 👃


	BRAIN = 🧠


	ANATOMICAL_HEART = 🫀


	LUNGS = 🫁


	TOOTH = 🦷


	BONE = 🦴


	EYES = 👀


	EYE = 👁


	TONGUE = 👅


	MOUTH = 👄


	BABY = 👶


	CHILD = 🧒


	BOY = 👦


	GIRL = 👧


	PERSON = 🧑


	PERSON_BLOND_HAIR = 👱


	MAN = 👨


	MAN_BEARD = 🧔


	WOMAN = 👩


	OLDER_PERSON = 🧓


	OLD_MAN = 👴


	OLD_WOMAN = 👵


	PERSON_FROWNING = 🙍


	PERSON_POUTING = 🙎


	PERSON_GESTURING_NO = 🙅


	PERSON_GESTURING_OK = 🙆


	PERSON_TIPPING_HAND = 💁


	PERSON_RAISING_HAND = 🙋


	DEAF_PERSON = 🧏


	PERSON_BOWING = 🙇


	PERSON_FACEPALMING = 🤦


	PERSON_SHRUGGING = 🤷


	POLICE_OFFICER = 👮


	DETECTIVE = 🕵


	GUARD = 💂


	NINJA = 🥷


	CONSTRUCTION_WORKER = 👷


	PRINCE = 🤴


	PRINCESS = 👸


	PERSON_WEARING_TURBAN = 👳


	PERSON_WITH_SKULLCAP = 👲


	WOMAN_WITH_HEADSCARF = 🧕


	PERSON_IN_TUXEDO = 🤵


	PERSON_WITH_VEIL = 👰


	PREGNANT_WOMAN = 🤰


	BREAST_FEEDING = 🤱


	BABY_ANGEL = 👼


	SANTA_CLAUS = 🎅


	MRS_CLAUS = 🤶


	SUPERHERO = 🦸


	SUPERVILLAIN = 🦹


	MAGE = 🧙


	FAIRY = 🧚


	VAMPIRE = 🧛


	MERPERSON = 🧜


	ELF = 🧝


	GENIE = 🧞


	ZOMBIE = 🧟


	PERSON_GETTING_MASSAGE = 💆


	PERSON_GETTING_HAIRCUT = 💇


	PERSON_WALKING = 🚶


	PERSON_STANDING = 🧍


	PERSON_KNEELING = 🧎


	PERSON_RUNNING = 🏃


	WOMAN_DANCING = 💃


	MAN_DANCING = 🕺


	PERSON_IN_SUIT_LEVITATING = 🕴


	PEOPLE_WITH_BUNNY_EARS = 👯


	PERSON_IN_STEAMY_ROOM = 🧖


	PERSON_CLIMBING = 🧗


	PERSON_FENCING = 🤺


	HORSE_RACING = 🏇


	SKIER = ⛷


	SNOWBOARDER = 🏂


	PERSON_GOLFING = 🏌


	PERSON_SURFING = 🏄


	PERSON_ROWING_BOAT = 🚣


	PERSON_SWIMMING = 🏊


	PERSON_BOUNCING_BALL = ⛹


	PERSON_LIFTING_WEIGHTS = 🏋


	PERSON_BIKING = 🚴


	PERSON_MOUNTAIN_BIKING = 🚵


	PERSON_CARTWHEELING = 🤸


	PEOPLE_WRESTLING = 🤼


	PERSON_PLAYING_WATER_POLO = 🤽


	PERSON_PLAYING_HANDBALL = 🤾


	PERSON_JUGGLING = 🤹


	PERSON_IN_LOTUS_POSITION = 🧘


	PERSON_TAKING_BATH = 🛀


	PERSON_IN_BED = 🛌


	WOMEN_HOLDING_HANDS = 👭


	WOMAN_AND_MAN_HOLDING_HANDS = 👫


	MEN_HOLDING_HANDS = 👬


	KISS = 💏


	COUPLE_WITH_HEART = 💑


	FAMILY = 👪


	SPEAKING_HEAD = 🗣


	BUST_IN_SILHOUETTE = 👤


	BUSTS_IN_SILHOUETTE = 👥


	PEOPLE_HUGGING = 🫂


	FOOTPRINTS = 👣


	LIGHT_SKIN_TONE = 🏻


	MEDIUM_LIGHT_SKIN_TONE = 🏼


	MEDIUM_SKIN_TONE = 🏽


	MEDIUM_DARK_SKIN_TONE = 🏾


	DARK_SKIN_TONE = 🏿


	RED_HAIR = 🦰


	CURLY_HAIR = 🦱


	WHITE_HAIR = 🦳


	BALD = 🦲


	MONKEY_FACE = 🐵


	MONKEY = 🐒


	GORILLA = 🦍


	ORANGUTAN = 🦧


	DOG_FACE = 🐶


	DOG = 🐕


	GUIDE_DOG = 🦮


	POODLE = 🐩


	WOLF = 🐺


	FOX = 🦊


	RACCOON = 🦝


	CAT_FACE = 🐱


	CAT = 🐈


	LION = 🦁


	TIGER_FACE = 🐯


	TIGER = 🐅


	LEOPARD = 🐆


	HORSE_FACE = 🐴


	HORSE = 🐎


	UNICORN = 🦄


	ZEBRA = 🦓


	DEER = 🦌


	BISON = 🦬


	COW_FACE = 🐮


	OX = 🐂


	WATER_BUFFALO = 🐃


	COW = 🐄


	PIG_FACE = 🐷


	PIG = 🐖


	BOAR = 🐗


	PIG_NOSE = 🐽


	RAM = 🐏


	EWE = 🐑


	GOAT = 🐐


	CAMEL = 🐪


	TWO_HUMP_CAMEL = 🐫


	LLAMA = 🦙


	GIRAFFE = 🦒


	ELEPHANT = 🐘


	MAMMOTH = 🦣


	RHINOCEROS = 🦏


	HIPPOPOTAMUS = 🦛


	MOUSE_FACE = 🐭


	MOUSE = 🐁


	RAT = 🐀


	HAMSTER = 🐹


	RABBIT_FACE = 🐰


	RABBIT = 🐇


	CHIPMUNK = 🐿


	BEAVER = 🦫


	HEDGEHOG = 🦔


	BAT = 🦇


	BEAR = 🐻


	KOALA = 🐨


	PANDA = 🐼


	SLOTH = 🦥


	OTTER = 🦦


	SKUNK = 🦨


	KANGAROO = 🦘


	BADGER = 🦡


	PAW_PRINTS = 🐾


	TURKEY = 🦃


	CHICKEN = 🐔


	ROOSTER = 🐓


	HATCHING_CHICK = 🐣


	BABY_CHICK = 🐤


	FRONT_FACING_BABY_CHICK = 🐥


	BIRD = 🐦


	PENGUIN = 🐧


	DOVE = 🕊


	EAGLE = 🦅


	DUCK = 🦆


	SWAN = 🦢


	OWL = 🦉


	DODO = 🦤


	FEATHER = 🪶


	FLAMINGO = 🦩


	PEACOCK = 🦚


	PARROT = 🦜


	FROG = 🐸


	CROCODILE = 🐊


	TURTLE = 🐢


	LIZARD = 🦎


	SNAKE = 🐍


	DRAGON_FACE = 🐲


	DRAGON = 🐉


	SAUROPOD = 🦕


	T_REX = 🦖


	SPOUTING_WHALE = 🐳


	WHALE = 🐋


	DOLPHIN = 🐬


	SEAL = 🦭


	FISH = 🐟


	TROPICAL_FISH = 🐠


	BLOWFISH = 🐡


	SHARK = 🦈


	OCTOPUS = 🐙


	SPIRAL_SHELL = 🐚


	SNAIL = 🐌


	BUTTERFLY = 🦋


	BUG = 🐛


	ANT = 🐜


	HONEYBEE = 🐝


	BEETLE = 🪲


	LADY_BEETLE = 🐞


	CRICKET = 🦗


	COCKROACH = 🪳


	SPIDER = 🕷


	SPIDER_WEB = 🕸


	SCORPION = 🦂


	MOSQUITO = 🦟


	FLY = 🪰


	WORM = 🪱


	MICROBE = 🦠


	BOUQUET = 💐


	CHERRY_BLOSSOM = 🌸


	WHITE_FLOWER = 💮


	ROSETTE = 🏵


	ROSE = 🌹


	WILTED_FLOWER = 🥀


	HIBISCUS = 🌺


	SUNFLOWER = 🌻


	BLOSSOM = 🌼


	TULIP = 🌷


	SEEDLING = 🌱


	POTTED_PLANT = 🪴


	EVERGREEN_TREE = 🌲


	DECIDUOUS_TREE = 🌳


	PALM_TREE = 🌴


	CACTUS = 🌵


	SHEAF_OF_RICE = 🌾


	HERB = 🌿


	SHAMROCK = ☘


	FOUR_LEAF_CLOVER = 🍀


	MAPLE_LEAF = 🍁


	FALLEN_LEAF = 🍂


	LEAF_FLUTTERING_IN_WIND = 🍃


	GRAPES = 🍇


	MELON = 🍈


	WATERMELON = 🍉


	TANGERINE = 🍊


	LEMON = 🍋


	BANANA = 🍌


	PINEAPPLE = 🍍


	MANGO = 🥭


	RED_APPLE = 🍎


	GREEN_APPLE = 🍏


	PEAR = 🍐


	PEACH = 🍑


	CHERRIES = 🍒


	STRAWBERRY = 🍓


	BLUEBERRIES = 🫐


	KIWI_FRUIT = 🥝


	TOMATO = 🍅


	OLIVE = 🫒


	COCONUT = 🥥


	AVOCADO = 🥑


	EGGPLANT = 🍆


	POTATO = 🥔


	CARROT = 🥕


	EAR_OF_CORN = 🌽


	HOT_PEPPER = 🌶


	BELL_PEPPER = 🫑


	CUCUMBER = 🥒


	LEAFY_GREEN = 🥬


	BROCCOLI = 🥦


	GARLIC = 🧄


	ONION = 🧅


	MUSHROOM = 🍄


	PEANUTS = 🥜


	CHESTNUT = 🌰


	BREAD = 🍞


	CROISSANT = 🥐


	BAGUETTE_BREAD = 🥖


	FLATBREAD = 🫓


	PRETZEL = 🥨


	BAGEL = 🥯


	PANCAKES = 🥞


	WAFFLE = 🧇


	CHEESE_WEDGE = 🧀


	MEAT_ON_BONE = 🍖


	POULTRY_LEG = 🍗


	CUT_OF_MEAT = 🥩


	BACON = 🥓


	HAMBURGER = 🍔


	FRENCH_FRIES = 🍟


	PIZZA = 🍕


	HOT_DOG = 🌭


	SANDWICH = 🥪


	TACO = 🌮


	BURRITO = 🌯


	TAMALE = 🫔


	STUFFED_FLATBREAD = 🥙


	FALAFEL = 🧆


	EGG = 🥚


	COOKING = 🍳


	SHALLOW_PAN_OF_FOOD = 🥘


	POT_OF_FOOD = 🍲


	FONDUE = 🫕


	BOWL_WITH_SPOON = 🥣


	GREEN_SALAD = 🥗


	POPCORN = 🍿


	BUTTER = 🧈


	SALT = 🧂


	CANNED_FOOD = 🥫


	BENTO_BOX = 🍱


	RICE_CRACKER = 🍘


	RICE_BALL = 🍙


	COOKED_RICE = 🍚


	CURRY_RICE = 🍛


	STEAMING_BOWL = 🍜


	SPAGHETTI = 🍝


	ROASTED_SWEET_POTATO = 🍠


	ODEN = 🍢


	SUSHI = 🍣


	FRIED_SHRIMP = 🍤


	FISH_CAKE_WITH_SWIRL = 🍥


	MOON_CAKE = 🥮


	DANGO = 🍡


	DUMPLING = 🥟


	FORTUNE_COOKIE = 🥠


	TAKEOUT_BOX = 🥡


	CRAB = 🦀


	LOBSTER = 🦞


	SHRIMP = 🦐


	SQUID = 🦑


	OYSTER = 🦪


	SOFT_ICE_CREAM = 🍦


	SHAVED_ICE = 🍧


	ICE_CREAM = 🍨


	DOUGHNUT = 🍩


	COOKIE = 🍪


	BIRTHDAY_CAKE = 🎂


	SHORTCAKE = 🍰


	CUPCAKE = 🧁


	PIE = 🥧


	CHOCOLATE_BAR = 🍫


	CANDY = 🍬


	LOLLIPOP = 🍭


	CUSTARD = 🍮


	HONEY_POT = 🍯


	BABY_BOTTLE = 🍼


	GLASS_OF_MILK = 🥛


	HOT_BEVERAGE = ☕


	TEAPOT = 🫖


	TEACUP_WITHOUT_HANDLE = 🍵


	SAKE = 🍶


	BOTTLE_WITH_POPPING_CORK = 🍾


	WINE_GLASS = 🍷


	COCKTAIL_GLASS = 🍸


	TROPICAL_DRINK = 🍹


	BEER_MUG = 🍺


	CLINKING_BEER_MUGS = 🍻


	CLINKING_GLASSES = 🥂


	TUMBLER_GLASS = 🥃


	CUP_WITH_STRAW = 🥤


	BUBBLE_TEA = 🧋


	BEVERAGE_BOX = 🧃


	MATE = 🧉


	ICE = 🧊


	CHOPSTICKS = 🥢


	FORK_AND_KNIFE_WITH_PLATE = 🍽


	FORK_AND_KNIFE = 🍴


	SPOON = 🥄


	KITCHEN_KNIFE = 🔪


	AMPHORA = 🏺


	GLOBE_SHOWING_EUROPE_AFRICA = 🌍


	GLOBE_SHOWING_AMERICAS = 🌎


	GLOBE_SHOWING_ASIA_AUSTRALIA = 🌏


	GLOBE_WITH_MERIDIANS = 🌐


	WORLD_MAP = 🗺


	MAP_OF_JAPAN = 🗾


	COMPASS = 🧭


	SNOW_CAPPED_MOUNTAIN = 🏔


	MOUNTAIN = ⛰


	VOLCANO = 🌋


	MOUNT_FUJI = 🗻


	CAMPING = 🏕


	BEACH_WITH_UMBRELLA = 🏖


	DESERT = 🏜


	DESERT_ISLAND = 🏝


	NATIONAL_PARK = 🏞


	STADIUM = 🏟


	CLASSICAL_BUILDING = 🏛


	BUILDING_CONSTRUCTION = 🏗


	BRICK = 🧱


	ROCK = 🪨


	WOOD = 🪵


	HUT = 🛖


	HOUSES = 🏘


	DERELICT_HOUSE = 🏚


	HOUSE = 🏠


	HOUSE_WITH_GARDEN = 🏡


	OFFICE_BUILDING = 🏢


	JAPANESE_POST_OFFICE = 🏣


	POST_OFFICE = 🏤


	HOSPITAL = 🏥


	BANK = 🏦


	HOTEL = 🏨


	LOVE_HOTEL = 🏩


	CONVENIENCE_STORE = 🏪


	SCHOOL = 🏫


	DEPARTMENT_STORE = 🏬


	FACTORY = 🏭


	JAPANESE_CASTLE = 🏯


	CASTLE = 🏰


	WEDDING = 💒


	TOKYO_TOWER = 🗼


	STATUE_OF_LIBERTY = 🗽


	CHURCH = ⛪


	MOSQUE = 🕌


	HINDU_TEMPLE = 🛕


	SYNAGOGUE = 🕍


	SHINTO_SHRINE = ⛩


	KAABA = 🕋


	FOUNTAIN = ⛲


	TENT = ⛺


	FOGGY = 🌁


	NIGHT_WITH_STARS = 🌃


	CITYSCAPE = 🏙


	SUNRISE_OVER_MOUNTAINS = 🌄


	SUNRISE = 🌅


	CITYSCAPE_AT_DUSK = 🌆


	SUNSET = 🌇


	BRIDGE_AT_NIGHT = 🌉


	HOT_SPRINGS = ♨


	CAROUSEL_HORSE = 🎠


	FERRIS_WHEEL = 🎡


	ROLLER_COASTER = 🎢


	BARBER_POLE = 💈


	CIRCUS_TENT = 🎪


	LOCOMOTIVE = 🚂


	RAILWAY_CAR = 🚃


	HIGH_SPEED_TRAIN = 🚄


	BULLET_TRAIN = 🚅


	TRAIN = 🚆


	METRO = 🚇


	LIGHT_RAIL = 🚈


	STATION = 🚉


	TRAM = 🚊


	MONORAIL = 🚝


	MOUNTAIN_RAILWAY = 🚞


	TRAM_CAR = 🚋


	BUS = 🚌


	ONCOMING_BUS = 🚍


	TROLLEYBUS = 🚎


	MINIBUS = 🚐


	AMBULANCE = 🚑


	FIRE_ENGINE = 🚒


	POLICE_CAR = 🚓


	ONCOMING_POLICE_CAR = 🚔


	TAXI = 🚕


	ONCOMING_TAXI = 🚖


	AUTOMOBILE = 🚗


	ONCOMING_AUTOMOBILE = 🚘


	SPORT_UTILITY_VEHICLE = 🚙


	PICKUP_TRUCK = 🛻


	DELIVERY_TRUCK = 🚚


	ARTICULATED_LORRY = 🚛


	TRACTOR = 🚜


	RACING_CAR = 🏎


	MOTORCYCLE = 🏍


	MOTOR_SCOOTER = 🛵


	MANUAL_WHEELCHAIR = 🦽


	MOTORIZED_WHEELCHAIR = 🦼


	AUTO_RICKSHAW = 🛺


	BICYCLE = 🚲


	KICK_SCOOTER = 🛴


	SKATEBOARD = 🛹


	ROLLER_SKATE = 🛼


	BUS_STOP = 🚏


	MOTORWAY = 🛣


	RAILWAY_TRACK = 🛤


	OIL_DRUM = 🛢


	FUEL_PUMP = ⛽


	POLICE_CAR_LIGHT = 🚨


	HORIZONTAL_TRAFFIC_LIGHT = 🚥


	VERTICAL_TRAFFIC_LIGHT = 🚦


	STOP_SIGN = 🛑


	CONSTRUCTION = 🚧


	ANCHOR = ⚓


	SAILBOAT = ⛵


	CANOE = 🛶


	SPEEDBOAT = 🚤


	PASSENGER_SHIP = 🛳


	FERRY = ⛴


	MOTOR_BOAT = 🛥


	SHIP = 🚢


	AIRPLANE = ✈


	SMALL_AIRPLANE = 🛩


	AIRPLANE_DEPARTURE = 🛫


	AIRPLANE_ARRIVAL = 🛬


	PARACHUTE = 🪂


	SEAT = 💺


	HELICOPTER = 🚁


	SUSPENSION_RAILWAY = 🚟


	MOUNTAIN_CABLEWAY = 🚠


	AERIAL_TRAMWAY = 🚡


	SATELLITE = 🛰


	ROCKET = 🚀


	FLYING_SAUCER = 🛸


	BELLHOP_BELL = 🛎


	LUGGAGE = 🧳


	HOURGLASS_DONE = ⌛


	HOURGLASS_NOT_DONE = ⏳


	WATCH = ⌚


	ALARM_CLOCK = ⏰


	STOPWATCH = ⏱


	TIMER_CLOCK = ⏲


	MANTELPIECE_CLOCK = 🕰


	TWELVE_OCLOCK = 🕛


	TWELVE_THIRTY = 🕧


	ONE_OCLOCK = 🕐


	ONE_THIRTY = 🕜


	TWO_OCLOCK = 🕑


	TWO_THIRTY = 🕝


	THREE_OCLOCK = 🕒


	THREE_THIRTY = 🕞


	FOUR_OCLOCK = 🕓


	FOUR_THIRTY = 🕟


	FIVE_OCLOCK = 🕔


	FIVE_THIRTY = 🕠


	SIX_OCLOCK = 🕕


	SIX_THIRTY = 🕡


	SEVEN_OCLOCK = 🕖


	SEVEN_THIRTY = 🕢


	EIGHT_OCLOCK = 🕗


	EIGHT_THIRTY = 🕣


	NINE_OCLOCK = 🕘


	NINE_THIRTY = 🕤


	TEN_OCLOCK = 🕙


	TEN_THIRTY = 🕥


	ELEVEN_OCLOCK = 🕚


	ELEVEN_THIRTY = 🕦


	NEW_MOON = 🌑


	WAXING_CRESCENT_MOON = 🌒


	FIRST_QUARTER_MOON = 🌓


	WAXING_GIBBOUS_MOON = 🌔


	FULL_MOON = 🌕


	WANING_GIBBOUS_MOON = 🌖


	LAST_QUARTER_MOON = 🌗


	WANING_CRESCENT_MOON = 🌘


	CRESCENT_MOON = 🌙


	NEW_MOON_FACE = 🌚


	FIRST_QUARTER_MOON_FACE = 🌛


	LAST_QUARTER_MOON_FACE = 🌜


	THERMOMETER = 🌡


	SUN = ☀


	FULL_MOON_FACE = 🌝


	SUN_WITH_FACE = 🌞


	RINGED_PLANET = 🪐


	STAR = ⭐


	GLOWING_STAR = 🌟


	SHOOTING_STAR = 🌠


	MILKY_WAY = 🌌


	CLOUD = ☁


	SUN_BEHIND_CLOUD = ⛅


	CLOUD_WITH_LIGHTNING_AND_RAIN = ⛈


	SUN_BEHIND_SMALL_CLOUD = 🌤


	SUN_BEHIND_LARGE_CLOUD = 🌥


	SUN_BEHIND_RAIN_CLOUD = 🌦


	CLOUD_WITH_RAIN = 🌧


	CLOUD_WITH_SNOW = 🌨


	CLOUD_WITH_LIGHTNING = 🌩


	TORNADO = 🌪


	FOG = 🌫


	WIND_FACE = 🌬


	CYCLONE = 🌀


	RAINBOW = 🌈


	CLOSED_UMBRELLA = 🌂


	UMBRELLA = ☂


	UMBRELLA_WITH_RAIN_DROPS = ☔


	UMBRELLA_ON_GROUND = ⛱


	HIGH_VOLTAGE = ⚡


	SNOWFLAKE = ❄


	SNOWMAN = ☃


	SNOWMAN_WITHOUT_SNOW = ⛄


	COMET = ☄


	FIRE = 🔥


	DROPLET = 💧


	WATER_WAVE = 🌊


	JACK_O_LANTERN = 🎃


	CHRISTMAS_TREE = 🎄


	FIREWORKS = 🎆


	SPARKLER = 🎇


	FIRECRACKER = 🧨


	SPARKLES = ✨


	BALLOON = 🎈


	PARTY_POPPER = 🎉


	CONFETTI_BALL = 🎊


	TANABATA_TREE = 🎋


	PINE_DECORATION = 🎍


	JAPANESE_DOLLS = 🎎


	CARP_STREAMER = 🎏


	WIND_CHIME = 🎐


	MOON_VIEWING_CEREMONY = 🎑


	RED_ENVELOPE = 🧧


	RIBBON = 🎀


	WRAPPED_GIFT = 🎁


	REMINDER_RIBBON = 🎗


	ADMISSION_TICKETS = 🎟


	TICKET = 🎫


	MILITARY_MEDAL = 🎖


	TROPHY = 🏆


	SPORTS_MEDAL = 🏅


	FIRST_PLACE_MEDAL = 🥇


	SECOND_PLACE_MEDAL = 🥈


	THIRD_PLACE_MEDAL = 🥉


	SOCCER_BALL = ⚽


	BASEBALL = ⚾


	SOFTBALL = 🥎


	BASKETBALL = 🏀


	VOLLEYBALL = 🏐


	AMERICAN_FOOTBALL = 🏈


	RUGBY_FOOTBALL = 🏉


	TENNIS = 🎾


	FLYING_DISC = 🥏


	BOWLING = 🎳


	CRICKET_GAME = 🏏


	FIELD_HOCKEY = 🏑


	ICE_HOCKEY = 🏒


	LACROSSE = 🥍


	PING_PONG = 🏓


	BADMINTON = 🏸


	BOXING_GLOVE = 🥊


	MARTIAL_ARTS_UNIFORM = 🥋


	GOAL_NET = 🥅


	FLAG_IN_HOLE = ⛳


	ICE_SKATE = ⛸


	FISHING_POLE = 🎣


	DIVING_MASK = 🤿


	RUNNING_SHIRT = 🎽


	SKIS = 🎿


	SLED = 🛷


	CURLING_STONE = 🥌


	DIRECT_HIT = 🎯


	YO_YO = 🪀


	KITE = 🪁


	BALL = 🎱


	CRYSTAL_BALL = 🔮


	MAGIC_WAND = 🪄


	NAZAR_AMULET = 🧿


	VIDEO_GAME = 🎮


	JOYSTICK = 🕹


	SLOT_MACHINE = 🎰


	GAME_DIE = 🎲


	PUZZLE_PIECE = 🧩


	TEDDY_BEAR = 🧸


	PIñATA = 🪅


	NESTING_DOLLS = 🪆


	SPADE_SUIT = ♠


	HEART_SUIT = ♥


	DIAMOND_SUIT = ♦


	CLUB_SUIT = ♣


	CHESS_PAWN = ♟


	JOKER = 🃏


	MAHJONG_RED_DRAGON = 🀄


	FLOWER_PLAYING_CARDS = 🎴


	PERFORMING_ARTS = 🎭


	FRAMED_PICTURE = 🖼


	ARTIST_PALETTE = 🎨


	THREAD = 🧵


	SEWING_NEEDLE = 🪡


	YARN = 🧶


	KNOT = 🪢


	GLASSES = 👓


	SUNGLASSES = 🕶


	GOGGLES = 🥽


	LAB_COAT = 🥼


	SAFETY_VEST = 🦺


	NECKTIE = 👔


	T_SHIRT = 👕


	JEANS = 👖


	SCARF = 🧣


	GLOVES = 🧤


	COAT = 🧥


	SOCKS = 🧦


	DRESS = 👗


	KIMONO = 👘


	SARI = 🥻


	ONE_PIECE_SWIMSUIT = 🩱


	BRIEFS = 🩲


	SHORTS = 🩳


	BIKINI = 👙


	WOMANS_CLOTHES = 👚


	PURSE = 👛


	HANDBAG = 👜


	CLUTCH_BAG = 👝


	SHOPPING_BAGS = 🛍


	BACKPACK = 🎒


	THONG_SANDAL = 🩴


	MANS_SHOE = 👞


	RUNNING_SHOE = 👟


	HIKING_BOOT = 🥾


	FLAT_SHOE = 🥿


	HIGH_HEELED_SHOE = 👠


	WOMANS_SANDAL = 👡


	BALLET_SHOES = 🩰


	WOMANS_BOOT = 👢


	CROWN = 👑


	WOMANS_HAT = 👒


	TOP_HAT = 🎩


	GRADUATION_CAP = 🎓


	BILLED_CAP = 🧢


	MILITARY_HELMET = 🪖


	RESCUE_WORKERS_HELMET = ⛑


	PRAYER_BEADS = 📿


	LIPSTICK = 💄


	RING = 💍


	GEM_STONE = 💎


	MUTED_SPEAKER = 🔇


	SPEAKER_LOW_VOLUME = 🔈


	SPEAKER_MEDIUM_VOLUME = 🔉


	SPEAKER_HIGH_VOLUME = 🔊


	LOUDSPEAKER = 📢


	MEGAPHONE = 📣


	POSTAL_HORN = 📯


	BELL = 🔔


	BELL_WITH_SLASH = 🔕


	MUSICAL_SCORE = 🎼


	MUSICAL_NOTE = 🎵


	MUSICAL_NOTES = 🎶


	STUDIO_MICROPHONE = 🎙


	LEVEL_SLIDER = 🎚


	CONTROL_KNOBS = 🎛


	MICROPHONE = 🎤


	HEADPHONE = 🎧


	RADIO = 📻


	SAXOPHONE = 🎷


	ACCORDION = 🪗


	GUITAR = 🎸


	MUSICAL_KEYBOARD = 🎹


	TRUMPET = 🎺


	VIOLIN = 🎻


	BANJO = 🪕


	DRUM = 🥁


	LONG_DRUM = 🪘


	MOBILE_PHONE = 📱


	MOBILE_PHONE_WITH_ARROW = 📲


	TELEPHONE = ☎


	TELEPHONE_RECEIVER = 📞


	PAGER = 📟


	FAX_MACHINE = 📠


	BATTERY = 🔋


	ELECTRIC_PLUG = 🔌


	LAPTOP = 💻


	DESKTOP_COMPUTER = 🖥


	PRINTER = 🖨


	KEYBOARD = ⌨


	COMPUTER_MOUSE = 🖱


	TRACKBALL = 🖲


	COMPUTER_DISK = 💽


	FLOPPY_DISK = 💾


	OPTICAL_DISK = 💿


	DVD = 📀


	ABACUS = 🧮


	MOVIE_CAMERA = 🎥


	FILM_FRAMES = 🎞


	FILM_PROJECTOR = 📽


	CLAPPER_BOARD = 🎬


	TELEVISION = 📺


	CAMERA = 📷


	CAMERA_WITH_FLASH = 📸


	VIDEO_CAMERA = 📹


	VIDEOCASSETTE = 📼


	MAGNIFYING_GLASS_TILTED_LEFT = 🔍


	MAGNIFYING_GLASS_TILTED_RIGHT = 🔎


	CANDLE = 🕯


	LIGHT_BULB = 💡


	FLASHLIGHT = 🔦


	RED_PAPER_LANTERN = 🏮


	DIYA_LAMP = 🪔


	NOTEBOOK_WITH_DECORATIVE_COVER = 📔


	CLOSED_BOOK = 📕


	OPEN_BOOK = 📖


	GREEN_BOOK = 📗


	BLUE_BOOK = 📘


	ORANGE_BOOK = 📙


	BOOKS = 📚


	NOTEBOOK = 📓


	LEDGER = 📒


	PAGE_WITH_CURL = 📃


	SCROLL = 📜


	PAGE_FACING_UP = 📄


	NEWSPAPER = 📰


	ROLLED_UP_NEWSPAPER = 🗞


	BOOKMARK_TABS = 📑


	BOOKMARK = 🔖


	LABEL = 🏷


	MONEY_BAG = 💰


	COIN = 🪙


	YEN_BANKNOTE = 💴


	DOLLAR_BANKNOTE = 💵


	EURO_BANKNOTE = 💶


	POUND_BANKNOTE = 💷


	MONEY_WITH_WINGS = 💸


	CREDIT_CARD = 💳


	RECEIPT = 🧾


	CHART_INCREASING_WITH_YEN = 💹


	ENVELOPE = ✉


	E_MAIL = 📧


	INCOMING_ENVELOPE = 📨


	ENVELOPE_WITH_ARROW = 📩


	OUTBOX_TRAY = 📤


	INBOX_TRAY = 📥


	PACKAGE = 📦


	CLOSED_MAILBOX_WITH_RAISED_FLAG = 📫


	CLOSED_MAILBOX_WITH_LOWERED_FLAG = 📪


	OPEN_MAILBOX_WITH_RAISED_FLAG = 📬


	OPEN_MAILBOX_WITH_LOWERED_FLAG = 📭


	POSTBOX = 📮


	BALLOT_BOX_WITH_BALLOT = 🗳


	PENCIL = ✏


	BLACK_NIB = ✒


	FOUNTAIN_PEN = 🖋


	PEN = 🖊


	PAINTBRUSH = 🖌


	CRAYON = 🖍


	MEMO = 📝


	BRIEFCASE = 💼


	FILE_FOLDER = 📁


	OPEN_FILE_FOLDER = 📂


	CARD_INDEX_DIVIDERS = 🗂


	CALENDAR = 📅


	TEAR_OFF_CALENDAR = 📆


	SPIRAL_NOTEPAD = 🗒


	SPIRAL_CALENDAR = 🗓


	CARD_INDEX = 📇


	CHART_INCREASING = 📈


	CHART_DECREASING = 📉


	BAR_CHART = 📊


	CLIPBOARD = 📋


	PUSHPIN = 📌


	ROUND_PUSHPIN = 📍


	PAPERCLIP = 📎


	LINKED_PAPERCLIPS = 🖇


	STRAIGHT_RULER = 📏


	TRIANGULAR_RULER = 📐


	SCISSORS = ✂


	CARD_FILE_BOX = 🗃


	FILE_CABINET = 🗄


	WASTEBASKET = 🗑


	LOCKED = 🔒


	UNLOCKED = 🔓


	LOCKED_WITH_PEN = 🔏


	LOCKED_WITH_KEY = 🔐


	KEY = 🔑


	OLD_KEY = 🗝


	HAMMER = 🔨


	AXE = 🪓


	PICK = ⛏


	HAMMER_AND_PICK = ⚒


	HAMMER_AND_WRENCH = 🛠


	DAGGER = 🗡


	CROSSED_SWORDS = ⚔


	PISTOL = 🔫


	BOOMERANG = 🪃


	BOW_AND_ARROW = 🏹


	SHIELD = 🛡


	CARPENTRY_SAW = 🪚


	WRENCH = 🔧


	SCREWDRIVER = 🪛


	NUT_AND_BOLT = 🔩


	GEAR = ⚙


	CLAMP = 🗜


	BALANCE_SCALE = ⚖


	WHITE_CANE = 🦯


	LINK = 🔗


	CHAINS = ⛓


	HOOK = 🪝


	TOOLBOX = 🧰


	MAGNET = 🧲


	LADDER = 🪜


	ALEMBIC = ⚗


	TEST_TUBE = 🧪


	PETRI_DISH = 🧫


	DNA = 🧬


	MICROSCOPE = 🔬


	TELESCOPE = 🔭


	SATELLITE_ANTENNA = 📡


	SYRINGE = 💉


	DROP_OF_BLOOD = 🩸


	PILL = 💊


	ADHESIVE_BANDAGE = 🩹


	STETHOSCOPE = 🩺


	DOOR = 🚪


	ELEVATOR = 🛗


	MIRROR = 🪞


	WINDOW = 🪟


	BED = 🛏


	COUCH_AND_LAMP = 🛋


	CHAIR = 🪑


	TOILET = 🚽


	PLUNGER = 🪠


	SHOWER = 🚿


	BATHTUB = 🛁


	MOUSE_TRAP = 🪤


	RAZOR = 🪒


	LOTION_BOTTLE = 🧴


	SAFETY_PIN = 🧷


	BROOM = 🧹


	BASKET = 🧺


	ROLL_OF_PAPER = 🧻


	BUCKET = 🪣


	SOAP = 🧼


	TOOTHBRUSH = 🪥


	SPONGE = 🧽


	FIRE_EXTINGUISHER = 🧯


	SHOPPING_CART = 🛒


	CIGARETTE = 🚬


	COFFIN = ⚰


	HEADSTONE = 🪦


	FUNERAL_URN = ⚱


	MOAI = 🗿


	PLACARD = 🪧


	ATM_SIGN = 🏧


	LITTER_IN_BIN_SIGN = 🚮


	POTABLE_WATER = 🚰


	WHEELCHAIR_SYMBOL = ♿


	MENS_ROOM = 🚹


	WOMENS_ROOM = 🚺


	RESTROOM = 🚻


	BABY_SYMBOL = 🚼


	WATER_CLOSET = 🚾


	PASSPORT_CONTROL = 🛂


	CUSTOMS = 🛃


	BAGGAGE_CLAIM = 🛄


	LEFT_LUGGAGE = 🛅


	WARNING = ⚠


	CHILDREN_CROSSING = 🚸


	NO_ENTRY = ⛔


	PROHIBITED = 🚫


	NO_BICYCLES = 🚳


	NO_SMOKING = 🚭


	NO_LITTERING = 🚯


	NON_POTABLE_WATER = 🚱


	NO_PEDESTRIANS = 🚷


	NO_MOBILE_PHONES = 📵


	NO_ONE_UNDER_EIGHTEEN = 🔞


	RADIOACTIVE = ☢


	BIOHAZARD = ☣


	UP_ARROW = ⬆


	UP_RIGHT_ARROW = ↗


	RIGHT_ARROW = ➡


	DOWN_RIGHT_ARROW = ↘


	DOWN_ARROW = ⬇


	DOWN_LEFT_ARROW = ↙


	LEFT_ARROW = ⬅


	UP_LEFT_ARROW = ↖


	UP_DOWN_ARROW = ↕


	LEFT_RIGHT_ARROW = ↔


	RIGHT_ARROW_CURVING_LEFT = ↩


	LEFT_ARROW_CURVING_RIGHT = ↪


	RIGHT_ARROW_CURVING_UP = ⤴


	RIGHT_ARROW_CURVING_DOWN = ⤵


	CLOCKWISE_VERTICAL_ARROWS = 🔃


	COUNTERCLOCKWISE_ARROWS_BUTTON = 🔄


	BACK_ARROW = 🔙


	END_ARROW = 🔚


	ON_ARROW = 🔛


	SOON_ARROW = 🔜


	TOP_ARROW = 🔝


	PLACE_OF_WORSHIP = 🛐


	ATOM_SYMBOL = ⚛


	OM = 🕉


	STAR_OF_DAVID = ✡


	WHEEL_OF_DHARMA = ☸


	YIN_YANG = ☯


	LATIN_CROSS = ✝


	ORTHODOX_CROSS = ☦


	STAR_AND_CRESCENT = ☪


	PEACE_SYMBOL = ☮


	MENORAH = 🕎


	DOTTED_SIX_POINTED_STAR = 🔯


	ARIES = ♈


	TAURUS = ♉


	GEMINI = ♊


	CANCER = ♋


	LEO = ♌


	VIRGO = ♍


	LIBRA = ♎


	SCORPIO = ♏


	SAGITTARIUS = ♐


	CAPRICORN = ♑


	AQUARIUS = ♒


	PISCES = ♓


	OPHIUCHUS = ⛎


	SHUFFLE_TRACKS_BUTTON = 🔀


	REPEAT_BUTTON = 🔁


	REPEAT_SINGLE_BUTTON = 🔂


	PLAY_BUTTON = ▶


	FAST_FORWARD_BUTTON = ⏩


	NEXT_TRACK_BUTTON = ⏭


	PLAY_OR_PAUSE_BUTTON = ⏯


	REVERSE_BUTTON = ◀


	FAST_REVERSE_BUTTON = ⏪


	LAST_TRACK_BUTTON = ⏮


	UPWARDS_BUTTON = 🔼


	FAST_UP_BUTTON = ⏫


	DOWNWARDS_BUTTON = 🔽


	FAST_DOWN_BUTTON = ⏬


	PAUSE_BUTTON = ⏸


	STOP_BUTTON = ⏹


	RECORD_BUTTON = ⏺


	EJECT_BUTTON = ⏏


	CINEMA = 🎦


	DIM_BUTTON = 🔅


	BRIGHT_BUTTON = 🔆


	ANTENNA_BARS = 📶


	VIBRATION_MODE = 📳


	MOBILE_PHONE_OFF = 📴


	FEMALE_SIGN = ♀


	MALE_SIGN = ♂


	TRANSGENDER_SYMBOL = ⚧


	MULTIPLY = ✖


	PLUS = ➕


	MINUS = ➖


	DIVIDE = ➗


	INFINITY = ♾


	DOUBLE_EXCLAMATION_MARK = ‼


	EXCLAMATION_QUESTION_MARK = ⁉


	QUESTION_MARK = ❓


	WHITE_QUESTION_MARK = ❔


	WHITE_EXCLAMATION_MARK = ❕


	EXCLAMATION_MARK = ❗


	WAVY_DASH = 〰


	CURRENCY_EXCHANGE = 💱


	HEAVY_DOLLAR_SIGN = 💲


	MEDICAL_SYMBOL = ⚕


	RECYCLING_SYMBOL = ♻


	FLEUR_DE_LIS = ⚜


	TRIDENT_EMBLEM = 🔱


	NAME_BADGE = 📛


	JAPANESE_SYMBOL_FOR_BEGINNER = 🔰


	HOLLOW_RED_CIRCLE = ⭕


	CHECK_MARK_BUTTON = ✅


	CHECK_BOX_WITH_CHECK = ☑


	CHECK_MARK = ✔


	CROSS_MARK = ❌


	CROSS_MARK_BUTTON = ❎


	CURLY_LOOP = ➰


	DOUBLE_CURLY_LOOP = ➿


	PART_ALTERNATION_MARK = 〽


	EIGHT_SPOKED_ASTERISK = ✳


	EIGHT_POINTED_STAR = ✴


	SPARKLE = ❇


	COPYRIGHT = ©


	REGISTERED = ®


	TRADE_MARK = ™


	INPUT_LATIN_UPPERCASE = 🔠


	INPUT_LATIN_LOWERCASE = 🔡


	INPUT_NUMBERS = 🔢


	INPUT_SYMBOLS = 🔣


	INPUT_LATIN_LETTERS = 🔤


	A_BUTTON_BLOOD_TYPE = 🅰


	AB_BUTTON_BLOOD_TYPE = 🆎


	B_BUTTON_BLOOD_TYPE = 🅱


	CL_BUTTON = 🆑


	COOL_BUTTON = 🆒


	FREE_BUTTON = 🆓


	INFORMATION = ℹ


	ID_BUTTON = 🆔


	CIRCLED_M = Ⓜ


	NEW_BUTTON = 🆕


	NG_BUTTON = 🆖


	O_BUTTON_BLOOD_TYPE = 🅾


	OK_BUTTON = 🆗


	P_BUTTON = 🅿


	SOS_BUTTON = 🆘


	UP_BUTTON = 🆙


	VS_BUTTON = 🆚


	JAPANESE_HERE_BUTTON = 🈁


	JAPANESE_SERVICE_CHARGE_BUTTON = 🈂


	JAPANESE_MONTHLY_AMOUNT_BUTTON = 🈷


	JAPANESE_NOT_FREE_OF_CHARGE_BUTTON = 🈶


	JAPANESE_RESERVED_BUTTON = 🈯


	JAPANESE_BARGAIN_BUTTON = 🉐


	JAPANESE_DISCOUNT_BUTTON = 🈹


	JAPANESE_FREE_OF_CHARGE_BUTTON = 🈚


	JAPANESE_PROHIBITED_BUTTON = 🈲


	JAPANESE_ACCEPTABLE_BUTTON = 🉑


	JAPANESE_APPLICATION_BUTTON = 🈸


	JAPANESE_PASSING_GRADE_BUTTON = 🈴


	JAPANESE_VACANCY_BUTTON = 🈳


	JAPANESE_CONGRATULATIONS_BUTTON = ㊗


	JAPANESE_SECRET_BUTTON = ㊙


	JAPANESE_OPEN_FOR_BUSINESS_BUTTON = 🈺


	JAPANESE_NO_VACANCY_BUTTON = 🈵


	RED_CIRCLE = 🔴


	ORANGE_CIRCLE = 🟠


	YELLOW_CIRCLE = 🟡


	GREEN_CIRCLE = 🟢


	BLUE_CIRCLE = 🔵


	PURPLE_CIRCLE = 🟣


	BROWN_CIRCLE = 🟤


	BLACK_CIRCLE = ⚫


	WHITE_CIRCLE = ⚪


	RED_SQUARE = 🟥


	ORANGE_SQUARE = 🟧


	YELLOW_SQUARE = 🟨


	GREEN_SQUARE = 🟩


	BLUE_SQUARE = 🟦


	PURPLE_SQUARE = 🟪


	BROWN_SQUARE = 🟫


	BLACK_LARGE_SQUARE = ⬛


	WHITE_LARGE_SQUARE = ⬜


	BLACK_MEDIUM_SQUARE = ◼


	WHITE_MEDIUM_SQUARE = ◻


	BLACK_MEDIUM_SMALL_SQUARE = ◾


	WHITE_MEDIUM_SMALL_SQUARE = ◽


	BLACK_SMALL_SQUARE = ▪


	WHITE_SMALL_SQUARE = ▫


	LARGE_ORANGE_DIAMOND = 🔶


	LARGE_BLUE_DIAMOND = 🔷


	SMALL_ORANGE_DIAMOND = 🔸


	SMALL_BLUE_DIAMOND = 🔹


	RED_TRIANGLE_POINTED_UP = 🔺


	RED_TRIANGLE_POINTED_DOWN = 🔻


	DIAMOND_WITH_A_DOT = 💠


	RADIO_BUTTON = 🔘


	WHITE_SQUARE_BUTTON = 🔳


	BLACK_SQUARE_BUTTON = 🔲


	CHEQUERED_FLAG = 🏁


	TRIANGULAR_FLAG = 🚩


	CROSSED_FLAGS = 🎌


	BLACK_FLAG = 🏴


	WHITE_FLAG = 🏳








	
__init__()

	



Methods



	__init__()

	






Attributes



	ABACUS

	



	AB_BUTTON_BLOOD_TYPE

	



	ACCORDION

	



	ADHESIVE_BANDAGE

	



	ADMISSION_TICKETS

	



	AERIAL_TRAMWAY

	



	AIRPLANE

	



	AIRPLANE_ARRIVAL

	



	AIRPLANE_DEPARTURE

	



	ALARM_CLOCK

	



	ALEMBIC

	



	ALIEN

	



	ALIEN_MONSTER

	



	AMBULANCE

	



	AMERICAN_FOOTBALL

	



	AMPHORA

	



	ANATOMICAL_HEART

	



	ANCHOR

	



	ANGER_SYMBOL

	



	ANGRY_FACE

	



	ANGRY_FACE_WITH_HORNS

	



	ANGUISHED_FACE

	



	ANT

	



	ANTENNA_BARS

	



	ANXIOUS_FACE_WITH_SWEAT

	



	AQUARIUS

	



	ARIES

	



	ARTICULATED_LORRY

	



	ARTIST_PALETTE

	



	ASTONISHED_FACE

	



	ATM_SIGN

	



	ATOM_SYMBOL

	



	AUTOMOBILE

	



	AUTO_RICKSHAW

	



	AVOCADO

	



	AXE

	



	A_BUTTON_BLOOD_TYPE

	



	BABY

	



	BABY_ANGEL

	



	BABY_BOTTLE

	



	BABY_CHICK

	



	BABY_SYMBOL

	



	BACKHAND_INDEX_POINTING_DOWN

	



	BACKHAND_INDEX_POINTING_LEFT

	



	BACKHAND_INDEX_POINTING_RIGHT

	



	BACKHAND_INDEX_POINTING_UP

	



	BACKPACK

	



	BACK_ARROW

	



	BACON

	



	BADGER

	



	BADMINTON

	



	BAGEL

	



	BAGGAGE_CLAIM

	



	BAGUETTE_BREAD

	



	BALANCE_SCALE

	



	BALD

	



	BALL

	



	BALLET_SHOES

	



	BALLOON

	



	BALLOT_BOX_WITH_BALLOT

	



	BANANA

	



	BANJO

	



	BANK

	



	BARBER_POLE

	



	BAR_CHART

	



	BASEBALL

	



	BASKET

	



	BASKETBALL

	



	BAT

	



	BATHTUB

	



	BATTERY

	



	BEACH_WITH_UMBRELLA

	



	BEAMING_FACE_WITH_SMILING_EYES

	



	BEAR

	



	BEATING_HEART

	



	BEAVER

	



	BED

	



	BEER_MUG

	



	BEETLE

	



	BELL

	



	BELLHOP_BELL

	



	BELL_PEPPER

	



	BELL_WITH_SLASH

	



	BENTO_BOX

	



	BEVERAGE_BOX

	



	BICYCLE

	



	BIKINI

	



	BILLED_CAP

	



	BIOHAZARD

	



	BIRD

	



	BIRTHDAY_CAKE

	



	BISON

	



	BLACK_CIRCLE

	



	BLACK_FLAG

	



	BLACK_HEART

	



	BLACK_LARGE_SQUARE

	



	BLACK_MEDIUM_SMALL_SQUARE

	



	BLACK_MEDIUM_SQUARE

	



	BLACK_NIB

	



	BLACK_SMALL_SQUARE

	



	BLACK_SQUARE_BUTTON

	



	BLOSSOM

	



	BLOWFISH

	



	BLUEBERRIES

	



	BLUE_BOOK

	



	BLUE_CIRCLE

	



	BLUE_HEART

	



	BLUE_SQUARE

	



	BOAR

	



	BOMB

	



	BONE

	



	BOOKMARK

	



	BOOKMARK_TABS

	



	BOOKS

	



	BOOMERANG

	



	BOTTLE_WITH_POPPING_CORK

	



	BOUQUET

	



	BOWLING

	



	BOWL_WITH_SPOON

	



	BOW_AND_ARROW

	



	BOXING_GLOVE

	



	BOY

	



	BRAIN

	



	BREAD

	



	BREAST_FEEDING

	



	BRICK

	



	BRIDGE_AT_NIGHT

	



	BRIEFCASE

	



	BRIEFS

	



	BRIGHT_BUTTON

	



	BROCCOLI

	



	BROKEN_HEART

	



	BROOM

	



	BROWN_CIRCLE

	



	BROWN_HEART

	



	BROWN_SQUARE

	



	BUBBLE_TEA

	



	BUCKET

	



	BUG

	



	BUILDING_CONSTRUCTION

	



	BULLET_TRAIN

	



	BURRITO

	



	BUS

	



	BUSTS_IN_SILHOUETTE

	



	BUST_IN_SILHOUETTE

	



	BUS_STOP

	



	BUTTER

	



	BUTTERFLY

	



	B_BUTTON_BLOOD_TYPE

	



	CACTUS

	



	CALENDAR

	



	CALL_ME_HAND

	



	CAMEL

	



	CAMERA

	



	CAMERA_WITH_FLASH

	



	CAMPING

	



	CANCER

	



	CANDLE

	



	CANDY

	



	CANNED_FOOD

	



	CANOE

	



	CAPRICORN

	



	CARD_FILE_BOX

	



	CARD_INDEX

	



	CARD_INDEX_DIVIDERS

	



	CAROUSEL_HORSE

	



	CARPENTRY_SAW

	



	CARP_STREAMER

	



	CARROT

	



	CASTLE

	



	CAT

	



	CAT_FACE

	



	CAT_WITH_TEARS_OF_JOY

	



	CAT_WITH_WRY_SMILE

	



	CHAINS

	



	CHAIR

	



	CHART_DECREASING

	



	CHART_INCREASING

	



	CHART_INCREASING_WITH_YEN

	



	CHECK_BOX_WITH_CHECK

	



	CHECK_MARK

	



	CHECK_MARK_BUTTON

	



	CHEESE_WEDGE

	



	CHEQUERED_FLAG

	



	CHERRIES

	



	CHERRY_BLOSSOM

	



	CHESS_PAWN

	



	CHESTNUT

	



	CHICKEN

	



	CHILD

	



	CHILDREN_CROSSING

	



	CHIPMUNK

	



	CHOCOLATE_BAR

	



	CHOPSTICKS

	



	CHRISTMAS_TREE

	



	CHURCH

	



	CIGARETTE

	



	CINEMA

	



	CIRCLED_M

	



	CIRCUS_TENT

	



	CITYSCAPE

	



	CITYSCAPE_AT_DUSK

	



	CLAMP

	



	CLAPPER_BOARD

	



	CLAPPING_HANDS

	



	CLASSICAL_BUILDING

	



	CLINKING_BEER_MUGS

	



	CLINKING_GLASSES

	



	CLIPBOARD

	



	CLOCKWISE_VERTICAL_ARROWS

	



	CLOSED_BOOK

	



	CLOSED_MAILBOX_WITH_LOWERED_FLAG

	



	CLOSED_MAILBOX_WITH_RAISED_FLAG

	



	CLOSED_UMBRELLA

	



	CLOUD

	



	CLOUD_WITH_LIGHTNING

	



	CLOUD_WITH_LIGHTNING_AND_RAIN

	



	CLOUD_WITH_RAIN

	



	CLOUD_WITH_SNOW

	



	CLOWN_FACE

	



	CLUB_SUIT

	



	CLUTCH_BAG

	



	CL_BUTTON

	



	COAT

	



	COCKROACH

	



	COCKTAIL_GLASS

	



	COCONUT

	



	COFFIN

	



	COIN

	



	COLD_FACE

	



	COLLISION

	



	COMET

	



	COMPASS

	



	COMPUTER_DISK

	



	COMPUTER_MOUSE

	



	CONFETTI_BALL

	



	CONFOUNDED_FACE

	



	CONFUSED_FACE

	



	CONSTRUCTION

	



	CONSTRUCTION_WORKER

	



	CONTROL_KNOBS

	



	CONVENIENCE_STORE

	



	COOKED_RICE

	



	COOKIE

	



	COOKING

	



	COOL_BUTTON

	



	COPYRIGHT

	



	COUCH_AND_LAMP

	



	COUNTERCLOCKWISE_ARROWS_BUTTON

	



	COUPLE_WITH_HEART

	



	COW

	



	COWBOY_HAT_FACE

	



	COW_FACE

	



	CRAB

	



	CRAYON

	



	CREDIT_CARD

	



	CRESCENT_MOON

	



	CRICKET

	



	CRICKET_GAME

	



	CROCODILE

	



	CROISSANT

	



	CROSSED_FINGERS

	



	CROSSED_FLAGS

	



	CROSSED_SWORDS

	



	CROSS_MARK

	



	CROSS_MARK_BUTTON

	



	CROWN

	



	CRYING_CAT

	



	CRYING_FACE

	



	CRYSTAL_BALL

	



	CUCUMBER

	



	CUPCAKE

	



	CUP_WITH_STRAW

	



	CURLING_STONE

	



	CURLY_HAIR

	



	CURLY_LOOP

	



	CURRENCY_EXCHANGE

	



	CURRY_RICE

	



	CUSTARD

	



	CUSTOMS

	



	CUT_OF_MEAT

	



	CYCLONE

	



	DAGGER

	



	DANGO

	



	DARK_SKIN_TONE

	



	DASHING_AWAY

	



	DEAF_PERSON

	



	DECIDUOUS_TREE

	



	DEER

	



	DELIVERY_TRUCK

	



	DEPARTMENT_STORE

	



	DERELICT_HOUSE

	



	DESERT

	



	DESERT_ISLAND

	



	DESKTOP_COMPUTER

	



	DETECTIVE

	



	DIAMOND_SUIT

	



	DIAMOND_WITH_A_DOT

	



	DIM_BUTTON

	



	DIRECT_HIT

	



	DISAPPOINTED_FACE

	



	DISGUISED_FACE

	



	DIVIDE

	



	DIVING_MASK

	



	DIYA_LAMP

	



	DIZZY

	



	DIZZY_FACE

	



	DNA

	



	DODO

	



	DOG

	



	DOG_FACE

	



	DOLLAR_BANKNOTE

	



	DOLPHIN

	



	DOOR

	



	DOTTED_SIX_POINTED_STAR

	



	DOUBLE_CURLY_LOOP

	



	DOUBLE_EXCLAMATION_MARK

	



	DOUGHNUT

	



	DOVE

	



	DOWNCAST_FACE_WITH_SWEAT

	



	DOWNWARDS_BUTTON

	



	DOWN_ARROW

	



	DOWN_LEFT_ARROW

	



	DOWN_RIGHT_ARROW

	



	DRAGON

	



	DRAGON_FACE

	



	DRESS

	



	DROOLING_FACE

	



	DROPLET

	



	DROP_OF_BLOOD

	



	DRUM

	



	DUCK

	



	DUMPLING

	



	DVD

	



	EAGLE

	



	EAR

	



	EAR_OF_CORN

	



	EAR_WITH_HEARING_AID

	



	EGG

	



	EGGPLANT

	



	EIGHT_OCLOCK

	



	EIGHT_POINTED_STAR

	



	EIGHT_SPOKED_ASTERISK

	



	EIGHT_THIRTY

	



	EJECT_BUTTON

	



	ELECTRIC_PLUG

	



	ELEPHANT

	



	ELEVATOR

	



	ELEVEN_OCLOCK

	



	ELEVEN_THIRTY

	



	ELF

	



	END_ARROW

	



	ENVELOPE

	



	ENVELOPE_WITH_ARROW

	



	EURO_BANKNOTE

	



	EVERGREEN_TREE

	



	EWE

	



	EXCLAMATION_MARK

	



	EXCLAMATION_QUESTION_MARK

	



	EXPLODING_HEAD

	



	EXPRESSIONLESS_FACE

	



	EYE

	



	EYES

	



	E_MAIL

	



	FACE_BLOWING_A_KISS

	



	FACE_SAVORING_FOOD

	



	FACE_SCREAMING_IN_FEAR

	



	FACE_VOMITING

	



	FACE_WITHOUT_MOUTH

	



	FACE_WITH_HAND_OVER_MOUTH

	



	FACE_WITH_HEAD_BANDAGE

	



	FACE_WITH_MEDICAL_MASK

	



	FACE_WITH_MONOCLE

	



	FACE_WITH_OPEN_MOUTH

	



	FACE_WITH_RAISED_EYEBROW

	



	FACE_WITH_ROLLING_EYES

	



	FACE_WITH_STEAM_FROM_NOSE

	



	FACE_WITH_SYMBOLS_ON_MOUTH

	



	FACE_WITH_TEARS_OF_JOY

	



	FACE_WITH_THERMOMETER

	



	FACE_WITH_TONGUE

	



	FACTORY

	



	FAIRY

	



	FALAFEL

	



	FALLEN_LEAF

	



	FAMILY

	



	FAST_DOWN_BUTTON

	



	FAST_FORWARD_BUTTON

	



	FAST_REVERSE_BUTTON

	



	FAST_UP_BUTTON

	



	FAX_MACHINE

	



	FEARFUL_FACE

	



	FEATHER

	



	FEMALE_SIGN

	



	FERRIS_WHEEL

	



	FERRY

	



	FIELD_HOCKEY

	



	FILE_CABINET

	



	FILE_FOLDER

	



	FILM_FRAMES

	



	FILM_PROJECTOR

	



	FIRE

	



	FIRECRACKER

	



	FIREWORKS

	



	FIRE_ENGINE

	



	FIRE_EXTINGUISHER

	



	FIRST_PLACE_MEDAL

	



	FIRST_QUARTER_MOON

	



	FIRST_QUARTER_MOON_FACE

	



	FISH

	



	FISHING_POLE

	



	FISH_CAKE_WITH_SWIRL

	



	FIVE_OCLOCK

	



	FIVE_THIRTY

	



	FLAG_IN_HOLE

	



	FLAMINGO

	



	FLASHLIGHT

	



	FLATBREAD

	



	FLAT_SHOE

	



	FLEUR_DE_LIS

	



	FLEXED_BICEPS

	



	FLOPPY_DISK

	



	FLOWER_PLAYING_CARDS

	



	FLUSHED_FACE

	



	FLY

	



	FLYING_DISC

	



	FLYING_SAUCER

	



	FOG

	



	FOGGY

	



	FOLDED_HANDS

	



	FONDUE

	



	FOOT

	



	FOOTPRINTS

	



	FORK_AND_KNIFE

	



	FORK_AND_KNIFE_WITH_PLATE

	



	FORTUNE_COOKIE

	



	FOUNTAIN

	



	FOUNTAIN_PEN

	



	FOUR_LEAF_CLOVER

	



	FOUR_OCLOCK

	



	FOUR_THIRTY

	



	FOX

	



	FRAMED_PICTURE

	



	FREE_BUTTON

	



	FRENCH_FRIES

	



	FRIED_SHRIMP

	



	FROG

	



	FRONT_FACING_BABY_CHICK

	



	FROWNING_FACE

	



	FROWNING_FACE_WITH_OPEN_MOUTH

	



	FUEL_PUMP

	



	FULL_MOON

	



	FULL_MOON_FACE

	



	FUNERAL_URN

	



	GAME_DIE

	



	GARLIC

	



	GEAR

	



	GEMINI

	



	GEM_STONE

	



	GENIE

	



	GHOST

	



	GIRAFFE

	



	GIRL

	



	GLASSES

	



	GLASS_OF_MILK

	



	GLOBE_SHOWING_AMERICAS

	



	GLOBE_SHOWING_ASIA_AUSTRALIA

	



	GLOBE_SHOWING_EUROPE_AFRICA

	



	GLOBE_WITH_MERIDIANS

	



	GLOVES

	



	GLOWING_STAR

	



	GOAL_NET

	



	GOAT

	



	GOBLIN

	



	GOGGLES

	



	GORILLA

	



	GRADUATION_CAP

	



	GRAPES

	



	GREEN_APPLE

	



	GREEN_BOOK

	



	GREEN_CIRCLE

	



	GREEN_HEART

	



	GREEN_SALAD

	



	GREEN_SQUARE

	



	GRIMACING_FACE

	



	GRINNING_CAT

	



	GRINNING_CAT_WITH_SMILING_EYES

	



	GRINNING_FACE

	



	GRINNING_FACE_WITH_BIG_EYES

	



	GRINNING_FACE_WITH_SMILING_EYES

	



	GRINNING_FACE_WITH_SWEAT

	



	GRINNING_SQUINTING_FACE

	



	GROWING_HEART

	



	GUARD

	



	GUIDE_DOG

	



	GUITAR

	



	HAMBURGER

	



	HAMMER

	



	HAMMER_AND_PICK

	



	HAMMER_AND_WRENCH

	



	HAMSTER

	



	HANDBAG

	



	HANDSHAKE

	



	HAND_WITH_FINGERS_SPLAYED

	



	HATCHING_CHICK

	



	HEADPHONE

	



	HEADSTONE

	



	HEART_DECORATION

	



	HEART_EXCLAMATION

	



	HEART_SUIT

	



	HEART_WITH_ARROW

	



	HEART_WITH_RIBBON

	



	HEAR_NO_EVIL_MONKEY

	



	HEAVY_DOLLAR_SIGN

	



	HEDGEHOG

	



	HELICOPTER

	



	HERB

	



	HIBISCUS

	



	HIGH_HEELED_SHOE

	



	HIGH_SPEED_TRAIN

	



	HIGH_VOLTAGE

	



	HIKING_BOOT

	



	HINDU_TEMPLE

	



	HIPPOPOTAMUS

	



	HOLE

	



	HOLLOW_RED_CIRCLE

	



	HONEYBEE

	



	HONEY_POT

	



	HOOK

	



	HORIZONTAL_TRAFFIC_LIGHT

	



	HORSE

	



	HORSE_FACE

	



	HORSE_RACING

	



	HOSPITAL

	



	HOTEL

	



	HOT_BEVERAGE

	



	HOT_DOG

	



	HOT_FACE

	



	HOT_PEPPER

	



	HOT_SPRINGS

	



	HOURGLASS_DONE

	



	HOURGLASS_NOT_DONE

	



	HOUSE

	



	HOUSES

	



	HOUSE_WITH_GARDEN

	



	HUGGING_FACE

	



	HUNDRED_POINTS

	



	HUSHED_FACE

	



	HUT

	



	ICE

	



	ICE_CREAM

	



	ICE_HOCKEY

	



	ICE_SKATE

	



	ID_BUTTON

	



	INBOX_TRAY

	



	INCOMING_ENVELOPE

	



	INDEX_POINTING_UP

	



	INFINITY

	



	INFORMATION

	



	INPUT_LATIN_LETTERS

	



	INPUT_LATIN_LOWERCASE

	



	INPUT_LATIN_UPPERCASE

	



	INPUT_NUMBERS

	



	INPUT_SYMBOLS

	



	JACK_O_LANTERN

	



	JAPANESE_ACCEPTABLE_BUTTON

	



	JAPANESE_APPLICATION_BUTTON

	



	JAPANESE_BARGAIN_BUTTON

	



	JAPANESE_CASTLE

	



	JAPANESE_CONGRATULATIONS_BUTTON

	



	JAPANESE_DISCOUNT_BUTTON

	



	JAPANESE_DOLLS

	



	JAPANESE_FREE_OF_CHARGE_BUTTON

	



	JAPANESE_HERE_BUTTON

	



	JAPANESE_MONTHLY_AMOUNT_BUTTON

	



	JAPANESE_NOT_FREE_OF_CHARGE_BUTTON

	



	JAPANESE_NO_VACANCY_BUTTON

	



	JAPANESE_OPEN_FOR_BUSINESS_BUTTON

	



	JAPANESE_PASSING_GRADE_BUTTON

	



	JAPANESE_POST_OFFICE

	



	JAPANESE_PROHIBITED_BUTTON

	



	JAPANESE_RESERVED_BUTTON

	



	JAPANESE_SECRET_BUTTON

	



	JAPANESE_SERVICE_CHARGE_BUTTON

	



	JAPANESE_SYMBOL_FOR_BEGINNER

	



	JAPANESE_VACANCY_BUTTON

	



	JEANS

	



	JOKER

	



	JOYSTICK

	



	KAABA

	



	KANGAROO

	



	KEY

	



	KEYBOARD

	



	KICK_SCOOTER

	



	KIMONO

	



	KISS

	



	KISSING_CAT

	



	KISSING_FACE

	



	KISSING_FACE_WITH_CLOSED_EYES

	



	KISSING_FACE_WITH_SMILING_EYES

	



	KISS_MARK

	



	KITCHEN_KNIFE

	



	KITE

	



	KIWI_FRUIT

	



	KNOT

	



	KOALA

	



	LABEL

	



	LAB_COAT

	



	LACROSSE

	



	LADDER

	



	LADY_BEETLE

	



	LAPTOP

	



	LARGE_BLUE_DIAMOND

	



	LARGE_ORANGE_DIAMOND

	



	LAST_QUARTER_MOON

	



	LAST_QUARTER_MOON_FACE

	



	LAST_TRACK_BUTTON

	



	LATIN_CROSS

	



	LEAFY_GREEN

	



	LEAF_FLUTTERING_IN_WIND

	



	LEDGER

	



	LEFT_ARROW

	



	LEFT_ARROW_CURVING_RIGHT

	



	LEFT_FACING_FIST

	



	LEFT_LUGGAGE

	



	LEFT_RIGHT_ARROW

	



	LEFT_SPEECH_BUBBLE

	



	LEG

	



	LEMON

	



	LEO

	



	LEOPARD

	



	LEVEL_SLIDER

	



	LIBRA

	



	LIGHT_BULB

	



	LIGHT_RAIL

	



	LIGHT_SKIN_TONE

	



	LINK

	



	LINKED_PAPERCLIPS

	



	LION

	



	LIPSTICK

	



	LITTER_IN_BIN_SIGN

	



	LIZARD

	



	LLAMA

	



	LOBSTER

	



	LOCKED

	



	LOCKED_WITH_KEY

	



	LOCKED_WITH_PEN

	



	LOCOMOTIVE

	



	LOLLIPOP

	



	LONG_DRUM

	



	LOTION_BOTTLE

	



	LOUDLY_CRYING_FACE

	



	LOUDSPEAKER

	



	LOVE_HOTEL

	



	LOVE_LETTER

	



	LOVE_YOU_GESTURE

	



	LUGGAGE

	



	LUNGS

	



	LYING_FACE

	



	MAGE

	



	MAGIC_WAND

	



	MAGNET

	



	MAGNIFYING_GLASS_TILTED_LEFT

	



	MAGNIFYING_GLASS_TILTED_RIGHT

	



	MAHJONG_RED_DRAGON

	



	MALE_SIGN

	



	MAMMOTH

	



	MAN

	



	MANGO

	



	MANS_SHOE

	



	MANTELPIECE_CLOCK

	



	MANUAL_WHEELCHAIR

	



	MAN_BEARD

	



	MAN_DANCING

	



	MAPLE_LEAF

	



	MAP_OF_JAPAN

	



	MARTIAL_ARTS_UNIFORM

	



	MATE

	



	MEAT_ON_BONE

	



	MECHANICAL_ARM

	



	MECHANICAL_LEG

	



	MEDICAL_SYMBOL

	



	MEDIUM_DARK_SKIN_TONE

	



	MEDIUM_LIGHT_SKIN_TONE

	



	MEDIUM_SKIN_TONE

	



	MEGAPHONE

	



	MELON

	



	MEMO

	



	MENORAH

	



	MENS_ROOM

	



	MEN_HOLDING_HANDS

	



	MERPERSON

	



	METRO

	



	MICROBE

	



	MICROPHONE

	



	MICROSCOPE

	



	MIDDLE_FINGER

	



	MILITARY_HELMET

	



	MILITARY_MEDAL

	



	MILKY_WAY

	



	MINIBUS

	



	MINUS

	



	MIRROR

	



	MOAI

	



	MOBILE_PHONE

	



	MOBILE_PHONE_OFF

	



	MOBILE_PHONE_WITH_ARROW

	



	MONEY_BAG

	



	MONEY_MOUTH_FACE

	



	MONEY_WITH_WINGS

	



	MONKEY

	



	MONKEY_FACE

	



	MONORAIL

	



	MOON_CAKE

	



	MOON_VIEWING_CEREMONY

	



	MOSQUE

	



	MOSQUITO

	



	MOTORCYCLE

	



	MOTORIZED_WHEELCHAIR

	



	MOTORWAY

	



	MOTOR_BOAT

	



	MOTOR_SCOOTER

	



	MOUNTAIN

	



	MOUNTAIN_CABLEWAY

	



	MOUNTAIN_RAILWAY

	



	MOUNT_FUJI

	



	MOUSE

	



	MOUSE_FACE

	



	MOUSE_TRAP

	



	MOUTH

	



	MOVIE_CAMERA

	



	MRS_CLAUS

	



	MULTIPLY

	



	MUSHROOM

	



	MUSICAL_KEYBOARD

	



	MUSICAL_NOTE

	



	MUSICAL_NOTES

	



	MUSICAL_SCORE

	



	MUTED_SPEAKER

	



	NAIL_POLISH

	



	NAME_BADGE

	



	NATIONAL_PARK

	



	NAUSEATED_FACE

	



	NAZAR_AMULET

	



	NECKTIE

	



	NERD_FACE

	



	NESTING_DOLLS

	



	NEUTRAL_FACE

	



	NEWSPAPER

	



	NEW_BUTTON

	



	NEW_MOON

	



	NEW_MOON_FACE

	



	NEXT_TRACK_BUTTON

	



	NG_BUTTON

	



	NIGHT_WITH_STARS

	



	NINE_OCLOCK

	



	NINE_THIRTY

	



	NINJA

	



	NON_POTABLE_WATER

	



	NOSE

	



	NOTEBOOK

	



	NOTEBOOK_WITH_DECORATIVE_COVER

	



	NO_BICYCLES

	



	NO_ENTRY

	



	NO_LITTERING

	



	NO_MOBILE_PHONES

	



	NO_ONE_UNDER_EIGHTEEN

	



	NO_PEDESTRIANS

	



	NO_SMOKING

	



	NUT_AND_BOLT

	



	OCTOPUS

	



	ODEN

	



	OFFICE_BUILDING

	



	OGRE

	



	OIL_DRUM

	



	OK_BUTTON

	



	OK_HAND

	



	OLDER_PERSON

	



	OLD_KEY

	



	OLD_MAN

	



	OLD_WOMAN

	



	OLIVE

	



	OM

	



	ONCOMING_AUTOMOBILE

	



	ONCOMING_BUS

	



	ONCOMING_FIST

	



	ONCOMING_POLICE_CAR

	



	ONCOMING_TAXI

	



	ONE_OCLOCK

	



	ONE_PIECE_SWIMSUIT

	



	ONE_THIRTY

	



	ONION

	



	ON_ARROW

	



	OPEN_BOOK

	



	OPEN_FILE_FOLDER

	



	OPEN_HANDS

	



	OPEN_MAILBOX_WITH_LOWERED_FLAG

	



	OPEN_MAILBOX_WITH_RAISED_FLAG

	



	OPHIUCHUS

	



	OPTICAL_DISK

	



	ORANGE_BOOK

	



	ORANGE_CIRCLE

	



	ORANGE_HEART

	



	ORANGE_SQUARE

	



	ORANGUTAN

	



	ORTHODOX_CROSS

	



	OTTER

	



	OUTBOX_TRAY

	



	OWL

	



	OX

	



	OYSTER

	



	O_BUTTON_BLOOD_TYPE

	



	PACKAGE

	



	PAGER

	



	PAGE_FACING_UP

	



	PAGE_WITH_CURL

	



	PAINTBRUSH

	



	PALMS_UP_TOGETHER

	



	PALM_TREE

	



	PANCAKES

	



	PANDA

	



	PAPERCLIP

	



	PARACHUTE

	



	PARROT

	



	PARTYING_FACE

	



	PARTY_POPPER

	



	PART_ALTERNATION_MARK

	



	PASSENGER_SHIP

	



	PASSPORT_CONTROL

	



	PAUSE_BUTTON

	



	PAW_PRINTS

	



	PEACE_SYMBOL

	



	PEACH

	



	PEACOCK

	



	PEANUTS

	



	PEAR

	



	PEN

	



	PENCIL

	



	PENGUIN

	



	PENSIVE_FACE

	



	PEOPLE_HUGGING

	



	PEOPLE_WITH_BUNNY_EARS

	



	PEOPLE_WRESTLING

	



	PERFORMING_ARTS

	



	PERSEVERING_FACE

	



	PERSON

	



	PERSON_BIKING

	



	PERSON_BLOND_HAIR

	



	PERSON_BOUNCING_BALL

	



	PERSON_BOWING

	



	PERSON_CARTWHEELING

	



	PERSON_CLIMBING

	



	PERSON_FACEPALMING

	



	PERSON_FENCING

	



	PERSON_FROWNING

	



	PERSON_GESTURING_NO

	



	PERSON_GESTURING_OK

	



	PERSON_GETTING_HAIRCUT

	



	PERSON_GETTING_MASSAGE

	



	PERSON_GOLFING

	



	PERSON_IN_BED

	



	PERSON_IN_LOTUS_POSITION

	



	PERSON_IN_STEAMY_ROOM

	



	PERSON_IN_SUIT_LEVITATING

	



	PERSON_IN_TUXEDO

	



	PERSON_JUGGLING

	



	PERSON_KNEELING

	



	PERSON_LIFTING_WEIGHTS

	



	PERSON_MOUNTAIN_BIKING

	



	PERSON_PLAYING_HANDBALL

	



	PERSON_PLAYING_WATER_POLO

	



	PERSON_POUTING

	



	PERSON_RAISING_HAND

	



	PERSON_ROWING_BOAT

	



	PERSON_RUNNING

	



	PERSON_SHRUGGING

	



	PERSON_STANDING

	



	PERSON_SURFING

	



	PERSON_SWIMMING

	



	PERSON_TAKING_BATH

	



	PERSON_TIPPING_HAND

	



	PERSON_WALKING

	



	PERSON_WEARING_TURBAN

	



	PERSON_WITH_SKULLCAP

	



	PERSON_WITH_VEIL

	



	PETRI_DISH

	



	PICK

	



	PICKUP_TRUCK

	



	PIE

	



	PIG

	



	PIG_FACE

	



	PIG_NOSE

	



	PILE_OF_POO

	



	PILL

	



	PINCHED_FINGERS

	



	PINCHING_HAND

	



	PINEAPPLE

	



	PINE_DECORATION

	



	PING_PONG

	



	PISCES

	



	PISTOL

	



	PIZZA

	



	PIñATA

	



	PLACARD

	



	PLACE_OF_WORSHIP

	



	PLAY_BUTTON

	



	PLAY_OR_PAUSE_BUTTON

	



	PLEADING_FACE

	



	PLUNGER

	



	PLUS

	



	POLICE_CAR

	



	POLICE_CAR_LIGHT

	



	POLICE_OFFICER

	



	POODLE

	



	POPCORN

	



	POSTAL_HORN

	



	POSTBOX

	



	POST_OFFICE

	



	POTABLE_WATER

	



	POTATO

	



	POTTED_PLANT

	



	POT_OF_FOOD

	



	POULTRY_LEG

	



	POUND_BANKNOTE

	



	POUTING_CAT

	



	POUTING_FACE

	



	PRAYER_BEADS

	



	PREGNANT_WOMAN

	



	PRETZEL

	



	PRINCE

	



	PRINCESS

	



	PRINTER

	



	PROHIBITED

	



	PURPLE_CIRCLE

	



	PURPLE_HEART

	



	PURPLE_SQUARE

	



	PURSE

	



	PUSHPIN

	



	PUZZLE_PIECE

	



	P_BUTTON

	



	QUESTION_MARK

	



	RABBIT

	



	RABBIT_FACE

	



	RACCOON

	



	RACING_CAR

	



	RADIO

	



	RADIOACTIVE

	



	RADIO_BUTTON

	



	RAILWAY_CAR

	



	RAILWAY_TRACK

	



	RAINBOW

	



	RAISED_BACK_OF_HAND

	



	RAISED_FIST

	



	RAISED_HAND

	



	RAISING_HANDS

	



	RAM

	



	RAT

	



	RAZOR

	



	RECEIPT

	



	RECORD_BUTTON

	



	RECYCLING_SYMBOL

	



	RED_APPLE

	



	RED_CIRCLE

	



	RED_ENVELOPE

	



	RED_HAIR

	



	RED_HEART

	



	RED_PAPER_LANTERN

	



	RED_SQUARE

	



	RED_TRIANGLE_POINTED_DOWN

	



	RED_TRIANGLE_POINTED_UP

	



	REGISTERED

	



	RELIEVED_FACE

	



	REMINDER_RIBBON

	



	REPEAT_BUTTON

	



	REPEAT_SINGLE_BUTTON

	



	RESCUE_WORKERS_HELMET

	



	RESTROOM

	



	REVERSE_BUTTON

	



	REVOLVING_HEARTS

	



	RHINOCEROS

	



	RIBBON

	



	RICE_BALL

	



	RICE_CRACKER

	



	RIGHT_ANGER_BUBBLE

	



	RIGHT_ARROW

	



	RIGHT_ARROW_CURVING_DOWN

	



	RIGHT_ARROW_CURVING_LEFT

	



	RIGHT_ARROW_CURVING_UP

	



	RIGHT_FACING_FIST

	



	RING

	



	RINGED_PLANET

	



	ROASTED_SWEET_POTATO

	



	ROBOT

	



	ROCK

	



	ROCKET

	



	ROLLED_UP_NEWSPAPER

	



	ROLLER_COASTER

	



	ROLLER_SKATE

	



	ROLLING_ON_THE_FLOOR_LAUGHING

	



	ROLL_OF_PAPER

	



	ROOSTER

	



	ROSE

	



	ROSETTE

	



	ROUND_PUSHPIN

	



	RUGBY_FOOTBALL

	



	RUNNING_SHIRT

	



	RUNNING_SHOE

	



	SAD_BUT_RELIEVED_FACE

	



	SAFETY_PIN

	



	SAFETY_VEST

	



	SAGITTARIUS

	



	SAILBOAT

	



	SAKE

	



	SALT

	



	SANDWICH

	



	SANTA_CLAUS

	



	SARI

	



	SATELLITE

	



	SATELLITE_ANTENNA

	



	SAUROPOD

	



	SAXOPHONE

	



	SCARF

	



	SCHOOL

	



	SCISSORS

	



	SCORPIO

	



	SCORPION

	



	SCREWDRIVER

	



	SCROLL

	



	SEAL

	



	SEAT

	



	SECOND_PLACE_MEDAL

	



	SEEDLING

	



	SEE_NO_EVIL_MONKEY

	



	SELFIE

	



	SEVEN_OCLOCK

	



	SEVEN_THIRTY

	



	SEWING_NEEDLE

	



	SHALLOW_PAN_OF_FOOD

	



	SHAMROCK

	



	SHARK

	



	SHAVED_ICE

	



	SHEAF_OF_RICE

	



	SHIELD

	



	SHINTO_SHRINE

	



	SHIP

	



	SHOOTING_STAR

	



	SHOPPING_BAGS

	



	SHOPPING_CART

	



	SHORTCAKE

	



	SHORTS

	



	SHOWER

	



	SHRIMP

	



	SHUFFLE_TRACKS_BUTTON

	



	SHUSHING_FACE

	



	SIGN_OF_THE_HORNS

	



	SIX_OCLOCK

	



	SIX_THIRTY

	



	SKATEBOARD

	



	SKIER

	



	SKIS

	



	SKULL

	



	SKULL_AND_CROSSBONES

	



	SKUNK

	



	SLED

	



	SLEEPING_FACE

	



	SLEEPY_FACE

	



	SLIGHTLY_FROWNING_FACE

	



	SLIGHTLY_SMILING_FACE

	



	SLOTH

	



	SLOT_MACHINE

	



	SMALL_AIRPLANE

	



	SMALL_BLUE_DIAMOND

	



	SMALL_ORANGE_DIAMOND

	



	SMILING_CAT_WITH_HEART_EYES

	



	SMILING_FACE

	



	SMILING_FACE_WITH_HALO

	



	SMILING_FACE_WITH_HEARTS

	



	SMILING_FACE_WITH_HEART_EYES

	



	SMILING_FACE_WITH_HORNS

	



	SMILING_FACE_WITH_SMILING_EYES

	



	SMILING_FACE_WITH_SUNGLASSES

	



	SMILING_FACE_WITH_TEAR

	



	SMIRKING_FACE

	



	SNAIL

	



	SNAKE

	



	SNEEZING_FACE

	



	SNOWBOARDER

	



	SNOWFLAKE

	



	SNOWMAN

	



	SNOWMAN_WITHOUT_SNOW

	



	SNOW_CAPPED_MOUNTAIN

	



	SOAP

	



	SOCCER_BALL

	



	SOCKS

	



	SOFTBALL

	



	SOFT_ICE_CREAM

	



	SOON_ARROW

	



	SOS_BUTTON

	



	SPADE_SUIT

	



	SPAGHETTI

	



	SPARKLE

	



	SPARKLER

	



	SPARKLES

	



	SPARKLING_HEART

	



	SPEAKER_HIGH_VOLUME

	



	SPEAKER_LOW_VOLUME

	



	SPEAKER_MEDIUM_VOLUME

	



	SPEAKING_HEAD

	



	SPEAK_NO_EVIL_MONKEY

	



	SPEECH_BALLOON

	



	SPEEDBOAT

	



	SPIDER

	



	SPIDER_WEB

	



	SPIRAL_CALENDAR

	



	SPIRAL_NOTEPAD

	



	SPIRAL_SHELL

	



	SPONGE

	



	SPOON

	



	SPORTS_MEDAL

	



	SPORT_UTILITY_VEHICLE

	



	SPOUTING_WHALE

	



	SQUID

	



	SQUINTING_FACE_WITH_TONGUE

	



	STADIUM

	



	STAR

	



	STAR_AND_CRESCENT

	



	STAR_OF_DAVID

	



	STAR_STRUCK

	



	STATION

	



	STATUE_OF_LIBERTY

	



	STEAMING_BOWL

	



	STETHOSCOPE

	



	STOPWATCH

	



	STOP_BUTTON

	



	STOP_SIGN

	



	STRAIGHT_RULER

	



	STRAWBERRY

	



	STUDIO_MICROPHONE

	



	STUFFED_FLATBREAD

	



	SUN

	



	SUNFLOWER

	



	SUNGLASSES

	



	SUNRISE

	



	SUNRISE_OVER_MOUNTAINS

	



	SUNSET

	



	SUN_BEHIND_CLOUD

	



	SUN_BEHIND_LARGE_CLOUD

	



	SUN_BEHIND_RAIN_CLOUD

	



	SUN_BEHIND_SMALL_CLOUD

	



	SUN_WITH_FACE

	



	SUPERHERO

	



	SUPERVILLAIN

	



	SUSHI

	



	SUSPENSION_RAILWAY

	



	SWAN

	



	SWEAT_DROPLETS

	



	SYNAGOGUE

	



	SYRINGE

	



	TACO

	



	TAKEOUT_BOX

	



	TAMALE

	



	TANABATA_TREE

	



	TANGERINE

	



	TAURUS

	



	TAXI

	



	TEACUP_WITHOUT_HANDLE

	



	TEAPOT

	



	TEAR_OFF_CALENDAR

	



	TEDDY_BEAR

	



	TELEPHONE

	



	TELEPHONE_RECEIVER

	



	TELESCOPE

	



	TELEVISION

	



	TENNIS

	



	TENT

	



	TEN_OCLOCK

	



	TEN_THIRTY

	



	TEST_TUBE

	



	THERMOMETER

	



	THINKING_FACE

	



	THIRD_PLACE_MEDAL

	



	THONG_SANDAL

	



	THOUGHT_BALLOON

	



	THREAD

	



	THREE_OCLOCK

	



	THREE_THIRTY

	



	THUMBS_DOWN

	



	THUMBS_UP

	



	TICKET

	



	TIGER

	



	TIGER_FACE

	



	TIMER_CLOCK

	



	TIRED_FACE

	



	TOILET

	



	TOKYO_TOWER

	



	TOMATO

	



	TONGUE

	



	TOOLBOX

	



	TOOTH

	



	TOOTHBRUSH

	



	TOP_ARROW

	



	TOP_HAT

	



	TORNADO

	



	TRACKBALL

	



	TRACTOR

	



	TRADE_MARK

	



	TRAIN

	



	TRAM

	



	TRAM_CAR

	



	TRANSGENDER_SYMBOL

	



	TRIANGULAR_FLAG

	



	TRIANGULAR_RULER

	



	TRIDENT_EMBLEM

	



	TROLLEYBUS

	



	TROPHY

	



	TROPICAL_DRINK

	



	TROPICAL_FISH

	



	TRUMPET

	



	TULIP

	



	TUMBLER_GLASS

	



	TURKEY

	



	TURTLE

	



	TWELVE_OCLOCK

	



	TWELVE_THIRTY

	



	TWO_HEARTS

	



	TWO_HUMP_CAMEL

	



	TWO_OCLOCK

	



	TWO_THIRTY

	



	T_REX

	



	T_SHIRT

	



	UMBRELLA

	



	UMBRELLA_ON_GROUND

	



	UMBRELLA_WITH_RAIN_DROPS

	



	UNAMUSED_FACE

	



	UNICORN

	



	UNLOCKED

	



	UPSIDE_DOWN_FACE

	



	UPWARDS_BUTTON

	



	UP_ARROW

	



	UP_BUTTON

	



	UP_DOWN_ARROW

	



	UP_LEFT_ARROW

	



	UP_RIGHT_ARROW

	



	VAMPIRE

	



	VERTICAL_TRAFFIC_LIGHT

	



	VIBRATION_MODE

	



	VICTORY_HAND

	



	VIDEOCASSETTE

	



	VIDEO_CAMERA

	



	VIDEO_GAME

	



	VIOLIN

	



	VIRGO

	



	VOLCANO

	



	VOLLEYBALL

	



	VS_BUTTON

	



	VULCAN_SALUTE

	



	WAFFLE

	



	WANING_CRESCENT_MOON

	



	WANING_GIBBOUS_MOON

	



	WARNING

	



	WASTEBASKET

	



	WATCH

	



	WATERMELON

	



	WATER_BUFFALO

	



	WATER_CLOSET

	



	WATER_WAVE

	



	WAVING_HAND

	



	WAVY_DASH

	



	WAXING_CRESCENT_MOON

	



	WAXING_GIBBOUS_MOON

	



	WEARY_CAT

	



	WEARY_FACE

	



	WEDDING

	



	WHALE

	



	WHEELCHAIR_SYMBOL

	



	WHEEL_OF_DHARMA

	



	WHITE_CANE

	



	WHITE_CIRCLE

	



	WHITE_EXCLAMATION_MARK

	



	WHITE_FLAG

	



	WHITE_FLOWER

	



	WHITE_HAIR

	



	WHITE_HEART

	



	WHITE_LARGE_SQUARE

	



	WHITE_MEDIUM_SMALL_SQUARE

	



	WHITE_MEDIUM_SQUARE

	



	WHITE_QUESTION_MARK

	



	WHITE_SMALL_SQUARE

	



	WHITE_SQUARE_BUTTON

	



	WILTED_FLOWER

	



	WINDOW

	



	WIND_CHIME

	



	WIND_FACE

	



	WINE_GLASS

	



	WINKING_FACE

	



	WINKING_FACE_WITH_TONGUE

	



	WOLF

	



	WOMAN

	



	WOMANS_BOOT

	



	WOMANS_CLOTHES

	



	WOMANS_HAT

	



	WOMANS_SANDAL

	



	WOMAN_AND_MAN_HOLDING_HANDS

	



	WOMAN_DANCING

	



	WOMAN_WITH_HEADSCARF

	



	WOMENS_ROOM

	



	WOMEN_HOLDING_HANDS

	



	WOOD

	



	WOOZY_FACE

	



	WORLD_MAP

	



	WORM

	



	WORRIED_FACE

	



	WRAPPED_GIFT

	



	WRENCH

	



	WRITING_HAND

	



	YARN

	



	YAWNING_FACE

	



	YELLOW_CIRCLE

	



	YELLOW_HEART

	



	YELLOW_SQUARE

	



	YEN_BANKNOTE

	



	YIN_YANG

	



	YO_YO

	



	ZANY_FACE

	



	ZEBRA

	



	ZIPPER_MOUTH_FACE

	



	ZOMBIE

	



	ZZZ

	







	
ABACUS = '🧮'

	




	
AB_BUTTON_BLOOD_TYPE = '🆎'

	




	
ACCORDION = '🪗'

	




	
ADHESIVE_BANDAGE = '🩹'

	




	
ADMISSION_TICKETS = '🎟'

	




	
AERIAL_TRAMWAY = '🚡'

	




	
AIRPLANE = '✈'

	




	
AIRPLANE_ARRIVAL = '🛬'

	




	
AIRPLANE_DEPARTURE = '🛫'

	




	
ALARM_CLOCK = '⏰'

	




	
ALEMBIC = '⚗'

	




	
ALIEN = '👽'

	




	
ALIEN_MONSTER = '👾'

	




	
AMBULANCE = '🚑'

	




	
AMERICAN_FOOTBALL = '🏈'

	




	
AMPHORA = '🏺'

	




	
ANATOMICAL_HEART = '🫀'

	




	
ANCHOR = '⚓'

	




	
ANGER_SYMBOL = '💢'

	




	
ANGRY_FACE = '😠'

	




	
ANGRY_FACE_WITH_HORNS = '👿'

	




	
ANGUISHED_FACE = '😧'

	




	
ANT = '🐜'

	




	
ANTENNA_BARS = '📶'

	




	
ANXIOUS_FACE_WITH_SWEAT = '😰'

	




	
AQUARIUS = '♒'

	




	
ARIES = '♈'

	




	
ARTICULATED_LORRY = '🚛'

	




	
ARTIST_PALETTE = '🎨'

	




	
ASTONISHED_FACE = '😲'

	




	
ATM_SIGN = '🏧'

	




	
ATOM_SYMBOL = '⚛'

	




	
AUTOMOBILE = '🚗'

	




	
AUTO_RICKSHAW = '🛺'

	




	
AVOCADO = '🥑'

	




	
AXE = '🪓'

	




	
A_BUTTON_BLOOD_TYPE = '🅰'

	




	
BABY = '👶'

	




	
BABY_ANGEL = '👼'

	




	
BABY_BOTTLE = '🍼'

	




	
BABY_CHICK = '🐤'

	




	
BABY_SYMBOL = '🚼'

	




	
BACKHAND_INDEX_POINTING_DOWN = '👇'

	




	
BACKHAND_INDEX_POINTING_LEFT = '👈'

	




	
BACKHAND_INDEX_POINTING_RIGHT = '👉'

	




	
BACKHAND_INDEX_POINTING_UP = '👆'

	




	
BACKPACK = '🎒'

	




	
BACK_ARROW = '🔙'

	




	
BACON = '🥓'

	




	
BADGER = '🦡'

	




	
BADMINTON = '🏸'

	




	
BAGEL = '🥯'

	




	
BAGGAGE_CLAIM = '🛄'

	




	
BAGUETTE_BREAD = '🥖'

	




	
BALANCE_SCALE = '⚖'

	




	
BALD = '🦲'

	




	
BALL = '🎱'

	




	
BALLET_SHOES = '🩰'

	




	
BALLOON = '🎈'

	




	
BALLOT_BOX_WITH_BALLOT = '🗳'

	




	
BANANA = '🍌'

	




	
BANJO = '🪕'

	




	
BANK = '🏦'

	




	
BARBER_POLE = '💈'

	




	
BAR_CHART = '📊'

	




	
BASEBALL = '⚾'

	




	
BASKET = '🧺'

	




	
BASKETBALL = '🏀'

	




	
BAT = '🦇'

	




	
BATHTUB = '🛁'

	




	
BATTERY = '🔋'

	




	
BEACH_WITH_UMBRELLA = '🏖'

	




	
BEAMING_FACE_WITH_SMILING_EYES = '😁'

	




	
BEAR = '🐻'

	




	
BEATING_HEART = '💓'

	




	
BEAVER = '🦫'

	




	
BED = '🛏'

	




	
BEER_MUG = '🍺'

	




	
BEETLE = '🪲'

	




	
BELL = '🔔'

	




	
BELLHOP_BELL = '🛎'

	




	
BELL_PEPPER = '🫑'

	




	
BELL_WITH_SLASH = '🔕'

	




	
BENTO_BOX = '🍱'

	




	
BEVERAGE_BOX = '🧃'

	




	
BICYCLE = '🚲'

	




	
BIKINI = '👙'

	




	
BILLED_CAP = '🧢'

	




	
BIOHAZARD = '☣'

	




	
BIRD = '🐦'

	




	
BIRTHDAY_CAKE = '🎂'

	




	
BISON = '🦬'

	




	
BLACK_CIRCLE = '⚫'

	




	
BLACK_FLAG = '🏴'

	




	
BLACK_HEART = '🖤'

	




	
BLACK_LARGE_SQUARE = '⬛'

	




	
BLACK_MEDIUM_SMALL_SQUARE = '◾'

	




	
BLACK_MEDIUM_SQUARE = '◼'

	




	
BLACK_NIB = '✒'

	




	
BLACK_SMALL_SQUARE = '▪'

	




	
BLACK_SQUARE_BUTTON = '🔲'

	




	
BLOSSOM = '🌼'

	




	
BLOWFISH = '🐡'

	




	
BLUEBERRIES = '🫐'

	




	
BLUE_BOOK = '📘'

	




	
BLUE_CIRCLE = '🔵'

	




	
BLUE_HEART = '💙'

	




	
BLUE_SQUARE = '🟦'

	




	
BOAR = '🐗'

	




	
BOMB = '💣'

	




	
BONE = '🦴'

	




	
BOOKMARK = '🔖'

	




	
BOOKMARK_TABS = '📑'

	




	
BOOKS = '📚'

	




	
BOOMERANG = '🪃'

	




	
BOTTLE_WITH_POPPING_CORK = '🍾'

	




	
BOUQUET = '💐'

	




	
BOWLING = '🎳'

	




	
BOWL_WITH_SPOON = '🥣'

	




	
BOW_AND_ARROW = '🏹'

	




	
BOXING_GLOVE = '🥊'

	




	
BOY = '👦'

	




	
BRAIN = '🧠'

	




	
BREAD = '🍞'

	




	
BREAST_FEEDING = '🤱'

	




	
BRICK = '🧱'

	




	
BRIDGE_AT_NIGHT = '🌉'

	




	
BRIEFCASE = '💼'

	




	
BRIEFS = '🩲'

	




	
BRIGHT_BUTTON = '🔆'

	




	
BROCCOLI = '🥦'

	




	
BROKEN_HEART = '💔'

	




	
BROOM = '🧹'

	




	
BROWN_CIRCLE = '🟤'

	




	
BROWN_HEART = '🤎'

	




	
BROWN_SQUARE = '🟫'

	




	
BUBBLE_TEA = '🧋'

	




	
BUCKET = '🪣'

	




	
BUG = '🐛'

	




	
BUILDING_CONSTRUCTION = '🏗'

	




	
BULLET_TRAIN = '🚅'

	




	
BURRITO = '🌯'

	




	
BUS = '🚌'

	




	
BUSTS_IN_SILHOUETTE = '👥'

	




	
BUST_IN_SILHOUETTE = '👤'

	




	
BUS_STOP = '🚏'

	




	
BUTTER = '🧈'

	




	
BUTTERFLY = '🦋'

	




	
B_BUTTON_BLOOD_TYPE = '🅱'

	




	
CACTUS = '🌵'

	




	
CALENDAR = '📅'

	




	
CALL_ME_HAND = '🤙'

	




	
CAMEL = '🐪'

	




	
CAMERA = '📷'

	




	
CAMERA_WITH_FLASH = '📸'

	




	
CAMPING = '🏕'

	




	
CANCER = '♋'

	




	
CANDLE = '🕯'

	




	
CANDY = '🍬'

	




	
CANNED_FOOD = '🥫'

	




	
CANOE = '🛶'

	




	
CAPRICORN = '♑'

	




	
CARD_FILE_BOX = '🗃'

	




	
CARD_INDEX = '📇'

	




	
CARD_INDEX_DIVIDERS = '🗂'

	




	
CAROUSEL_HORSE = '🎠'

	




	
CARPENTRY_SAW = '🪚'

	




	
CARP_STREAMER = '🎏'

	




	
CARROT = '🥕'

	




	
CASTLE = '🏰'

	




	
CAT = '🐈'

	




	
CAT_FACE = '🐱'

	




	
CAT_WITH_TEARS_OF_JOY = '😹'

	




	
CAT_WITH_WRY_SMILE = '😼'

	




	
CHAINS = '⛓'

	




	
CHAIR = '🪑'

	




	
CHART_DECREASING = '📉'

	




	
CHART_INCREASING = '📈'

	




	
CHART_INCREASING_WITH_YEN = '💹'

	




	
CHECK_BOX_WITH_CHECK = '☑'

	




	
CHECK_MARK = '✔'

	




	
CHECK_MARK_BUTTON = '✅'

	




	
CHEESE_WEDGE = '🧀'

	




	
CHEQUERED_FLAG = '🏁'

	




	
CHERRIES = '🍒'

	




	
CHERRY_BLOSSOM = '🌸'

	




	
CHESS_PAWN = '♟'

	




	
CHESTNUT = '🌰'

	




	
CHICKEN = '🐔'

	




	
CHILD = '🧒'

	




	
CHILDREN_CROSSING = '🚸'

	




	
CHIPMUNK = '🐿'

	




	
CHOCOLATE_BAR = '🍫'

	




	
CHOPSTICKS = '🥢'

	




	
CHRISTMAS_TREE = '🎄'

	




	
CHURCH = '⛪'

	




	
CIGARETTE = '🚬'

	




	
CINEMA = '🎦'

	




	
CIRCLED_M = 'Ⓜ'

	




	
CIRCUS_TENT = '🎪'

	




	
CITYSCAPE = '🏙'

	




	
CITYSCAPE_AT_DUSK = '🌆'

	




	
CLAMP = '🗜'

	




	
CLAPPER_BOARD = '🎬'

	




	
CLAPPING_HANDS = '👏'

	




	
CLASSICAL_BUILDING = '🏛'

	




	
CLINKING_BEER_MUGS = '🍻'

	




	
CLINKING_GLASSES = '🥂'

	




	
CLIPBOARD = '📋'

	




	
CLOCKWISE_VERTICAL_ARROWS = '🔃'

	




	
CLOSED_BOOK = '📕'

	




	
CLOSED_MAILBOX_WITH_LOWERED_FLAG = '📪'

	




	
CLOSED_MAILBOX_WITH_RAISED_FLAG = '📫'

	




	
CLOSED_UMBRELLA = '🌂'

	




	
CLOUD = '☁'

	




	
CLOUD_WITH_LIGHTNING = '🌩'

	




	
CLOUD_WITH_LIGHTNING_AND_RAIN = '⛈'

	




	
CLOUD_WITH_RAIN = '🌧'

	




	
CLOUD_WITH_SNOW = '🌨'

	




	
CLOWN_FACE = '🤡'

	




	
CLUB_SUIT = '♣'

	




	
CLUTCH_BAG = '👝'

	




	
CL_BUTTON = '🆑'

	




	
COAT = '🧥'

	




	
COCKROACH = '🪳'

	




	
COCKTAIL_GLASS = '🍸'

	




	
COCONUT = '🥥'

	




	
COFFIN = '⚰'

	




	
COIN = '🪙'

	




	
COLD_FACE = '🥶'

	




	
COLLISION = '💥'

	




	
COMET = '☄'

	




	
COMPASS = '🧭'

	




	
COMPUTER_DISK = '💽'

	




	
COMPUTER_MOUSE = '🖱'

	




	
CONFETTI_BALL = '🎊'

	




	
CONFOUNDED_FACE = '😖'

	




	
CONFUSED_FACE = '😕'

	




	
CONSTRUCTION = '🚧'

	




	
CONSTRUCTION_WORKER = '👷'

	




	
CONTROL_KNOBS = '🎛'

	




	
CONVENIENCE_STORE = '🏪'

	




	
COOKED_RICE = '🍚'

	




	
COOKIE = '🍪'

	




	
COOKING = '🍳'

	




	
COOL_BUTTON = '🆒'

	




	
COPYRIGHT = '©'

	




	
COUCH_AND_LAMP = '🛋'

	




	
COUNTERCLOCKWISE_ARROWS_BUTTON = '🔄'

	




	
COUPLE_WITH_HEART = '💑'

	




	
COW = '🐄'

	




	
COWBOY_HAT_FACE = '🤠'

	




	
COW_FACE = '🐮'

	




	
CRAB = '🦀'

	




	
CRAYON = '🖍'

	




	
CREDIT_CARD = '💳'

	




	
CRESCENT_MOON = '🌙'

	




	
CRICKET = '🦗'

	




	
CRICKET_GAME = '🏏'

	




	
CROCODILE = '🐊'

	




	
CROISSANT = '🥐'

	




	
CROSSED_FINGERS = '🤞'

	




	
CROSSED_FLAGS = '🎌'

	




	
CROSSED_SWORDS = '⚔'

	




	
CROSS_MARK = '❌'

	




	
CROSS_MARK_BUTTON = '❎'

	




	
CROWN = '👑'

	




	
CRYING_CAT = '😿'

	




	
CRYING_FACE = '😢'

	




	
CRYSTAL_BALL = '🔮'

	




	
CUCUMBER = '🥒'

	




	
CUPCAKE = '🧁'

	




	
CUP_WITH_STRAW = '🥤'

	




	
CURLING_STONE = '🥌'

	




	
CURLY_HAIR = '🦱'

	




	
CURLY_LOOP = '➰'

	




	
CURRENCY_EXCHANGE = '💱'

	




	
CURRY_RICE = '🍛'

	




	
CUSTARD = '🍮'

	




	
CUSTOMS = '🛃'

	




	
CUT_OF_MEAT = '🥩'

	




	
CYCLONE = '🌀'

	




	
DAGGER = '🗡'

	




	
DANGO = '🍡'

	




	
DARK_SKIN_TONE = '🏿'

	




	
DASHING_AWAY = '💨'

	




	
DEAF_PERSON = '🧏'

	




	
DECIDUOUS_TREE = '🌳'

	




	
DEER = '🦌'

	




	
DELIVERY_TRUCK = '🚚'

	




	
DEPARTMENT_STORE = '🏬'

	




	
DERELICT_HOUSE = '🏚'

	




	
DESERT = '🏜'

	




	
DESERT_ISLAND = '🏝'

	




	
DESKTOP_COMPUTER = '🖥'

	




	
DETECTIVE = '🕵'

	




	
DIAMOND_SUIT = '♦'

	




	
DIAMOND_WITH_A_DOT = '💠'

	




	
DIM_BUTTON = '🔅'

	




	
DIRECT_HIT = '🎯'

	




	
DISAPPOINTED_FACE = '😞'

	




	
DISGUISED_FACE = '🥸'

	




	
DIVIDE = '➗'

	




	
DIVING_MASK = '🤿'

	




	
DIYA_LAMP = '🪔'

	




	
DIZZY = '💫'

	




	
DIZZY_FACE = '😵'

	




	
DNA = '🧬'

	




	
DODO = '🦤'

	




	
DOG = '🐕'

	




	
DOG_FACE = '🐶'

	




	
DOLLAR_BANKNOTE = '💵'

	




	
DOLPHIN = '🐬'

	




	
DOOR = '🚪'

	




	
DOTTED_SIX_POINTED_STAR = '🔯'

	




	
DOUBLE_CURLY_LOOP = '➿'

	




	
DOUBLE_EXCLAMATION_MARK = '‼'

	




	
DOUGHNUT = '🍩'

	




	
DOVE = '🕊'

	




	
DOWNCAST_FACE_WITH_SWEAT = '😓'

	




	
DOWNWARDS_BUTTON = '🔽'

	




	
DOWN_ARROW = '⬇'

	




	
DOWN_LEFT_ARROW = '↙'

	




	
DOWN_RIGHT_ARROW = '↘'

	




	
DRAGON = '🐉'

	




	
DRAGON_FACE = '🐲'

	




	
DRESS = '👗'

	




	
DROOLING_FACE = '🤤'

	




	
DROPLET = '💧'

	




	
DROP_OF_BLOOD = '🩸'

	




	
DRUM = '🥁'

	




	
DUCK = '🦆'

	




	
DUMPLING = '🥟'

	




	
DVD = '📀'

	




	
EAGLE = '🦅'

	




	
EAR = '👂'

	




	
EAR_OF_CORN = '🌽'

	




	
EAR_WITH_HEARING_AID = '🦻'

	




	
EGG = '🥚'

	




	
EGGPLANT = '🍆'

	




	
EIGHT_OCLOCK = '🕗'

	




	
EIGHT_POINTED_STAR = '✴'

	




	
EIGHT_SPOKED_ASTERISK = '✳'

	




	
EIGHT_THIRTY = '🕣'

	




	
EJECT_BUTTON = '⏏'

	




	
ELECTRIC_PLUG = '🔌'

	




	
ELEPHANT = '🐘'

	




	
ELEVATOR = '🛗'

	




	
ELEVEN_OCLOCK = '🕚'

	




	
ELEVEN_THIRTY = '🕦'

	




	
ELF = '🧝'

	




	
END_ARROW = '🔚'

	




	
ENVELOPE = '✉'

	




	
ENVELOPE_WITH_ARROW = '📩'

	




	
EURO_BANKNOTE = '💶'

	




	
EVERGREEN_TREE = '🌲'

	




	
EWE = '🐑'

	




	
EXCLAMATION_MARK = '❗'

	




	
EXCLAMATION_QUESTION_MARK = '⁉'

	




	
EXPLODING_HEAD = '🤯'

	




	
EXPRESSIONLESS_FACE = '😑'

	




	
EYE = '👁'

	




	
EYES = '👀'

	




	
E_MAIL = '📧'

	




	
FACE_BLOWING_A_KISS = '😘'

	




	
FACE_SAVORING_FOOD = '😋'

	




	
FACE_SCREAMING_IN_FEAR = '😱'

	




	
FACE_VOMITING = '🤮'

	




	
FACE_WITHOUT_MOUTH = '😶'

	




	
FACE_WITH_HAND_OVER_MOUTH = '🤭'

	




	
FACE_WITH_HEAD_BANDAGE = '🤕'

	




	
FACE_WITH_MEDICAL_MASK = '😷'

	




	
FACE_WITH_MONOCLE = '🧐'

	




	
FACE_WITH_OPEN_MOUTH = '😮'

	




	
FACE_WITH_RAISED_EYEBROW = '🤨'

	




	
FACE_WITH_ROLLING_EYES = '🙄'

	




	
FACE_WITH_STEAM_FROM_NOSE = '😤'

	




	
FACE_WITH_SYMBOLS_ON_MOUTH = '🤬'

	




	
FACE_WITH_TEARS_OF_JOY = '😂'

	




	
FACE_WITH_THERMOMETER = '🤒'

	




	
FACE_WITH_TONGUE = '😛'

	




	
FACTORY = '🏭'

	




	
FAIRY = '🧚'

	




	
FALAFEL = '🧆'

	




	
FALLEN_LEAF = '🍂'

	




	
FAMILY = '👪'

	




	
FAST_DOWN_BUTTON = '⏬'

	




	
FAST_FORWARD_BUTTON = '⏩'

	




	
FAST_REVERSE_BUTTON = '⏪'

	




	
FAST_UP_BUTTON = '⏫'

	




	
FAX_MACHINE = '📠'

	




	
FEARFUL_FACE = '😨'

	




	
FEATHER = '🪶'

	




	
FEMALE_SIGN = '♀'

	




	
FERRIS_WHEEL = '🎡'

	




	
FERRY = '⛴'

	




	
FIELD_HOCKEY = '🏑'

	




	
FILE_CABINET = '🗄'

	




	
FILE_FOLDER = '📁'

	




	
FILM_FRAMES = '🎞'

	




	
FILM_PROJECTOR = '📽'

	




	
FIRE = '🔥'

	




	
FIRECRACKER = '🧨'

	




	
FIREWORKS = '🎆'

	




	
FIRE_ENGINE = '🚒'

	




	
FIRE_EXTINGUISHER = '🧯'

	




	
FIRST_PLACE_MEDAL = '🥇'

	




	
FIRST_QUARTER_MOON = '🌓'

	




	
FIRST_QUARTER_MOON_FACE = '🌛'

	




	
FISH = '🐟'

	




	
FISHING_POLE = '🎣'

	




	
FISH_CAKE_WITH_SWIRL = '🍥'

	




	
FIVE_OCLOCK = '🕔'

	




	
FIVE_THIRTY = '🕠'

	




	
FLAG_IN_HOLE = '⛳'

	




	
FLAMINGO = '🦩'

	




	
FLASHLIGHT = '🔦'

	




	
FLATBREAD = '🫓'

	




	
FLAT_SHOE = '🥿'

	




	
FLEUR_DE_LIS = '⚜'

	




	
FLEXED_BICEPS = '💪'

	




	
FLOPPY_DISK = '💾'

	




	
FLOWER_PLAYING_CARDS = '🎴'

	




	
FLUSHED_FACE = '😳'

	




	
FLY = '🪰'

	




	
FLYING_DISC = '🥏'

	




	
FLYING_SAUCER = '🛸'

	




	
FOG = '🌫'

	




	
FOGGY = '🌁'

	




	
FOLDED_HANDS = '🙏'

	




	
FONDUE = '🫕'

	




	
FOOT = '🦶'

	




	
FOOTPRINTS = '👣'

	




	
FORK_AND_KNIFE = '🍴'

	




	
FORK_AND_KNIFE_WITH_PLATE = '🍽'

	




	
FORTUNE_COOKIE = '🥠'

	




	
FOUNTAIN = '⛲'

	




	
FOUNTAIN_PEN = '🖋'

	




	
FOUR_LEAF_CLOVER = '🍀'

	




	
FOUR_OCLOCK = '🕓'

	




	
FOUR_THIRTY = '🕟'

	




	
FOX = '🦊'

	




	
FRAMED_PICTURE = '🖼'

	




	
FREE_BUTTON = '🆓'

	




	
FRENCH_FRIES = '🍟'

	




	
FRIED_SHRIMP = '🍤'

	




	
FROG = '🐸'

	




	
FRONT_FACING_BABY_CHICK = '🐥'

	




	
FROWNING_FACE = '☹'

	




	
FROWNING_FACE_WITH_OPEN_MOUTH = '😦'

	




	
FUEL_PUMP = '⛽'

	




	
FULL_MOON = '🌕'

	




	
FULL_MOON_FACE = '🌝'

	




	
FUNERAL_URN = '⚱'

	




	
GAME_DIE = '🎲'

	




	
GARLIC = '🧄'

	




	
GEAR = '⚙'

	




	
GEMINI = '♊'

	




	
GEM_STONE = '💎'

	




	
GENIE = '🧞'

	




	
GHOST = '👻'

	




	
GIRAFFE = '🦒'

	




	
GIRL = '👧'

	




	
GLASSES = '👓'

	




	
GLASS_OF_MILK = '🥛'

	




	
GLOBE_SHOWING_AMERICAS = '🌎'

	




	
GLOBE_SHOWING_ASIA_AUSTRALIA = '🌏'

	




	
GLOBE_SHOWING_EUROPE_AFRICA = '🌍'

	




	
GLOBE_WITH_MERIDIANS = '🌐'

	




	
GLOVES = '🧤'

	




	
GLOWING_STAR = '🌟'

	




	
GOAL_NET = '🥅'

	




	
GOAT = '🐐'

	




	
GOBLIN = '👺'

	




	
GOGGLES = '🥽'

	




	
GORILLA = '🦍'

	




	
GRADUATION_CAP = '🎓'

	




	
GRAPES = '🍇'

	




	
GREEN_APPLE = '🍏'

	




	
GREEN_BOOK = '📗'

	




	
GREEN_CIRCLE = '🟢'

	




	
GREEN_HEART = '💚'

	




	
GREEN_SALAD = '🥗'

	




	
GREEN_SQUARE = '🟩'

	




	
GRIMACING_FACE = '😬'

	




	
GRINNING_CAT = '😺'

	




	
GRINNING_CAT_WITH_SMILING_EYES = '😸'

	




	
GRINNING_FACE = '😀'

	




	
GRINNING_FACE_WITH_BIG_EYES = '😃'

	




	
GRINNING_FACE_WITH_SMILING_EYES = '😄'

	




	
GRINNING_FACE_WITH_SWEAT = '😅'

	




	
GRINNING_SQUINTING_FACE = '😆'

	




	
GROWING_HEART = '💗'

	




	
GUARD = '💂'

	




	
GUIDE_DOG = '🦮'

	




	
GUITAR = '🎸'

	




	
HAMBURGER = '🍔'

	




	
HAMMER = '🔨'

	




	
HAMMER_AND_PICK = '⚒'

	




	
HAMMER_AND_WRENCH = '🛠'

	




	
HAMSTER = '🐹'

	




	
HANDBAG = '👜'

	




	
HANDSHAKE = '🤝'

	




	
HAND_WITH_FINGERS_SPLAYED = '🖐'

	




	
HATCHING_CHICK = '🐣'

	




	
HEADPHONE = '🎧'

	




	
HEADSTONE = '🪦'

	




	
HEART_DECORATION = '💟'

	




	
HEART_EXCLAMATION = '❣'

	




	
HEART_SUIT = '♥'

	




	
HEART_WITH_ARROW = '💘'

	




	
HEART_WITH_RIBBON = '💝'

	




	
HEAR_NO_EVIL_MONKEY = '🙉'

	




	
HEAVY_DOLLAR_SIGN = '💲'

	




	
HEDGEHOG = '🦔'

	




	
HELICOPTER = '🚁'

	




	
HERB = '🌿'

	




	
HIBISCUS = '🌺'

	




	
HIGH_HEELED_SHOE = '👠'

	




	
HIGH_SPEED_TRAIN = '🚄'

	




	
HIGH_VOLTAGE = '⚡'

	




	
HIKING_BOOT = '🥾'

	




	
HINDU_TEMPLE = '🛕'

	




	
HIPPOPOTAMUS = '🦛'

	




	
HOLE = '🕳'

	




	
HOLLOW_RED_CIRCLE = '⭕'

	




	
HONEYBEE = '🐝'

	




	
HONEY_POT = '🍯'

	




	
HOOK = '🪝'

	




	
HORIZONTAL_TRAFFIC_LIGHT = '🚥'

	




	
HORSE = '🐎'

	




	
HORSE_FACE = '🐴'

	




	
HORSE_RACING = '🏇'

	




	
HOSPITAL = '🏥'

	




	
HOTEL = '🏨'

	




	
HOT_BEVERAGE = '☕'

	




	
HOT_DOG = '🌭'

	




	
HOT_FACE = '🥵'

	




	
HOT_PEPPER = '🌶'

	




	
HOT_SPRINGS = '♨'

	




	
HOURGLASS_DONE = '⌛'

	




	
HOURGLASS_NOT_DONE = '⏳'

	




	
HOUSE = '🏠'

	




	
HOUSES = '🏘'

	




	
HOUSE_WITH_GARDEN = '🏡'

	




	
HUGGING_FACE = '🤗'

	




	
HUNDRED_POINTS = '💯'

	




	
HUSHED_FACE = '😯'

	




	
HUT = '🛖'

	




	
ICE = '🧊'

	




	
ICE_CREAM = '🍨'

	




	
ICE_HOCKEY = '🏒'

	




	
ICE_SKATE = '⛸'

	




	
ID_BUTTON = '🆔'

	




	
INBOX_TRAY = '📥'

	




	
INCOMING_ENVELOPE = '📨'

	




	
INDEX_POINTING_UP = '☝'

	




	
INFINITY = '♾'

	




	
INFORMATION = 'ℹ'

	




	
INPUT_LATIN_LETTERS = '🔤'

	




	
INPUT_LATIN_LOWERCASE = '🔡'

	




	
INPUT_LATIN_UPPERCASE = '🔠'

	




	
INPUT_NUMBERS = '🔢'

	




	
INPUT_SYMBOLS = '🔣'

	




	
JACK_O_LANTERN = '🎃'

	




	
JAPANESE_ACCEPTABLE_BUTTON = '🉑'

	




	
JAPANESE_APPLICATION_BUTTON = '🈸'

	




	
JAPANESE_BARGAIN_BUTTON = '🉐'

	




	
JAPANESE_CASTLE = '🏯'

	




	
JAPANESE_CONGRATULATIONS_BUTTON = '㊗'

	




	
JAPANESE_DISCOUNT_BUTTON = '🈹'

	




	
JAPANESE_DOLLS = '🎎'

	




	
JAPANESE_FREE_OF_CHARGE_BUTTON = '🈚'

	




	
JAPANESE_HERE_BUTTON = '🈁'

	




	
JAPANESE_MONTHLY_AMOUNT_BUTTON = '🈷'

	




	
JAPANESE_NOT_FREE_OF_CHARGE_BUTTON = '🈶'

	




	
JAPANESE_NO_VACANCY_BUTTON = '🈵'

	




	
JAPANESE_OPEN_FOR_BUSINESS_BUTTON = '🈺'

	




	
JAPANESE_PASSING_GRADE_BUTTON = '🈴'

	




	
JAPANESE_POST_OFFICE = '🏣'

	




	
JAPANESE_PROHIBITED_BUTTON = '🈲'

	




	
JAPANESE_RESERVED_BUTTON = '🈯'

	




	
JAPANESE_SECRET_BUTTON = '㊙'

	




	
JAPANESE_SERVICE_CHARGE_BUTTON = '🈂'

	




	
JAPANESE_SYMBOL_FOR_BEGINNER = '🔰'

	




	
JAPANESE_VACANCY_BUTTON = '🈳'

	




	
JEANS = '👖'

	




	
JOKER = '🃏'

	




	
JOYSTICK = '🕹'

	




	
KAABA = '🕋'

	




	
KANGAROO = '🦘'

	




	
KEY = '🔑'

	




	
KEYBOARD = '⌨'

	




	
KICK_SCOOTER = '🛴'

	




	
KIMONO = '👘'

	




	
KISS = '💏'

	




	
KISSING_CAT = '😽'

	




	
KISSING_FACE = '😗'

	




	
KISSING_FACE_WITH_CLOSED_EYES = '😚'

	




	
KISSING_FACE_WITH_SMILING_EYES = '😙'

	




	
KISS_MARK = '💋'

	




	
KITCHEN_KNIFE = '🔪'

	




	
KITE = '🪁'

	




	
KIWI_FRUIT = '🥝'

	




	
KNOT = '🪢'

	




	
KOALA = '🐨'

	




	
LABEL = '🏷'

	




	
LAB_COAT = '🥼'

	




	
LACROSSE = '🥍'

	




	
LADDER = '🪜'

	




	
LADY_BEETLE = '🐞'

	




	
LAPTOP = '💻'

	




	
LARGE_BLUE_DIAMOND = '🔷'

	




	
LARGE_ORANGE_DIAMOND = '🔶'

	




	
LAST_QUARTER_MOON = '🌗'

	




	
LAST_QUARTER_MOON_FACE = '🌜'

	




	
LAST_TRACK_BUTTON = '⏮'

	




	
LATIN_CROSS = '✝'

	




	
LEAFY_GREEN = '🥬'

	




	
LEAF_FLUTTERING_IN_WIND = '🍃'

	




	
LEDGER = '📒'

	




	
LEFT_ARROW = '⬅'

	




	
LEFT_ARROW_CURVING_RIGHT = '↪'

	




	
LEFT_FACING_FIST = '🤛'

	




	
LEFT_LUGGAGE = '🛅'

	




	
LEFT_RIGHT_ARROW = '↔'

	




	
LEFT_SPEECH_BUBBLE = '🗨'

	




	
LEG = '🦵'

	




	
LEMON = '🍋'

	




	
LEO = '♌'

	




	
LEOPARD = '🐆'

	




	
LEVEL_SLIDER = '🎚'

	




	
LIBRA = '♎'

	




	
LIGHT_BULB = '💡'

	




	
LIGHT_RAIL = '🚈'

	




	
LIGHT_SKIN_TONE = '🏻'

	




	
LINK = '🔗'

	




	
LINKED_PAPERCLIPS = '🖇'

	




	
LION = '🦁'

	




	
LIPSTICK = '💄'

	




	
LITTER_IN_BIN_SIGN = '🚮'

	




	
LIZARD = '🦎'

	




	
LLAMA = '🦙'

	




	
LOBSTER = '🦞'

	




	
LOCKED = '🔒'

	




	
LOCKED_WITH_KEY = '🔐'

	




	
LOCKED_WITH_PEN = '🔏'

	




	
LOCOMOTIVE = '🚂'

	




	
LOLLIPOP = '🍭'

	




	
LONG_DRUM = '🪘'

	




	
LOTION_BOTTLE = '🧴'

	




	
LOUDLY_CRYING_FACE = '😭'

	




	
LOUDSPEAKER = '📢'

	




	
LOVE_HOTEL = '🏩'

	




	
LOVE_LETTER = '💌'

	




	
LOVE_YOU_GESTURE = '🤟'

	




	
LUGGAGE = '🧳'

	




	
LUNGS = '🫁'

	




	
LYING_FACE = '🤥'

	




	
MAGE = '🧙'

	




	
MAGIC_WAND = '🪄'

	




	
MAGNET = '🧲'

	




	
MAGNIFYING_GLASS_TILTED_LEFT = '🔍'

	




	
MAGNIFYING_GLASS_TILTED_RIGHT = '🔎'

	




	
MAHJONG_RED_DRAGON = '🀄'

	




	
MALE_SIGN = '♂'

	




	
MAMMOTH = '🦣'

	




	
MAN = '👨'

	




	
MANGO = '🥭'

	




	
MANS_SHOE = '👞'

	




	
MANTELPIECE_CLOCK = '🕰'

	




	
MANUAL_WHEELCHAIR = '🦽'

	




	
MAN_BEARD = '🧔'

	




	
MAN_DANCING = '🕺'

	




	
MAPLE_LEAF = '🍁'

	




	
MAP_OF_JAPAN = '🗾'

	




	
MARTIAL_ARTS_UNIFORM = '🥋'

	




	
MATE = '🧉'

	




	
MEAT_ON_BONE = '🍖'

	




	
MECHANICAL_ARM = '🦾'

	




	
MECHANICAL_LEG = '🦿'

	




	
MEDICAL_SYMBOL = '⚕'

	




	
MEDIUM_DARK_SKIN_TONE = '🏾'

	




	
MEDIUM_LIGHT_SKIN_TONE = '🏼'

	




	
MEDIUM_SKIN_TONE = '🏽'

	




	
MEGAPHONE = '📣'

	




	
MELON = '🍈'

	




	
MEMO = '📝'

	




	
MENORAH = '🕎'

	




	
MENS_ROOM = '🚹'

	




	
MEN_HOLDING_HANDS = '👬'

	




	
MERPERSON = '🧜'

	




	
METRO = '🚇'

	




	
MICROBE = '🦠'

	




	
MICROPHONE = '🎤'

	




	
MICROSCOPE = '🔬'

	




	
MIDDLE_FINGER = '🖕'

	




	
MILITARY_HELMET = '🪖'

	




	
MILITARY_MEDAL = '🎖'

	




	
MILKY_WAY = '🌌'

	




	
MINIBUS = '🚐'

	




	
MINUS = '➖'

	




	
MIRROR = '🪞'

	




	
MOAI = '🗿'

	




	
MOBILE_PHONE = '📱'

	




	
MOBILE_PHONE_OFF = '📴'

	




	
MOBILE_PHONE_WITH_ARROW = '📲'

	




	
MONEY_BAG = '💰'

	




	
MONEY_MOUTH_FACE = '🤑'

	




	
MONEY_WITH_WINGS = '💸'

	




	
MONKEY = '🐒'

	




	
MONKEY_FACE = '🐵'

	




	
MONORAIL = '🚝'

	




	
MOON_CAKE = '🥮'

	




	
MOON_VIEWING_CEREMONY = '🎑'

	




	
MOSQUE = '🕌'

	




	
MOSQUITO = '🦟'

	




	
MOTORCYCLE = '🏍'

	




	
MOTORIZED_WHEELCHAIR = '🦼'

	




	
MOTORWAY = '🛣'

	




	
MOTOR_BOAT = '🛥'

	




	
MOTOR_SCOOTER = '🛵'

	




	
MOUNTAIN = '⛰'

	




	
MOUNTAIN_CABLEWAY = '🚠'

	




	
MOUNTAIN_RAILWAY = '🚞'

	




	
MOUNT_FUJI = '🗻'

	




	
MOUSE = '🐁'

	




	
MOUSE_FACE = '🐭'

	




	
MOUSE_TRAP = '🪤'

	




	
MOUTH = '👄'

	




	
MOVIE_CAMERA = '🎥'

	




	
MRS_CLAUS = '🤶'

	




	
MULTIPLY = '✖'

	




	
MUSHROOM = '🍄'

	




	
MUSICAL_KEYBOARD = '🎹'

	




	
MUSICAL_NOTE = '🎵'

	




	
MUSICAL_NOTES = '🎶'

	




	
MUSICAL_SCORE = '🎼'

	




	
MUTED_SPEAKER = '🔇'

	




	
NAIL_POLISH = '💅'

	




	
NAME_BADGE = '📛'

	




	
NATIONAL_PARK = '🏞'

	




	
NAUSEATED_FACE = '🤢'

	




	
NAZAR_AMULET = '🧿'

	




	
NECKTIE = '👔'

	




	
NERD_FACE = '🤓'

	




	
NESTING_DOLLS = '🪆'

	




	
NEUTRAL_FACE = '😐'

	




	
NEWSPAPER = '📰'

	




	
NEW_BUTTON = '🆕'

	




	
NEW_MOON = '🌑'

	




	
NEW_MOON_FACE = '🌚'

	




	
NEXT_TRACK_BUTTON = '⏭'

	




	
NG_BUTTON = '🆖'

	




	
NIGHT_WITH_STARS = '🌃'

	




	
NINE_OCLOCK = '🕘'

	




	
NINE_THIRTY = '🕤'

	




	
NINJA = '🥷'

	




	
NON_POTABLE_WATER = '🚱'

	




	
NOSE = '👃'

	




	
NOTEBOOK = '📓'

	




	
NOTEBOOK_WITH_DECORATIVE_COVER = '📔'

	




	
NO_BICYCLES = '🚳'

	




	
NO_ENTRY = '⛔'

	




	
NO_LITTERING = '🚯'

	




	
NO_MOBILE_PHONES = '📵'

	




	
NO_ONE_UNDER_EIGHTEEN = '🔞'

	




	
NO_PEDESTRIANS = '🚷'

	




	
NO_SMOKING = '🚭'

	




	
NUT_AND_BOLT = '🔩'

	




	
OCTOPUS = '🐙'

	




	
ODEN = '🍢'

	




	
OFFICE_BUILDING = '🏢'

	




	
OGRE = '👹'

	




	
OIL_DRUM = '🛢'

	




	
OK_BUTTON = '🆗'

	




	
OK_HAND = '👌'

	




	
OLDER_PERSON = '🧓'

	




	
OLD_KEY = '🗝'

	




	
OLD_MAN = '👴'

	




	
OLD_WOMAN = '👵'

	




	
OLIVE = '🫒'

	




	
OM = '🕉'

	




	
ONCOMING_AUTOMOBILE = '🚘'

	




	
ONCOMING_BUS = '🚍'

	




	
ONCOMING_FIST = '👊'

	




	
ONCOMING_POLICE_CAR = '🚔'

	




	
ONCOMING_TAXI = '🚖'

	




	
ONE_OCLOCK = '🕐'

	




	
ONE_PIECE_SWIMSUIT = '🩱'

	




	
ONE_THIRTY = '🕜'

	




	
ONION = '🧅'

	




	
ON_ARROW = '🔛'

	




	
OPEN_BOOK = '📖'

	




	
OPEN_FILE_FOLDER = '📂'

	




	
OPEN_HANDS = '👐'

	




	
OPEN_MAILBOX_WITH_LOWERED_FLAG = '📭'

	




	
OPEN_MAILBOX_WITH_RAISED_FLAG = '📬'

	




	
OPHIUCHUS = '⛎'

	




	
OPTICAL_DISK = '💿'

	




	
ORANGE_BOOK = '📙'

	




	
ORANGE_CIRCLE = '🟠'

	




	
ORANGE_HEART = '🧡'

	




	
ORANGE_SQUARE = '🟧'

	




	
ORANGUTAN = '🦧'

	




	
ORTHODOX_CROSS = '☦'

	




	
OTTER = '🦦'

	




	
OUTBOX_TRAY = '📤'

	




	
OWL = '🦉'

	




	
OX = '🐂'

	




	
OYSTER = '🦪'

	




	
O_BUTTON_BLOOD_TYPE = '🅾'

	




	
PACKAGE = '📦'

	




	
PAGER = '📟'

	




	
PAGE_FACING_UP = '📄'

	




	
PAGE_WITH_CURL = '📃'

	




	
PAINTBRUSH = '🖌'

	




	
PALMS_UP_TOGETHER = '🤲'

	




	
PALM_TREE = '🌴'

	




	
PANCAKES = '🥞'

	




	
PANDA = '🐼'

	




	
PAPERCLIP = '📎'

	




	
PARACHUTE = '🪂'

	




	
PARROT = '🦜'

	




	
PARTYING_FACE = '🥳'

	




	
PARTY_POPPER = '🎉'

	




	
PART_ALTERNATION_MARK = '〽'

	




	
PASSENGER_SHIP = '🛳'

	




	
PASSPORT_CONTROL = '🛂'

	




	
PAUSE_BUTTON = '⏸'

	




	
PAW_PRINTS = '🐾'

	




	
PEACE_SYMBOL = '☮'

	




	
PEACH = '🍑'

	




	
PEACOCK = '🦚'

	




	
PEANUTS = '🥜'

	




	
PEAR = '🍐'

	




	
PEN = '🖊'

	




	
PENCIL = '✏'

	




	
PENGUIN = '🐧'

	




	
PENSIVE_FACE = '😔'

	




	
PEOPLE_HUGGING = '🫂'

	




	
PEOPLE_WITH_BUNNY_EARS = '👯'

	




	
PEOPLE_WRESTLING = '🤼'

	




	
PERFORMING_ARTS = '🎭'

	




	
PERSEVERING_FACE = '😣'

	




	
PERSON = '🧑'

	




	
PERSON_BIKING = '🚴'

	




	
PERSON_BLOND_HAIR = '👱'

	




	
PERSON_BOUNCING_BALL = '⛹'

	




	
PERSON_BOWING = '🙇'

	




	
PERSON_CARTWHEELING = '🤸'

	




	
PERSON_CLIMBING = '🧗'

	




	
PERSON_FACEPALMING = '🤦'

	




	
PERSON_FENCING = '🤺'

	




	
PERSON_FROWNING = '🙍'

	




	
PERSON_GESTURING_NO = '🙅'

	




	
PERSON_GESTURING_OK = '🙆'

	




	
PERSON_GETTING_HAIRCUT = '💇'

	




	
PERSON_GETTING_MASSAGE = '💆'

	




	
PERSON_GOLFING = '🏌'

	




	
PERSON_IN_BED = '🛌'

	




	
PERSON_IN_LOTUS_POSITION = '🧘'

	




	
PERSON_IN_STEAMY_ROOM = '🧖'

	




	
PERSON_IN_SUIT_LEVITATING = '🕴'

	




	
PERSON_IN_TUXEDO = '🤵'

	




	
PERSON_JUGGLING = '🤹'

	




	
PERSON_KNEELING = '🧎'

	




	
PERSON_LIFTING_WEIGHTS = '🏋'

	




	
PERSON_MOUNTAIN_BIKING = '🚵'

	




	
PERSON_PLAYING_HANDBALL = '🤾'

	




	
PERSON_PLAYING_WATER_POLO = '🤽'

	




	
PERSON_POUTING = '🙎'

	




	
PERSON_RAISING_HAND = '🙋'

	




	
PERSON_ROWING_BOAT = '🚣'

	




	
PERSON_RUNNING = '🏃'

	




	
PERSON_SHRUGGING = '🤷'

	




	
PERSON_STANDING = '🧍'

	




	
PERSON_SURFING = '🏄'

	




	
PERSON_SWIMMING = '🏊'

	




	
PERSON_TAKING_BATH = '🛀'

	




	
PERSON_TIPPING_HAND = '💁'

	




	
PERSON_WALKING = '🚶'

	




	
PERSON_WEARING_TURBAN = '👳'

	




	
PERSON_WITH_SKULLCAP = '👲'

	




	
PERSON_WITH_VEIL = '👰'

	




	
PETRI_DISH = '🧫'

	




	
PICK = '⛏'

	




	
PICKUP_TRUCK = '🛻'

	




	
PIE = '🥧'

	




	
PIG = '🐖'

	




	
PIG_FACE = '🐷'

	




	
PIG_NOSE = '🐽'

	




	
PILE_OF_POO = '💩'

	




	
PILL = '💊'

	




	
PINCHED_FINGERS = '🤌'

	




	
PINCHING_HAND = '🤏'

	




	
PINEAPPLE = '🍍'

	




	
PINE_DECORATION = '🎍'

	




	
PING_PONG = '🏓'

	




	
PISCES = '♓'

	




	
PISTOL = '🔫'

	




	
PIZZA = '🍕'

	




	
PIñATA = '🪅'

	




	
PLACARD = '🪧'

	




	
PLACE_OF_WORSHIP = '🛐'

	




	
PLAY_BUTTON = '▶'

	




	
PLAY_OR_PAUSE_BUTTON = '⏯'

	




	
PLEADING_FACE = '🥺'

	




	
PLUNGER = '🪠'

	




	
PLUS = '➕'

	




	
POLICE_CAR = '🚓'

	




	
POLICE_CAR_LIGHT = '🚨'

	




	
POLICE_OFFICER = '👮'

	




	
POODLE = '🐩'

	




	
POPCORN = '🍿'

	




	
POSTAL_HORN = '📯'

	




	
POSTBOX = '📮'

	




	
POST_OFFICE = '🏤'

	




	
POTABLE_WATER = '🚰'

	




	
POTATO = '🥔'

	




	
POTTED_PLANT = '🪴'

	




	
POT_OF_FOOD = '🍲'

	




	
POULTRY_LEG = '🍗'

	




	
POUND_BANKNOTE = '💷'

	




	
POUTING_CAT = '😾'

	




	
POUTING_FACE = '😡'

	




	
PRAYER_BEADS = '📿'

	




	
PREGNANT_WOMAN = '🤰'

	




	
PRETZEL = '🥨'

	




	
PRINCE = '🤴'

	




	
PRINCESS = '👸'

	




	
PRINTER = '🖨'

	




	
PROHIBITED = '🚫'

	




	
PURPLE_CIRCLE = '🟣'

	




	
PURPLE_HEART = '💜'

	




	
PURPLE_SQUARE = '🟪'

	




	
PURSE = '👛'

	




	
PUSHPIN = '📌'

	




	
PUZZLE_PIECE = '🧩'

	




	
P_BUTTON = '🅿'

	




	
QUESTION_MARK = '❓'

	




	
RABBIT = '🐇'

	




	
RABBIT_FACE = '🐰'

	




	
RACCOON = '🦝'

	




	
RACING_CAR = '🏎'

	




	
RADIO = '📻'

	




	
RADIOACTIVE = '☢'

	




	
RADIO_BUTTON = '🔘'

	




	
RAILWAY_CAR = '🚃'

	




	
RAILWAY_TRACK = '🛤'

	




	
RAINBOW = '🌈'

	




	
RAISED_BACK_OF_HAND = '🤚'

	




	
RAISED_FIST = '✊'

	




	
RAISED_HAND = '✋'

	




	
RAISING_HANDS = '🙌'

	




	
RAM = '🐏'

	




	
RAT = '🐀'

	




	
RAZOR = '🪒'

	




	
RECEIPT = '🧾'

	




	
RECORD_BUTTON = '⏺'

	




	
RECYCLING_SYMBOL = '♻'

	




	
RED_APPLE = '🍎'

	




	
RED_CIRCLE = '🔴'

	




	
RED_ENVELOPE = '🧧'

	




	
RED_HAIR = '🦰'

	




	
RED_HEART = '❤'

	




	
RED_PAPER_LANTERN = '🏮'

	




	
RED_SQUARE = '🟥'

	




	
RED_TRIANGLE_POINTED_DOWN = '🔻'

	




	
RED_TRIANGLE_POINTED_UP = '🔺'

	




	
REGISTERED = '®'

	




	
RELIEVED_FACE = '😌'

	




	
REMINDER_RIBBON = '🎗'

	




	
REPEAT_BUTTON = '🔁'

	




	
REPEAT_SINGLE_BUTTON = '🔂'

	




	
RESCUE_WORKERS_HELMET = '⛑'

	




	
RESTROOM = '🚻'

	




	
REVERSE_BUTTON = '◀'

	




	
REVOLVING_HEARTS = '💞'

	




	
RHINOCEROS = '🦏'

	




	
RIBBON = '🎀'

	




	
RICE_BALL = '🍙'

	




	
RICE_CRACKER = '🍘'

	




	
RIGHT_ANGER_BUBBLE = '🗯'

	




	
RIGHT_ARROW = '➡'

	




	
RIGHT_ARROW_CURVING_DOWN = '⤵'

	




	
RIGHT_ARROW_CURVING_LEFT = '↩'

	




	
RIGHT_ARROW_CURVING_UP = '⤴'

	




	
RIGHT_FACING_FIST = '🤜'

	




	
RING = '💍'

	




	
RINGED_PLANET = '🪐'

	




	
ROASTED_SWEET_POTATO = '🍠'

	




	
ROBOT = '🤖'

	




	
ROCK = '🪨'

	




	
ROCKET = '🚀'

	




	
ROLLED_UP_NEWSPAPER = '🗞'

	




	
ROLLER_COASTER = '🎢'

	




	
ROLLER_SKATE = '🛼'

	




	
ROLLING_ON_THE_FLOOR_LAUGHING = '🤣'

	




	
ROLL_OF_PAPER = '🧻'

	




	
ROOSTER = '🐓'

	




	
ROSE = '🌹'

	




	
ROSETTE = '🏵'

	




	
ROUND_PUSHPIN = '📍'

	




	
RUGBY_FOOTBALL = '🏉'

	




	
RUNNING_SHIRT = '🎽'

	




	
RUNNING_SHOE = '👟'

	




	
SAD_BUT_RELIEVED_FACE = '😥'

	




	
SAFETY_PIN = '🧷'

	




	
SAFETY_VEST = '🦺'

	




	
SAGITTARIUS = '♐'

	




	
SAILBOAT = '⛵'

	




	
SAKE = '🍶'

	




	
SALT = '🧂'

	




	
SANDWICH = '🥪'

	




	
SANTA_CLAUS = '🎅'

	




	
SARI = '🥻'

	




	
SATELLITE = '🛰'

	




	
SATELLITE_ANTENNA = '📡'

	




	
SAUROPOD = '🦕'

	




	
SAXOPHONE = '🎷'

	




	
SCARF = '🧣'

	




	
SCHOOL = '🏫'

	




	
SCISSORS = '✂'

	




	
SCORPIO = '♏'

	




	
SCORPION = '🦂'

	




	
SCREWDRIVER = '🪛'

	




	
SCROLL = '📜'

	




	
SEAL = '🦭'

	




	
SEAT = '💺'

	




	
SECOND_PLACE_MEDAL = '🥈'

	




	
SEEDLING = '🌱'

	




	
SEE_NO_EVIL_MONKEY = '🙈'

	




	
SELFIE = '🤳'

	




	
SEVEN_OCLOCK = '🕖'

	




	
SEVEN_THIRTY = '🕢'

	




	
SEWING_NEEDLE = '🪡'

	




	
SHALLOW_PAN_OF_FOOD = '🥘'

	




	
SHAMROCK = '☘'

	




	
SHARK = '🦈'

	




	
SHAVED_ICE = '🍧'

	




	
SHEAF_OF_RICE = '🌾'

	




	
SHIELD = '🛡'

	




	
SHINTO_SHRINE = '⛩'

	




	
SHIP = '🚢'

	




	
SHOOTING_STAR = '🌠'

	




	
SHOPPING_BAGS = '🛍'

	




	
SHOPPING_CART = '🛒'

	




	
SHORTCAKE = '🍰'

	




	
SHORTS = '🩳'

	




	
SHOWER = '🚿'

	




	
SHRIMP = '🦐'

	




	
SHUFFLE_TRACKS_BUTTON = '🔀'

	




	
SHUSHING_FACE = '🤫'

	




	
SIGN_OF_THE_HORNS = '🤘'

	




	
SIX_OCLOCK = '🕕'

	




	
SIX_THIRTY = '🕡'

	




	
SKATEBOARD = '🛹'

	




	
SKIER = '⛷'

	




	
SKIS = '🎿'

	




	
SKULL = '💀'

	




	
SKULL_AND_CROSSBONES = '☠'

	




	
SKUNK = '🦨'

	




	
SLED = '🛷'

	




	
SLEEPING_FACE = '😴'

	




	
SLEEPY_FACE = '😪'

	




	
SLIGHTLY_FROWNING_FACE = '🙁'

	




	
SLIGHTLY_SMILING_FACE = '🙂'

	




	
SLOTH = '🦥'

	




	
SLOT_MACHINE = '🎰'

	




	
SMALL_AIRPLANE = '🛩'

	




	
SMALL_BLUE_DIAMOND = '🔹'

	




	
SMALL_ORANGE_DIAMOND = '🔸'

	




	
SMILING_CAT_WITH_HEART_EYES = '😻'

	




	
SMILING_FACE = '☺'

	




	
SMILING_FACE_WITH_HALO = '😇'

	




	
SMILING_FACE_WITH_HEARTS = '🥰'

	




	
SMILING_FACE_WITH_HEART_EYES = '😍'

	




	
SMILING_FACE_WITH_HORNS = '😈'

	




	
SMILING_FACE_WITH_SMILING_EYES = '😊'

	




	
SMILING_FACE_WITH_SUNGLASSES = '😎'

	




	
SMILING_FACE_WITH_TEAR = '🥲'

	




	
SMIRKING_FACE = '😏'

	




	
SNAIL = '🐌'

	




	
SNAKE = '🐍'

	




	
SNEEZING_FACE = '🤧'

	




	
SNOWBOARDER = '🏂'

	




	
SNOWFLAKE = '❄'

	




	
SNOWMAN = '☃'

	




	
SNOWMAN_WITHOUT_SNOW = '⛄'

	




	
SNOW_CAPPED_MOUNTAIN = '🏔'

	




	
SOAP = '🧼'

	




	
SOCCER_BALL = '⚽'

	




	
SOCKS = '🧦'

	




	
SOFTBALL = '🥎'

	




	
SOFT_ICE_CREAM = '🍦'

	




	
SOON_ARROW = '🔜'

	




	
SOS_BUTTON = '🆘'

	




	
SPADE_SUIT = '♠'

	




	
SPAGHETTI = '🍝'

	




	
SPARKLE = '❇'

	




	
SPARKLER = '🎇'

	




	
SPARKLES = '✨'

	




	
SPARKLING_HEART = '💖'

	




	
SPEAKER_HIGH_VOLUME = '🔊'

	




	
SPEAKER_LOW_VOLUME = '🔈'

	




	
SPEAKER_MEDIUM_VOLUME = '🔉'

	




	
SPEAKING_HEAD = '🗣'

	




	
SPEAK_NO_EVIL_MONKEY = '🙊'

	




	
SPEECH_BALLOON = '💬'

	




	
SPEEDBOAT = '🚤'

	




	
SPIDER = '🕷'

	




	
SPIDER_WEB = '🕸'

	




	
SPIRAL_CALENDAR = '🗓'

	




	
SPIRAL_NOTEPAD = '🗒'

	




	
SPIRAL_SHELL = '🐚'

	




	
SPONGE = '🧽'

	




	
SPOON = '🥄'

	




	
SPORTS_MEDAL = '🏅'

	




	
SPORT_UTILITY_VEHICLE = '🚙'

	




	
SPOUTING_WHALE = '🐳'

	




	
SQUID = '🦑'

	




	
SQUINTING_FACE_WITH_TONGUE = '😝'

	




	
STADIUM = '🏟'

	




	
STAR = '⭐'

	




	
STAR_AND_CRESCENT = '☪'

	




	
STAR_OF_DAVID = '✡'

	




	
STAR_STRUCK = '🤩'

	




	
STATION = '🚉'

	




	
STATUE_OF_LIBERTY = '🗽'

	




	
STEAMING_BOWL = '🍜'

	




	
STETHOSCOPE = '🩺'

	




	
STOPWATCH = '⏱'

	




	
STOP_BUTTON = '⏹'

	




	
STOP_SIGN = '🛑'

	




	
STRAIGHT_RULER = '📏'

	




	
STRAWBERRY = '🍓'

	




	
STUDIO_MICROPHONE = '🎙'

	




	
STUFFED_FLATBREAD = '🥙'

	




	
SUN = '☀'

	




	
SUNFLOWER = '🌻'

	




	
SUNGLASSES = '🕶'

	




	
SUNRISE = '🌅'

	




	
SUNRISE_OVER_MOUNTAINS = '🌄'

	




	
SUNSET = '🌇'

	




	
SUN_BEHIND_CLOUD = '⛅'

	




	
SUN_BEHIND_LARGE_CLOUD = '🌥'

	




	
SUN_BEHIND_RAIN_CLOUD = '🌦'

	




	
SUN_BEHIND_SMALL_CLOUD = '🌤'

	




	
SUN_WITH_FACE = '🌞'

	




	
SUPERHERO = '🦸'

	




	
SUPERVILLAIN = '🦹'

	




	
SUSHI = '🍣'

	




	
SUSPENSION_RAILWAY = '🚟'

	




	
SWAN = '🦢'

	




	
SWEAT_DROPLETS = '💦'

	




	
SYNAGOGUE = '🕍'

	




	
SYRINGE = '💉'

	




	
TACO = '🌮'

	




	
TAKEOUT_BOX = '🥡'

	




	
TAMALE = '🫔'

	




	
TANABATA_TREE = '🎋'

	




	
TANGERINE = '🍊'

	




	
TAURUS = '♉'

	




	
TAXI = '🚕'

	




	
TEACUP_WITHOUT_HANDLE = '🍵'

	




	
TEAPOT = '🫖'

	




	
TEAR_OFF_CALENDAR = '📆'

	




	
TEDDY_BEAR = '🧸'

	




	
TELEPHONE = '☎'

	




	
TELEPHONE_RECEIVER = '📞'

	




	
TELESCOPE = '🔭'

	




	
TELEVISION = '📺'

	




	
TENNIS = '🎾'

	




	
TENT = '⛺'

	




	
TEN_OCLOCK = '🕙'

	




	
TEN_THIRTY = '🕥'

	




	
TEST_TUBE = '🧪'

	




	
THERMOMETER = '🌡'

	




	
THINKING_FACE = '🤔'

	




	
THIRD_PLACE_MEDAL = '🥉'

	




	
THONG_SANDAL = '🩴'

	




	
THOUGHT_BALLOON = '💭'

	




	
THREAD = '🧵'

	




	
THREE_OCLOCK = '🕒'

	




	
THREE_THIRTY = '🕞'

	




	
THUMBS_DOWN = '👎'

	




	
THUMBS_UP = '👍'

	




	
TICKET = '🎫'

	




	
TIGER = '🐅'

	




	
TIGER_FACE = '🐯'

	




	
TIMER_CLOCK = '⏲'

	




	
TIRED_FACE = '😫'

	




	
TOILET = '🚽'

	




	
TOKYO_TOWER = '🗼'

	




	
TOMATO = '🍅'

	




	
TONGUE = '👅'

	




	
TOOLBOX = '🧰'

	




	
TOOTH = '🦷'

	




	
TOOTHBRUSH = '🪥'

	




	
TOP_ARROW = '🔝'

	




	
TOP_HAT = '🎩'

	




	
TORNADO = '🌪'

	




	
TRACKBALL = '🖲'

	




	
TRACTOR = '🚜'

	




	
TRADE_MARK = '™'

	




	
TRAIN = '🚆'

	




	
TRAM = '🚊'

	




	
TRAM_CAR = '🚋'

	




	
TRANSGENDER_SYMBOL = '⚧'

	




	
TRIANGULAR_FLAG = '🚩'

	




	
TRIANGULAR_RULER = '📐'

	




	
TRIDENT_EMBLEM = '🔱'

	




	
TROLLEYBUS = '🚎'

	




	
TROPHY = '🏆'

	




	
TROPICAL_DRINK = '🍹'

	




	
TROPICAL_FISH = '🐠'

	




	
TRUMPET = '🎺'

	




	
TULIP = '🌷'

	




	
TUMBLER_GLASS = '🥃'

	




	
TURKEY = '🦃'

	




	
TURTLE = '🐢'

	




	
TWELVE_OCLOCK = '🕛'

	




	
TWELVE_THIRTY = '🕧'

	




	
TWO_HEARTS = '💕'

	




	
TWO_HUMP_CAMEL = '🐫'

	




	
TWO_OCLOCK = '🕑'

	




	
TWO_THIRTY = '🕝'

	




	
T_REX = '🦖'

	




	
T_SHIRT = '👕'

	




	
UMBRELLA = '☂'

	




	
UMBRELLA_ON_GROUND = '⛱'

	




	
UMBRELLA_WITH_RAIN_DROPS = '☔'

	




	
UNAMUSED_FACE = '😒'

	




	
UNICORN = '🦄'

	




	
UNLOCKED = '🔓'

	




	
UPSIDE_DOWN_FACE = '🙃'

	




	
UPWARDS_BUTTON = '🔼'

	




	
UP_ARROW = '⬆'

	




	
UP_BUTTON = '🆙'

	




	
UP_DOWN_ARROW = '↕'

	




	
UP_LEFT_ARROW = '↖'

	




	
UP_RIGHT_ARROW = '↗'

	




	
VAMPIRE = '🧛'

	




	
VERTICAL_TRAFFIC_LIGHT = '🚦'

	




	
VIBRATION_MODE = '📳'

	




	
VICTORY_HAND = '✌'

	




	
VIDEOCASSETTE = '📼'

	




	
VIDEO_CAMERA = '📹'

	




	
VIDEO_GAME = '🎮'

	




	
VIOLIN = '🎻'

	




	
VIRGO = '♍'

	




	
VOLCANO = '🌋'

	




	
VOLLEYBALL = '🏐'

	




	
VS_BUTTON = '🆚'

	




	
VULCAN_SALUTE = '🖖'

	




	
WAFFLE = '🧇'

	




	
WANING_CRESCENT_MOON = '🌘'

	




	
WANING_GIBBOUS_MOON = '🌖'

	




	
WARNING = '⚠'

	




	
WASTEBASKET = '🗑'

	




	
WATCH = '⌚'

	




	
WATERMELON = '🍉'

	




	
WATER_BUFFALO = '🐃'

	




	
WATER_CLOSET = '🚾'

	




	
WATER_WAVE = '🌊'

	




	
WAVING_HAND = '👋'

	




	
WAVY_DASH = '〰'

	




	
WAXING_CRESCENT_MOON = '🌒'

	




	
WAXING_GIBBOUS_MOON = '🌔'

	




	
WEARY_CAT = '🙀'

	




	
WEARY_FACE = '😩'

	




	
WEDDING = '💒'

	




	
WHALE = '🐋'

	




	
WHEELCHAIR_SYMBOL = '♿'

	




	
WHEEL_OF_DHARMA = '☸'

	




	
WHITE_CANE = '🦯'

	




	
WHITE_CIRCLE = '⚪'

	




	
WHITE_EXCLAMATION_MARK = '❕'

	




	
WHITE_FLAG = '🏳'

	




	
WHITE_FLOWER = '💮'

	




	
WHITE_HAIR = '🦳'

	




	
WHITE_HEART = '🤍'

	




	
WHITE_LARGE_SQUARE = '⬜'

	




	
WHITE_MEDIUM_SMALL_SQUARE = '◽'

	




	
WHITE_MEDIUM_SQUARE = '◻'

	




	
WHITE_QUESTION_MARK = '❔'

	




	
WHITE_SMALL_SQUARE = '▫'

	




	
WHITE_SQUARE_BUTTON = '🔳'

	




	
WILTED_FLOWER = '🥀'

	




	
WINDOW = '🪟'

	




	
WIND_CHIME = '🎐'

	




	
WIND_FACE = '🌬'

	




	
WINE_GLASS = '🍷'

	




	
WINKING_FACE = '😉'

	




	
WINKING_FACE_WITH_TONGUE = '😜'

	




	
WOLF = '🐺'

	




	
WOMAN = '👩'

	




	
WOMANS_BOOT = '👢'

	




	
WOMANS_CLOTHES = '👚'

	




	
WOMANS_HAT = '👒'

	




	
WOMANS_SANDAL = '👡'

	




	
WOMAN_AND_MAN_HOLDING_HANDS = '👫'

	




	
WOMAN_DANCING = '💃'

	




	
WOMAN_WITH_HEADSCARF = '🧕'

	




	
WOMENS_ROOM = '🚺'

	




	
WOMEN_HOLDING_HANDS = '👭'

	




	
WOOD = '🪵'

	




	
WOOZY_FACE = '🥴'

	




	
WORLD_MAP = '🗺'

	




	
WORM = '🪱'

	




	
WORRIED_FACE = '😟'

	




	
WRAPPED_GIFT = '🎁'

	




	
WRENCH = '🔧'

	




	
WRITING_HAND = '✍'

	




	
YARN = '🧶'

	




	
YAWNING_FACE = '🥱'

	




	
YELLOW_CIRCLE = '🟡'

	




	
YELLOW_HEART = '💛'

	




	
YELLOW_SQUARE = '🟨'

	




	
YEN_BANKNOTE = '💴'

	




	
YIN_YANG = '☯'

	




	
YO_YO = '🪀'

	




	
ZANY_FACE = '🤪'

	




	
ZEBRA = '🦓'

	




	
ZIPPER_MOUTH_FACE = '🤐'

	




	
ZOMBIE = '🧟'

	




	
ZZZ = '💤'

	










            

          

      

      

    

  

  
    
    

    Fonts
    

    

    
 
  

    
      
          
            
  
Fonts

Fonts in the pygamelib are nothing more than a specially organized sprite collection.

The way to use it is extremely simple: you instantiate a Font object and ask it to load the data from a specific font.

For example to load the 8bits font, you do:


	Example::
	from pygamelib.gfx import core

my_font = core.Font(‘8bits’)





That’s it! The you can use it to format Text objects.



	8bits
	How to use?

	What does it look like?





	figlet-caligraphy
	How to use?

	What does it look like?

	More





	figlet-doom
	How to use?

	What does it look like?

	More





	figlet-graffiti
	How to use?

	What does it look like?

	More





	figlet-mirror
	How to use?

	What does it look like?

	More





	figlet-pepper
	How to use?

	What does it look like?

	More





	figlet-poison
	How to use?

	What does it look like?

	More





	figlet-puffy
	How to use?

	What does it look like?

	More





	figlet-rounded
	How to use?

	What does it look like?

	More





	figlet-stampatello
	How to use?

	What does it look like?

	More





	figlet-univers
	How to use?

	What does it look like?

	More





	figlet-wavy
	How to use?

	What does it look like?

	More












            

          

      

      

    

  

  
    
    

    8bits
    

    

    
 
  

    
      
          
            
  
8bits


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("8bits")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]




            

          

      

      

    

  

  
    
    

    figlet-caligraphy
    

    

    
 
  

    
      
          
            
  
figlet-caligraphy


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-caligraphy")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-doom
    

    

    
 
  

    
      
          
            
  
figlet-doom


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-doom")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-graffiti
    

    

    
 
  

    
      
          
            
  
figlet-graffiti


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-graffiti")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-mirror
    

    

    
 
  

    
      
          
            
  
figlet-mirror


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-mirror")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-pepper
    

    

    
 
  

    
      
          
            
  
figlet-pepper


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-pepper")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-poison
    

    

    
 
  

    
      
          
            
  
figlet-poison


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-poison")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-puffy
    

    

    
 
  

    
      
          
            
  
figlet-puffy


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-puffy")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-rounded
    

    

    
 
  

    
      
          
            
  
figlet-rounded


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-rounded")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-stampatello
    

    

    
 
  

    
      
          
            
  
figlet-stampatello


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-stampatello")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-univers
    

    

    
 
  

    
      
          
            
  
figlet-univers


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-univers")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    figlet-wavy
    

    

    
 
  

    
      
          
            
  
figlet-wavy


New in version 1.3.0.




How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-wavy")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()







What does it look like?

[image: Example]


More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here: https://github.com/pygamelib/figlet-to-pygamelib





            

          

      

      

    

  

  
    
    

    base
    

    

    
 
  

    
      
          
            
  
base

The base module provide basic objects and exceptions that are used by the entire library.



	Console
	Console
	Console.instance()









	History
	History
	History.__init__()

	History.add()

	History.current

	History.instance()

	History.redo()

	History.reset()

	History.undo()









	Math
	Math
	Math.__init__()

	Math.distance()

	Math.intersect()

	Math.lerp()









	PglBaseObject
	PglBaseObject
	PglBaseObject.__init__()

	PglBaseObject.attach()

	PglBaseObject.detach()

	PglBaseObject.handle_notification()

	PglBaseObject.notify()

	PglBaseObject.screen_column

	PglBaseObject.screen_row

	PglBaseObject.store_screen_position()









	PglException
	PglException





	PglInvalidLevelException
	PglInvalidLevelException





	PglInvalidTypeException
	PglInvalidTypeException





	PglInventoryException
	PglInventoryException





	PglObjectIsNotMovableException
	PglObjectIsNotMovableException





	PglOutOfBoardBoundException
	PglOutOfBoardBoundException





	Text
	Text
	Text.__init__()

	Text.attach()

	Text.bg_color

	Text.black()

	Text.black_bright()

	Text.black_dim()

	Text.blue()

	Text.blue_bright()

	Text.blue_dim()

	Text.cyan()

	Text.cyan_bright()

	Text.cyan_dim()

	Text.debug()

	Text.detach()

	Text.fatal()

	Text.fg_color

	Text.green()

	Text.green_bright()

	Text.green_dim()

	Text.handle_notification()

	Text.info()

	Text.length

	Text.load()

	Text.magenta()

	Text.magenta_bright()

	Text.magenta_dim()

	Text.notify()

	Text.parent

	Text.print_formatted()

	Text.print_white_on_red()

	Text.red()

	Text.red_bright()

	Text.red_dim()

	Text.render_to_buffer()

	Text.screen_column

	Text.screen_row

	Text.serialize()

	Text.store_screen_position()

	Text.style

	Text.text

	Text.warn()

	Text.white()

	Text.white_bright()

	Text.white_dim()

	Text.yellow()

	Text.yellow_bright()

	Text.yellow_dim()









	Vector2D
	Vector2D
	Vector2D.__init__()

	Vector2D.column

	Vector2D.from_direction()

	Vector2D.length()

	Vector2D.load()

	Vector2D.rounding_precision

	Vector2D.row

	Vector2D.serialize()

	Vector2D.unit()

	Vector2D.x

	Vector2D.y









	Deprecated objects
	HacException
	HacException





	HacInvalidLevelException
	HacInvalidLevelException





	HacInvalidTypeException
	HacInvalidTypeException





	HacObjectIsNotMovableException
	HacObjectIsNotMovableException





	HacOutOfBoardBoundException
	HacOutOfBoardBoundException
















            

          

      

      

    

  

  
    
    

    Console
    

    

    
 
  

    
      
          
            
  
Console


	
class pygamelib.base.Console

	Bases: object


The Console class is a singleton wrapper around the blessed.Terminal() class.
Since the library is using Terminal a lot, it is both useful and efficient to have a
quick access to a single instance of the class.

This class only expose one method: instance() that
returns the singleton instance.




Methods



	instance()

	Returns the instance of the blessed.Terminal object.







	
classmethod instance()

	Returns the instance of the blessed.Terminal object.


New in version 1.3.0.



The pygamelib extensively use the Terminal object from the blessed module.
However we find ourselves in need of a Terminal instance a lot, so to help with
memory and execution time we just encapsulate the Terminal object in a singleton
so any object can use it without instantiating it many times (and messing up
with the contexts).


	Returns:

	Instance of blessed.Terminal object





Example:

term = Console.instance()
















            

          

      

      

    

  

  
    
    

    History
    

    

    
 
  

    
      
          
            
  
History


	
class pygamelib.base.History

	Bases: object


New in version 1.4.0.



History is a general history management object. It works by managing a time
structure with past, current and future actions. Undoing and redoing is simply
the action of moving along this timeline.

This object is data agnostic, it can be used with any type of objects. Internally,
it uses a concept of “actions”. An “action” consist of any python object that can be
stored in an array.

Undoing or redoing over the limit of the past and future actions is not doing
anything.

When add() is called, it clears the future actions.

This object provides a singleton interface through the instance(). It can
be created as a normal instantiated object or as a global manager depending on your
needs.

Example:

global_history = History.instance()
global_history.add('Hel')
global_history.add('Hello')
global_history.add('Hello Wo')
global_history.add('Hello World')
print(global_history.current)  # print "Hello World"
global_history.undo()
print(global_history.current)  # print "Hello Wo"
global_history.undo()
print(global_history.current)  # print "Hello"
global_history.redo()
global_history.redo()
global_history.redo() # This one does nothing as we called undo only twice.
print(global_history.current)  # print "Hello World"
# Now an example of reset through add()
global_history.undo()
global_history.undo()
print(global_history.current)  # print "Hello"
global_history.add("Hello there!")
print(global_history.current)  # print "Hello there!"
global_history.redo() # does nothing as the future was reset by add()






	
__init__() → None

	The constructor takes no parameters. In the future, it could take some, like
the maximum size of the history for example.





Methods



	__init__()

	The constructor takes no parameters.



	add(action)

	Add an action (i.e: object) to the history.



	instance(*args, **kwargs)

	Returns/creates the instance of the History object



	redo()

	Step forward into the actions' timeline.



	reset()

	Reset the history to its initial state.



	undo()

	Step backward into the actions' timeline.






Attributes



	current

	current is a read-only property to access the current action of the history.







	
add(action: object) → None

	Add an action (i.e: object) to the history.

This action becomes the current one.

Adding an action reset the future actions (i.e: you cannot redo what was undone
before adding the action).


	Parameters:

	action (object) – The action to add to the history.





Example:

global_history = History.instance()
global_history.add('Hel')
global_history.add('Hello')
print(global_history.current)  # print "Hello"










	
property current: object

	current is a read-only property to access the current action of the history.

To add an action and set it as current, use the add() method.






	
classmethod instance(*args, **kwargs)

	Returns/creates the instance of the History object

Creates an History object on first call an then returns the same instance
on further calls


	Returns:

	Instance of the History object



	Return type:

	History










	
redo() → None

	Step forward into the actions’ timeline.

This method takes the current action and puts it in the past queue. It then
pop the last action of the future queue and set it as current.

If there’s no more future actions, it does nothing.

Example:

global_history = History.instance()
global_history.add('Hel')
global_history.add('Hello')
print(global_history.current)  # print "Hello"
global_history.undo()
print(global_history.current)  # print "Hel"
global_history.redo()
print(global_history.current)  # print "Hello"










	
reset() → None

	Reset the history to its initial state. It clears all the past and future
actions. It also set the current action to None.






	
undo() → None

	Step backward into the actions’ timeline.

This method takes the current action and puts it in the future queue. It then
pop the last action of the past queue and set it as current.

If there’s no more past actions, it does nothing.

Example:

global_history = History.instance()
global_history.add('Hel')
global_history.add('Hello')
print(global_history.current)  # print "Hello"
global_history.undo()
print(global_history.current)  # print "Hel"
















            

          

      

      

    

  

  
    
    

    Math
    

    

    
 
  

    
      
          
            
  
Math


	
class pygamelib.base.Math

	Bases: object

The math class regroup math functions required for game development.


New in version 1.2.0.



For the moment there is only static methods in that class but it will evolve in the
future.


	
__init__()

	



Methods



	__init__()

	



	distance(row1, column1, row2, column2)

	Return the euclidean distance between to points.



	intersect(row1, column1, width1, height1, ...)

	This function check if 2 rectangles intersect.



	lerp(a, b, t)

	Return the linear interpolation between 2 values relative to a third value.







	
static distance(row1: int, column1: int, row2: int, column2: int) → float

	Return the euclidean distance between to points.

Points are identified by their row and column.
If you want the distance in number of cells, you need to round the result (see
example).


	Parameters:

	
	row1 (int) – the row number (coordinate) of the first point.


	column1 (int) – the column number (coordinate) of the first point.


	row2 (int) – the row number (coordinate) of the second point.


	column2 (int) – the column number (coordinate) of the second point.






	Returns:

	The distance between the 2 points.



	Return type:

	float





Example:

distance = round(base.Math.distance(player.row,
                                player.column,
                                npc.row,
                                npc.column)
                )










	
static intersect(row1: int, column1: int, width1: int, height1: int, row2: int, column2: int, width2: int, height2: int) → bool

	This function check if 2 rectangles intersect.

The 2 rectangles are defined by their positions (row, column) and dimension
(width and height).


	Parameters:

	
	row1 (int) – The row of the first rectangle


	column1 (int) – The column of the first rectangle


	width1 (int) – The width of the first rectangle


	height1 (int) – The height of the first rectangle


	row2 (int) – The row of the second rectangle


	column2 – The column of the second rectangle


	width2 (int) – The width of the second rectangle


	height2 (int) – The height of the second rectangle






	Returns:

	A boolean, True if the rectangles intersect False, otherwise.





Example:

if intersect(projectile.row, projectile.column, projectile.width,
             projectile.height, bady.row, bady.column, bady.width,
             bady.height):
    projectile.hit([bady])










	
static lerp(a: float, b: float, t: float) → float

	Return the linear interpolation between 2 values relative to a third value.


New in version 1.3.0.




	Parameters:

	
	a (float) – Start value of the interpolation. Returned if t is 0.


	b (float) – End value of the interpolation. Returned if t is 1.


	t (float) – A value between 0 and 1 used to interpolate between a and b.








Example:

value = lerp(0, 100, 0.5) # 50
















            

          

      

      

    

  

  
    
    

    PglBaseObject
    

    

    
 
  

    
      
          
            
  
PglBaseObject


	
class pygamelib.base.PglBaseObject

	Bases: object

The base object of most of the pygamelib’s classes.


New in version 1.3.0.



The PglBaseObject has 2 goals:



	Store the object’s screen position.


	Implements a modified observer design pattern.







It is “modified” as it acts both as the observer and the client. The idea behind it
is that any object can observe and be observed by any other objects.

The base logic of the pattern is already implemented and probably does not require
re-implementation on the child object.
However, the handle_notification() method
needs to be implemented in each client. The actual processing of the notification is
indeed specific to each object.

Storing the screen position is particularly useful for
BoardItem subclasses as they only know their
position relative to the Board but might need to know
their absolute screen coordinates.

This is a lightweight solution to that issue. It is not foolproof however! The
screen_row and screen_column attributes are not wrapped properties and can be
modified to mess up things. It shouldn’t be done lightly. You have been warned!


	
__init__() → None

	Like the object class, this class constructor takes no parameter.





Methods



	__init__()

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)
















            

          

      

      

    

  

  
    
    

    PglException
    

    

    
 
  

    
      
          
            
  
PglException


	
exception pygamelib.base.PglException(error, message)

	Exception raised for non specific errors in the pygamelib.








            

          

      

      

    

  

  
    
    

    PglInvalidLevelException
    

    

    
 
  

    
      
          
            
  
PglInvalidLevelException


	
exception pygamelib.base.PglInvalidLevelException(message)

	Exception raised if a level is not associated to a board in Game().








            

          

      

      

    

  

  
    
    

    PglInvalidTypeException
    

    

    
 
  

    
      
          
            
  
PglInvalidTypeException


	
exception pygamelib.base.PglInvalidTypeException(message)

	Exception raised for invalid types.








            

          

      

      

    

  

  
    
    

    PglInventoryException
    

    

    
 
  

    
      
          
            
  
PglInventoryException


	
exception pygamelib.base.PglInventoryException(error, message)

	Exception raised for issue related to the inventory.
The error is an explicit string, and the message explains the error.








            

          

      

      

    

  

  
    
    

    PglObjectIsNotMovableException
    

    

    
 
  

    
      
          
            
  
PglObjectIsNotMovableException


	
exception pygamelib.base.PglObjectIsNotMovableException(message)

	Exception raised if the object that is being moved is not a subclass of Movable.








            

          

      

      

    

  

  
    
    

    PglOutOfBoardBoundException
    

    

    
 
  

    
      
          
            
  
PglOutOfBoardBoundException


	
exception pygamelib.base.PglOutOfBoardBoundException(message)

	Exception for out of the board’s boundaries operations.








            

          

      

      

    

  

  
    
    

    Text
    

    

    
 
  

    
      
          
            
  
Text


	
class pygamelib.base.Text(text='', fg_color=None, bg_color=None, style='', font=None)

	Bases: PglBaseObject

An object to manipulate and display text in multiple contexts.


New in version 1.2.0.



The Text class is a collection of text formatting and display static methods.

You can either instantiate an object or use the static methods.

The Text object allow for easy text manipulation through its collection of
independent attributes. They help to set the text, its style and the foreground and
background colors.

The Text object can be converted to a Sprite through
the Sprite.from_text() method. This is particularly useful to the place text on the
game Board.


	
__init__(text='', fg_color=None, bg_color=None, style='', font=None)

	
	Parameters:

	
	text (str) – The text to manipulate


	fg_color (Color) – The foreground color for the text.


	bg_color (Color) – The background color for the text.


	style (str) – The style for the text.


	font (Font) – The font in which the text is going to be displayed (only works
when using Screen.place() and Screen.update())












Methods



	__init__([text, fg_color, bg_color, style, font])

	
	param text:

	The text to manipulate









	attach(observer)

	Attach an observer to this instance.



	handle_notification(target[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	black(message)

	This method works exactly the way green_bright() work with different color.



	black_bright(message)

	This method works exactly the way green_bright() work with different color.



	black_dim(message)

	This method works exactly the way green_bright() work with different color.



	blue(message)

	This method works exactly the way green_bright() work with different color.



	blue_bright(message)

	This method works exactly the way green_bright() work with different color.



	blue_dim(message)

	This method works exactly the way green_bright() work with different color.



	cyan(message)

	This method works exactly the way green_bright() work with different color.



	cyan_bright(message)

	This method works exactly the way green_bright() work with different color.



	cyan_dim(message)

	This method works exactly the way green_bright() work with different color.



	debug(message)

	Print a debug message.



	detach(observer)

	Detach an observer from this instance.



	fatal(message)

	Print a fatal message.



	green(message)

	This method works exactly the way green_bright() work with different color.



	green_bright(message)

	Return a string formatted to be bright green



	green_dim(message)

	This method works exactly the way green_bright() work with different color.



	info(message)

	Print an informative message.



	magenta(message)

	This method works exactly the way green_bright() work with different color.



	magenta_bright(message)

	This method works exactly the way green_bright() work with different color.



	magenta_dim(message)

	This method works exactly the way green_bright() work with different color.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	print_white_on_red(message)

	Print a white message over a red background.



	red(message)

	This method works exactly the way green_bright() work with different color.



	red_bright(message)

	This method works exactly the way green_bright() work with different color.



	red_dim(message)

	This method works exactly the way green_bright() work with different color.



	render_to_buffer(buffer, row, column, ...)

	Render the Text object from the display buffer to the frame buffer.



	warn(message)

	Print a warning message.



	white(message)

	This method works exactly the way green_bright() work with different color.



	white_bright(message)

	This method works exactly the way green_bright() work with different color.



	white_dim(message)

	This method works exactly the way green_bright() work with different color.



	yellow(message)

	This method works exactly the way green_bright() work with different color.



	yellow_bright(message)

	This method works exactly the way green_bright() work with different color.



	yellow_dim(message)

	This method works exactly the way green_bright() work with different color.






Attributes



	bg_color

	The bg_color attribute sets the background color.



	fg_color

	The fg_color attribute sets the foreground color.



	length

	Return the true length of the text.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	text

	The text attribute.



	style

	The style attribute sets the style of the text.



	parent

	This object's parent.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property bg_color

	The bg_color attribute sets the background color. It needs to be a
Color.


New in version 1.3.0.



When the background color is changed, the observers are notified of the change
with the pygamelib.base.Text.bg_color:changed event. The new color
is passed as the value parameter.






	
static black(message)

	This method works exactly the way green_bright() work with different color.






	
static black_bright(message)

	This method works exactly the way green_bright() work with different color.






	
static black_dim(message)

	This method works exactly the way green_bright() work with different color.






	
static blue(message)

	This method works exactly the way green_bright() work with different color.






	
static blue_bright(message)

	This method works exactly the way green_bright() work with different color.






	
static blue_dim(message)

	This method works exactly the way green_bright() work with different color.






	
static cyan(message)

	This method works exactly the way green_bright() work with different color.






	
static cyan_bright(message)

	This method works exactly the way green_bright() work with different color.






	
static cyan_dim(message)

	This method works exactly the way green_bright() work with different color.






	
static debug(message)

	Print a debug message.

The debug message is a regular message prefixed by INFO in blue on a green
background.


	Parameters:

	message (str) – The message to print.





Example:

base.Text.debug("This is probably going to success, eventually...")










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
static fatal(message)

	Print a fatal message.

The fatal message is a regular message prefixed by FATAL in white on a red
background.


	Parameters:

	message (str) – The message to print.





Example:

base.Text.fatal("|x_x|")










	
property fg_color

	The fg_color attribute sets the foreground color. It needs to be a
Color.


New in version 1.3.0.



When the foreground color is changed, the observers are notified of the change
with the pygamelib.base.Text.fg_color:changed event. The new color
is passed as the value parameter.






	
static green(message)

	This method works exactly the way green_bright() work with different color.






	
static green_bright(message)

	Return a string formatted to be bright green


	Parameters:

	message (str) – The message to format.



	Returns:

	The formatted string



	Return type:

	str





Example:

print( Text.green_bright("This is a formatted message") )










	
static green_dim(message)

	This method works exactly the way green_bright() work with different color.






	
handle_notification(target, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
static info(message)

	Print an informative message.

The info is a regular message prefixed by INFO in white on a blue background.


	Parameters:

	message (str) – The message to print.





Example:

base.Text.info("This is a very informative message.")










	
property length

	Return the true length of the text.


New in version 1.3.0.



With UTF8 and emojis the length of a string as returned by python’s
len() function is often very wrong.
For example, the len(”x1b[48;2;139;22;19mx1b[38;2;160;26;23m▄x1b[0m”)
returns 39 when it should return 1.

This method returns the actual printing/display size of the text.


Note

This is a read only value. It is automatically updated when the text
property is changed.



Example:

game.screen.place(my_text, 0, game.screen.width - my_text.length)










	
classmethod load(data: dict = None)

	Load data and create a new Text object out of it.


New in version 1.3.0.




	Parameters:

	data (dict) – Data to create a new actuator (usually generated by
serialize())



	Returns:

	A new Text object.



	Return type:

	Text





Example:

title = base.Text.load( previous_title.serialize() )










	
static magenta(message)

	This method works exactly the way green_bright() work with different color.






	
static magenta_bright(message)

	This method works exactly the way green_bright() work with different color.






	
static magenta_dim(message)

	This method works exactly the way green_bright() work with different color.






	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
parent

	This object’s parent. It needs to be a
BoardItem.






	
print_formatted()

	Print the text with the current font activated.


New in version 1.3.0.



If the font is not set, it is strictly equivalent to use Python’s
print(text_object).






	
static print_white_on_red(message)

	Print a white message over a red background.


	Parameters:

	message (str) – The message to print.





Example:

base.Text.print_white_on_red("This is bright!")










	
static red(message)

	This method works exactly the way green_bright() work with different color.






	
static red_bright(message)

	This method works exactly the way green_bright() work with different color.






	
static red_dim(message)

	This method works exactly the way green_bright() work with different color.






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width)

	Render the Text object from the display buffer to the frame buffer.


New in version 1.3.0.



This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Return a dictionary with all the attributes of this object.


New in version 1.3.0.




	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
style

	The style attribute sets the style of the text. It needs to be a str.






	
property text

	The text attribute. It needs to be a str.


New in version 1.3.0.



When the text is changed, the observers are notified of the change
with the pygamelib.base.Text.text:changed event. The new text
is passed as the value parameter.






	
static warn(message)

	Print a warning message.

The warning is a regular message prefixed by WARNING in black on a yellow
background.


	Parameters:

	message (str) – The message to print.





Example:

base.Text.warn("This is a warning.")










	
static white(message)

	This method works exactly the way green_bright() work with different color.






	
static white_bright(message)

	This method works exactly the way green_bright() work with different color.






	
static white_dim(message)

	This method works exactly the way green_bright() work with different color.






	
static yellow(message)

	This method works exactly the way green_bright() work with different color.






	
static yellow_bright(message)

	This method works exactly the way green_bright() work with different color.






	
static yellow_dim(message)

	This method works exactly the way green_bright() work with different color.












            

          

      

      

    

  

  
    
    

    Vector2D
    

    

    
 
  

    
      
          
            
  
Vector2D


	
class pygamelib.base.Vector2D(row=0.0, column=0.0)

	Bases: object

A 2D vector class.


New in version 1.2.0.



Contrary to the rest of the library Vector2D uses floating point numbers for its
coordinates/direction/orientation. However since the rest of the library uses
integers, the numbers are rounded to 2 decimals.
You can alter that behavior by increasing or decreasing the rounding_precision
parameter (if you want integer for example).

Vector2D use the row/column internal naming convention as it is easier to visualize
for developers that are still learning python or the pygamelib. If it is a concept
that you already understand and are more familiar with the x/y coordinate system you
can also use x and y.



	x is equivalent to column


	y is equivalent to row







Everything else is the same.

Vectors can be printed and supports basic operations:



	addition


	substraction


	multiplication







Let’s elaborate a bit more on the multiplication. The product behaves in 2 different
ways:

If you multiply a vector with a scalar (int or float), the return value is a
Vector2D with each vector component multiplied by said scalar.

If you multiply a Vector2D with another Vector2D you ask for the the cross
product of vectors. This is an undefined mathematical operation in 2D as the
cross product is supposed to be perpendicular to the 2 other vectors (along the
z axis in our case). Since we don’t have depth (z) in 2D, this will return the
magnitude of the signed cross product of the 2 vectors.

Example of products:

v1 = base.Vector2D(1,2)
v2 = base.Vector2D(3,4)
# This returns -2
mag = v1 * v2
# This returns a Vector2D with values (-1, -2)
inv = v1 * -1
# This return a Vector2D with values (2.85, 3.8) or 95% of v2
dim = v2 * 0.95






	Parameters:

	
	row (int) – The row/y parameter.


	column (int) – The column/x parameter.








Example:

gravity = Vector2D(9.81, 0)
# Remember that minus on row is up.
speed = Vector2D(-0.123, 0.456)
# In that case you might want to increase the rounding precision
speed.rounding_precision = 3






	
__init__(row=0.0, column=0.0)

	



Methods



	__init__([row, column])

	



	from_direction(direction, step)

	Build and return a Vector2D from a direction.



	length()

	Returns the length of a vector.



	load(data)

	Loads a vector from a dictionary.



	serialize()

	Returns a dictionary with the attributes of the vector.



	unit()

	Returns a normalized unit vector.






Attributes



	column

	The column component of the vector.



	row

	The row component of the vector.



	x

	x is an alias for column.



	y

	y is an alias for row.



	rounding_precision

	The rounding_precision attributes is used when vectors values are calculated and the result rounded for convenience.







	
property column

	The column component of the vector.






	
classmethod from_direction(direction: Direction, step)

	Build and return a Vector2D from a direction.

Directions are from the constants module.


	Parameters:

	
	direction (Direction) – A direction from the constants module.


	step (int) – The number of cell to cross in one movement.








Example:

v2d_up = Vector2D.from_direction(Direction.UP, 1)










	
length()

	Returns the length of a vector.


	Return type:

	float





Example:

if speed.length() == 0.0:
    print('We are not moving... at all...')










	
classmethod load(data)

	Loads a vector from a dictionary.


New in version 1.3.0.




	Parameters:

	data (dict) – A dictionary with the attributes of the vector.



	Returns:

	A vector.



	Return type:

	Vector2D





Example:

gravity_dict = {"row": 9.81, "column": 0}
gravity = Vector2D.load(gravity_dict)










	
rounding_precision

	The rounding_precision attributes is used when vectors values are calculated
and the result rounded for convenience. It can be changed anytime to increase or
decrease the precision anytime.






	
property row

	The row component of the vector.






	
serialize()

	Returns a dictionary with the attributes of the vector.


New in version 1.3.0.




	Returns:

	A dictionary with the attributes of the vector.



	Return type:

	dict





Example:

gravity = Vector2D(9.81, 0)
gravity_dict = gravity.serialize()
print(gravity_dict)










	
unit()

	Returns a normalized unit vector.


	Returns:

	A unit vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
property x

	x is an alias for column.






	
property y

	y is an alias for row.












            

          

      

      

    

  

  
    
    

    Deprecated objects
    

    

    
 
  

    
      
          
            
  
Deprecated objects

These are the deprecated objects of the pygamelib.base module. They should not be used
as they are going to be removed in future versions.



	HacException
	HacException





	HacInvalidLevelException
	HacInvalidLevelException





	HacInvalidTypeException
	HacInvalidTypeException





	HacObjectIsNotMovableException
	HacObjectIsNotMovableException





	HacOutOfBoardBoundException
	HacOutOfBoardBoundException












            

          

      

      

    

  

  
    
    

    HacException
    

    

    
 
  

    
      
          
            
  
HacException


	
exception pygamelib.base.HacException(error, message)

	A simple forward to PglException


Deprecated since version 1.3.0.










            

          

      

      

    

  

  
    
    

    HacInvalidLevelException
    

    

    
 
  

    
      
          
            
  
HacInvalidLevelException


	
exception pygamelib.base.HacInvalidLevelException(message)

	Forward to PglInvalidLevelException


Deprecated since version 1.3.0.










            

          

      

      

    

  

  
    
    

    HacInvalidTypeException
    

    

    
 
  

    
      
          
            
  
HacInvalidTypeException


	
exception pygamelib.base.HacInvalidTypeException(message)

	A simple forward to PglInvalidTypeException


Deprecated since version 1.3.0.










            

          

      

      

    

  

  
    
    

    HacObjectIsNotMovableException
    

    

    
 
  

    
      
          
            
  
HacObjectIsNotMovableException


	
exception pygamelib.base.HacObjectIsNotMovableException(message)

	Simple forward to PglObjectIsNotMovableException


Deprecated since version 1.3.0.










            

          

      

      

    

  

  
    
    

    HacOutOfBoardBoundException
    

    

    
 
  

    
      
          
            
  
HacOutOfBoardBoundException


	
exception pygamelib.base.HacOutOfBoardBoundException(message)

	Simple forward to PglOutOfBoardBoundException


Deprecated since version 1.3.0.










            

          

      

      

    

  

  
    
    

    board_items
    

    

    
 
  

    
      
          
            
  
board_items



	Actionable
	Actionable
	Actionable.__init__()

	Actionable.activate()

	Actionable.animation

	Actionable.attach()

	Actionable.can_move()

	Actionable.collides_with()

	Actionable.column

	Actionable.debug_info()

	Actionable.detach()

	Actionable.display()

	Actionable.distance_to()

	Actionable.handle_notification()

	Actionable.heading

	Actionable.height

	Actionable.inventory_space

	Actionable.layer

	Actionable.load()

	Actionable.model

	Actionable.notify()

	Actionable.overlappable()

	Actionable.particle_emitter

	Actionable.pickable()

	Actionable.position_as_vector()

	Actionable.render_to_buffer()

	Actionable.restorable()

	Actionable.row

	Actionable.screen_column

	Actionable.screen_row

	Actionable.serialize()

	Actionable.set_can_move()

	Actionable.set_overlappable()

	Actionable.set_pickable()

	Actionable.set_restorable()

	Actionable.size

	Actionable.store_position()

	Actionable.store_screen_position()

	Actionable.width









	ActionableTile
	ActionableTile
	ActionableTile.__init__()

	ActionableTile.activate()

	ActionableTile.animation

	ActionableTile.attach()

	ActionableTile.can_move()

	ActionableTile.collides_with()

	ActionableTile.column

	ActionableTile.debug_info()

	ActionableTile.detach()

	ActionableTile.display()

	ActionableTile.distance_to()

	ActionableTile.handle_notification()

	ActionableTile.heading

	ActionableTile.height

	ActionableTile.inventory_space

	ActionableTile.item()

	ActionableTile.layer

	ActionableTile.load()

	ActionableTile.model

	ActionableTile.notify()

	ActionableTile.overlappable()

	ActionableTile.particle_emitter

	ActionableTile.pickable()

	ActionableTile.position_as_vector()

	ActionableTile.render_to_buffer()

	ActionableTile.restorable()

	ActionableTile.row

	ActionableTile.screen_column

	ActionableTile.screen_row

	ActionableTile.serialize()

	ActionableTile.set_can_move()

	ActionableTile.set_overlappable()

	ActionableTile.set_pickable()

	ActionableTile.set_restorable()

	ActionableTile.size

	ActionableTile.sprite

	ActionableTile.store_position()

	ActionableTile.store_screen_position()

	ActionableTile.update_sprite()

	ActionableTile.width









	BoardComplexItem
	BoardComplexItem
	BoardComplexItem.__init__()

	BoardComplexItem.animation

	BoardComplexItem.attach()

	BoardComplexItem.can_move()

	BoardComplexItem.collides_with()

	BoardComplexItem.column

	BoardComplexItem.debug_info()

	BoardComplexItem.detach()

	BoardComplexItem.display()

	BoardComplexItem.distance_to()

	BoardComplexItem.handle_notification()

	BoardComplexItem.heading

	BoardComplexItem.height

	BoardComplexItem.inventory_space

	BoardComplexItem.item()

	BoardComplexItem.layer

	BoardComplexItem.load()

	BoardComplexItem.model

	BoardComplexItem.notify()

	BoardComplexItem.overlappable()

	BoardComplexItem.particle_emitter

	BoardComplexItem.pickable()

	BoardComplexItem.position_as_vector()

	BoardComplexItem.render_to_buffer()

	BoardComplexItem.restorable()

	BoardComplexItem.row

	BoardComplexItem.screen_column

	BoardComplexItem.screen_row

	BoardComplexItem.serialize()

	BoardComplexItem.set_can_move()

	BoardComplexItem.set_overlappable()

	BoardComplexItem.set_pickable()

	BoardComplexItem.set_restorable()

	BoardComplexItem.size

	BoardComplexItem.sprite

	BoardComplexItem.store_position()

	BoardComplexItem.store_screen_position()

	BoardComplexItem.update_sprite()

	BoardComplexItem.width









	BoardItemComplexComponent
	BoardItemComplexComponent
	BoardItemComplexComponent.__init__()

	BoardItemComplexComponent.animation

	BoardItemComplexComponent.attach()

	BoardItemComplexComponent.can_move()

	BoardItemComplexComponent.collides_with()

	BoardItemComplexComponent.column

	BoardItemComplexComponent.debug_info()

	BoardItemComplexComponent.detach()

	BoardItemComplexComponent.display()

	BoardItemComplexComponent.distance_to()

	BoardItemComplexComponent.handle_notification()

	BoardItemComplexComponent.heading

	BoardItemComplexComponent.height

	BoardItemComplexComponent.inventory_space

	BoardItemComplexComponent.layer

	BoardItemComplexComponent.load()

	BoardItemComplexComponent.model

	BoardItemComplexComponent.notify()

	BoardItemComplexComponent.overlappable()

	BoardItemComplexComponent.particle_emitter

	BoardItemComplexComponent.pickable()

	BoardItemComplexComponent.position_as_vector()

	BoardItemComplexComponent.render_to_buffer()

	BoardItemComplexComponent.restorable()

	BoardItemComplexComponent.row

	BoardItemComplexComponent.screen_column

	BoardItemComplexComponent.screen_row

	BoardItemComplexComponent.serialize()

	BoardItemComplexComponent.set_can_move()

	BoardItemComplexComponent.set_overlappable()

	BoardItemComplexComponent.set_pickable()

	BoardItemComplexComponent.set_restorable()

	BoardItemComplexComponent.size

	BoardItemComplexComponent.store_position()

	BoardItemComplexComponent.store_screen_position()

	BoardItemComplexComponent.width









	BoardItem
	BoardItem
	BoardItem.__init__()

	BoardItem.animation

	BoardItem.attach()

	BoardItem.can_move()

	BoardItem.collides_with()

	BoardItem.column

	BoardItem.debug_info()

	BoardItem.detach()

	BoardItem.display()

	BoardItem.distance_to()

	BoardItem.handle_notification()

	BoardItem.heading

	BoardItem.height

	BoardItem.inventory_space

	BoardItem.layer

	BoardItem.load()

	BoardItem.model

	BoardItem.notify()

	BoardItem.overlappable()

	BoardItem.particle_emitter

	BoardItem.pickable()

	BoardItem.position_as_vector()

	BoardItem.render_to_buffer()

	BoardItem.restorable()

	BoardItem.row

	BoardItem.screen_column

	BoardItem.screen_row

	BoardItem.serialize()

	BoardItem.set_can_move()

	BoardItem.set_overlappable()

	BoardItem.set_pickable()

	BoardItem.set_restorable()

	BoardItem.size

	BoardItem.store_position()

	BoardItem.store_screen_position()

	BoardItem.width









	BoardItemVoid
	BoardItemVoid
	BoardItemVoid.__init__()

	BoardItemVoid.animation

	BoardItemVoid.attach()

	BoardItemVoid.can_move()

	BoardItemVoid.collides_with()

	BoardItemVoid.column

	BoardItemVoid.debug_info()

	BoardItemVoid.detach()

	BoardItemVoid.display()

	BoardItemVoid.distance_to()

	BoardItemVoid.handle_notification()

	BoardItemVoid.heading

	BoardItemVoid.height

	BoardItemVoid.inventory_space

	BoardItemVoid.layer

	BoardItemVoid.load()

	BoardItemVoid.model

	BoardItemVoid.notify()

	BoardItemVoid.overlappable()

	BoardItemVoid.particle_emitter

	BoardItemVoid.pickable()

	BoardItemVoid.position_as_vector()

	BoardItemVoid.render_to_buffer()

	BoardItemVoid.restorable()

	BoardItemVoid.row

	BoardItemVoid.screen_column

	BoardItemVoid.screen_row

	BoardItemVoid.serialize()

	BoardItemVoid.set_can_move()

	BoardItemVoid.set_overlappable()

	BoardItemVoid.set_pickable()

	BoardItemVoid.set_restorable()

	BoardItemVoid.size

	BoardItemVoid.store_position()

	BoardItemVoid.store_screen_position()

	BoardItemVoid.width









	Camera
	Camera
	Camera.__init__()

	Camera.animation

	Camera.attach()

	Camera.can_move()

	Camera.collides_with()

	Camera.column

	Camera.debug_info()

	Camera.detach()

	Camera.display()

	Camera.distance_to()

	Camera.dtmove

	Camera.handle_notification()

	Camera.has_inventory()

	Camera.heading

	Camera.height

	Camera.inventory_space

	Camera.layer

	Camera.load()

	Camera.model

	Camera.notify()

	Camera.overlappable()

	Camera.particle_emitter

	Camera.pickable()

	Camera.position_as_vector()

	Camera.render_to_buffer()

	Camera.restorable()

	Camera.row

	Camera.screen_column

	Camera.screen_row

	Camera.serialize()

	Camera.set_can_move()

	Camera.set_overlappable()

	Camera.set_pickable()

	Camera.set_restorable()

	Camera.size

	Camera.store_position()

	Camera.store_screen_position()

	Camera.width









	Character
	Character
	Character.__init__()

	Character.animation

	Character.attach()

	Character.can_move()

	Character.collides_with()

	Character.column

	Character.debug_info()

	Character.detach()

	Character.display()

	Character.distance_to()

	Character.dtmove

	Character.handle_notification()

	Character.has_inventory()

	Character.heading

	Character.height

	Character.inventory_space

	Character.layer

	Character.load()

	Character.model

	Character.notify()

	Character.overlappable()

	Character.particle_emitter

	Character.pickable()

	Character.position_as_vector()

	Character.render_to_buffer()

	Character.restorable()

	Character.row

	Character.screen_column

	Character.screen_row

	Character.serialize()

	Character.set_can_move()

	Character.set_overlappable()

	Character.set_pickable()

	Character.set_restorable()

	Character.size

	Character.store_position()

	Character.store_screen_position()

	Character.width









	ComplexDoor
	ComplexDoor
	ComplexDoor.__init__()

	ComplexDoor.animation

	ComplexDoor.attach()

	ComplexDoor.can_move()

	ComplexDoor.collides_with()

	ComplexDoor.column

	ComplexDoor.debug_info()

	ComplexDoor.detach()

	ComplexDoor.display()

	ComplexDoor.distance_to()

	ComplexDoor.handle_notification()

	ComplexDoor.heading

	ComplexDoor.height

	ComplexDoor.inventory_space

	ComplexDoor.item()

	ComplexDoor.layer

	ComplexDoor.load()

	ComplexDoor.model

	ComplexDoor.notify()

	ComplexDoor.overlappable()

	ComplexDoor.particle_emitter

	ComplexDoor.pickable()

	ComplexDoor.position_as_vector()

	ComplexDoor.render_to_buffer()

	ComplexDoor.restorable()

	ComplexDoor.row

	ComplexDoor.screen_column

	ComplexDoor.screen_row

	ComplexDoor.serialize()

	ComplexDoor.set_can_move()

	ComplexDoor.set_overlappable()

	ComplexDoor.set_pickable()

	ComplexDoor.set_restorable()

	ComplexDoor.size

	ComplexDoor.sprite

	ComplexDoor.store_position()

	ComplexDoor.store_screen_position()

	ComplexDoor.update_sprite()

	ComplexDoor.width









	ComplexNPC
	ComplexNPC
	ComplexNPC.__init__()

	ComplexNPC.animation

	ComplexNPC.attach()

	ComplexNPC.can_move()

	ComplexNPC.collides_with()

	ComplexNPC.column

	ComplexNPC.debug_info()

	ComplexNPC.detach()

	ComplexNPC.display()

	ComplexNPC.distance_to()

	ComplexNPC.dtmove

	ComplexNPC.handle_notification()

	ComplexNPC.has_inventory()

	ComplexNPC.heading

	ComplexNPC.height

	ComplexNPC.inventory_space

	ComplexNPC.item()

	ComplexNPC.layer

	ComplexNPC.load()

	ComplexNPC.model

	ComplexNPC.notify()

	ComplexNPC.overlappable()

	ComplexNPC.particle_emitter

	ComplexNPC.pickable()

	ComplexNPC.position_as_vector()

	ComplexNPC.render_to_buffer()

	ComplexNPC.restorable()

	ComplexNPC.row

	ComplexNPC.screen_column

	ComplexNPC.screen_row

	ComplexNPC.serialize()

	ComplexNPC.set_can_move()

	ComplexNPC.set_overlappable()

	ComplexNPC.set_pickable()

	ComplexNPC.set_restorable()

	ComplexNPC.size

	ComplexNPC.sprite

	ComplexNPC.store_position()

	ComplexNPC.store_screen_position()

	ComplexNPC.update_sprite()

	ComplexNPC.width









	ComplexPlayer
	ComplexPlayer
	ComplexPlayer.__init__()

	ComplexPlayer.animation

	ComplexPlayer.attach()

	ComplexPlayer.can_move()

	ComplexPlayer.collides_with()

	ComplexPlayer.column

	ComplexPlayer.debug_info()

	ComplexPlayer.detach()

	ComplexPlayer.display()

	ComplexPlayer.distance_to()

	ComplexPlayer.dtmove

	ComplexPlayer.handle_notification()

	ComplexPlayer.has_inventory()

	ComplexPlayer.heading

	ComplexPlayer.height

	ComplexPlayer.inventory_space

	ComplexPlayer.item()

	ComplexPlayer.layer

	ComplexPlayer.load()

	ComplexPlayer.model

	ComplexPlayer.notify()

	ComplexPlayer.overlappable()

	ComplexPlayer.particle_emitter

	ComplexPlayer.pickable()

	ComplexPlayer.position_as_vector()

	ComplexPlayer.render_to_buffer()

	ComplexPlayer.restorable()

	ComplexPlayer.row

	ComplexPlayer.screen_column

	ComplexPlayer.screen_row

	ComplexPlayer.serialize()

	ComplexPlayer.set_can_move()

	ComplexPlayer.set_overlappable()

	ComplexPlayer.set_pickable()

	ComplexPlayer.set_restorable()

	ComplexPlayer.size

	ComplexPlayer.sprite

	ComplexPlayer.store_position()

	ComplexPlayer.store_screen_position()

	ComplexPlayer.update_sprite()

	ComplexPlayer.width









	ComplexTreasure
	ComplexTreasure
	ComplexTreasure.__init__()

	ComplexTreasure.animation

	ComplexTreasure.attach()

	ComplexTreasure.can_move()

	ComplexTreasure.collides_with()

	ComplexTreasure.column

	ComplexTreasure.debug_info()

	ComplexTreasure.detach()

	ComplexTreasure.display()

	ComplexTreasure.distance_to()

	ComplexTreasure.handle_notification()

	ComplexTreasure.heading

	ComplexTreasure.height

	ComplexTreasure.inventory_space

	ComplexTreasure.item()

	ComplexTreasure.layer

	ComplexTreasure.load()

	ComplexTreasure.model

	ComplexTreasure.notify()

	ComplexTreasure.overlappable()

	ComplexTreasure.particle_emitter

	ComplexTreasure.pickable()

	ComplexTreasure.position_as_vector()

	ComplexTreasure.render_to_buffer()

	ComplexTreasure.restorable()

	ComplexTreasure.row

	ComplexTreasure.screen_column

	ComplexTreasure.screen_row

	ComplexTreasure.serialize()

	ComplexTreasure.set_can_move()

	ComplexTreasure.set_overlappable()

	ComplexTreasure.set_pickable()

	ComplexTreasure.set_restorable()

	ComplexTreasure.size

	ComplexTreasure.sprite

	ComplexTreasure.store_position()

	ComplexTreasure.store_screen_position()

	ComplexTreasure.update_sprite()

	ComplexTreasure.width









	ComplexWall
	ComplexWall
	ComplexWall.__init__()

	ComplexWall.animation

	ComplexWall.attach()

	ComplexWall.can_move()

	ComplexWall.collides_with()

	ComplexWall.column

	ComplexWall.debug_info()

	ComplexWall.detach()

	ComplexWall.display()

	ComplexWall.distance_to()

	ComplexWall.handle_notification()

	ComplexWall.heading

	ComplexWall.height

	ComplexWall.inventory_space

	ComplexWall.item()

	ComplexWall.layer

	ComplexWall.load()

	ComplexWall.model

	ComplexWall.notify()

	ComplexWall.overlappable()

	ComplexWall.particle_emitter

	ComplexWall.pickable()

	ComplexWall.position_as_vector()

	ComplexWall.render_to_buffer()

	ComplexWall.restorable()

	ComplexWall.row

	ComplexWall.screen_column

	ComplexWall.screen_row

	ComplexWall.serialize()

	ComplexWall.set_can_move()

	ComplexWall.set_overlappable()

	ComplexWall.set_pickable()

	ComplexWall.set_restorable()

	ComplexWall.size

	ComplexWall.sprite

	ComplexWall.store_position()

	ComplexWall.store_screen_position()

	ComplexWall.update_sprite()

	ComplexWall.width









	Door
	Door
	Door.__init__()

	Door.animation

	Door.attach()

	Door.can_move()

	Door.collides_with()

	Door.column

	Door.debug_info()

	Door.detach()

	Door.display()

	Door.distance_to()

	Door.handle_notification()

	Door.heading

	Door.height

	Door.inventory_space

	Door.layer

	Door.load()

	Door.model

	Door.notify()

	Door.overlappable()

	Door.particle_emitter

	Door.pickable()

	Door.position_as_vector()

	Door.render_to_buffer()

	Door.restorable()

	Door.row

	Door.screen_column

	Door.screen_row

	Door.serialize()

	Door.set_can_move()

	Door.set_overlappable()

	Door.set_pickable()

	Door.set_restorable()

	Door.size

	Door.store_position()

	Door.store_screen_position()

	Door.width









	GenericActionableStructure
	GenericActionableStructure
	GenericActionableStructure.__init__()

	GenericActionableStructure.activate()

	GenericActionableStructure.animation

	GenericActionableStructure.attach()

	GenericActionableStructure.can_move()

	GenericActionableStructure.collides_with()

	GenericActionableStructure.column

	GenericActionableStructure.debug_info()

	GenericActionableStructure.detach()

	GenericActionableStructure.display()

	GenericActionableStructure.distance_to()

	GenericActionableStructure.handle_notification()

	GenericActionableStructure.heading

	GenericActionableStructure.height

	GenericActionableStructure.inventory_space

	GenericActionableStructure.layer

	GenericActionableStructure.load()

	GenericActionableStructure.model

	GenericActionableStructure.notify()

	GenericActionableStructure.overlappable()

	GenericActionableStructure.particle_emitter

	GenericActionableStructure.pickable()

	GenericActionableStructure.position_as_vector()

	GenericActionableStructure.render_to_buffer()

	GenericActionableStructure.restorable()

	GenericActionableStructure.row

	GenericActionableStructure.screen_column

	GenericActionableStructure.screen_row

	GenericActionableStructure.serialize()

	GenericActionableStructure.set_can_move()

	GenericActionableStructure.set_overlappable()

	GenericActionableStructure.set_pickable()

	GenericActionableStructure.set_restorable()

	GenericActionableStructure.size

	GenericActionableStructure.store_position()

	GenericActionableStructure.store_screen_position()

	GenericActionableStructure.width









	GenericStructureComplexComponent
	GenericStructureComplexComponent
	GenericStructureComplexComponent.__init__()

	GenericStructureComplexComponent.animation

	GenericStructureComplexComponent.attach()

	GenericStructureComplexComponent.can_move()

	GenericStructureComplexComponent.collides_with()

	GenericStructureComplexComponent.column

	GenericStructureComplexComponent.debug_info()

	GenericStructureComplexComponent.detach()

	GenericStructureComplexComponent.display()

	GenericStructureComplexComponent.distance_to()

	GenericStructureComplexComponent.handle_notification()

	GenericStructureComplexComponent.heading

	GenericStructureComplexComponent.height

	GenericStructureComplexComponent.inventory_space

	GenericStructureComplexComponent.layer

	GenericStructureComplexComponent.load()

	GenericStructureComplexComponent.model

	GenericStructureComplexComponent.notify()

	GenericStructureComplexComponent.overlappable()

	GenericStructureComplexComponent.particle_emitter

	GenericStructureComplexComponent.pickable()

	GenericStructureComplexComponent.position_as_vector()

	GenericStructureComplexComponent.render_to_buffer()

	GenericStructureComplexComponent.restorable()

	GenericStructureComplexComponent.row

	GenericStructureComplexComponent.screen_column

	GenericStructureComplexComponent.screen_row

	GenericStructureComplexComponent.serialize()

	GenericStructureComplexComponent.set_can_move()

	GenericStructureComplexComponent.set_overlappable()

	GenericStructureComplexComponent.set_pickable()

	GenericStructureComplexComponent.set_restorable()

	GenericStructureComplexComponent.size

	GenericStructureComplexComponent.store_position()

	GenericStructureComplexComponent.store_screen_position()

	GenericStructureComplexComponent.width









	GenericStructure
	GenericStructure
	GenericStructure.__init__()

	GenericStructure.animation

	GenericStructure.attach()

	GenericStructure.can_move()

	GenericStructure.collides_with()

	GenericStructure.column

	GenericStructure.debug_info()

	GenericStructure.detach()

	GenericStructure.display()

	GenericStructure.distance_to()

	GenericStructure.handle_notification()

	GenericStructure.heading

	GenericStructure.height

	GenericStructure.inventory_space

	GenericStructure.layer

	GenericStructure.load()

	GenericStructure.model

	GenericStructure.notify()

	GenericStructure.overlappable()

	GenericStructure.particle_emitter

	GenericStructure.pickable()

	GenericStructure.position_as_vector()

	GenericStructure.render_to_buffer()

	GenericStructure.restorable()

	GenericStructure.row

	GenericStructure.screen_column

	GenericStructure.screen_row

	GenericStructure.serialize()

	GenericStructure.set_can_move()

	GenericStructure.set_overlappable()

	GenericStructure.set_pickable()

	GenericStructure.set_restorable()

	GenericStructure.size

	GenericStructure.store_position()

	GenericStructure.store_screen_position()

	GenericStructure.width









	Immovable
	Immovable
	Immovable.__init__()

	Immovable.animation

	Immovable.attach()

	Immovable.can_move()

	Immovable.collides_with()

	Immovable.column

	Immovable.debug_info()

	Immovable.detach()

	Immovable.display()

	Immovable.distance_to()

	Immovable.handle_notification()

	Immovable.heading

	Immovable.height

	Immovable.inventory_space

	Immovable.layer

	Immovable.load()

	Immovable.model

	Immovable.notify()

	Immovable.overlappable()

	Immovable.particle_emitter

	Immovable.pickable()

	Immovable.position_as_vector()

	Immovable.render_to_buffer()

	Immovable.restorable()

	Immovable.row

	Immovable.screen_column

	Immovable.screen_row

	Immovable.serialize()

	Immovable.set_can_move()

	Immovable.set_overlappable()

	Immovable.set_pickable()

	Immovable.set_restorable()

	Immovable.size

	Immovable.store_position()

	Immovable.store_screen_position()

	Immovable.width









	Movable
	Movable
	Movable.__init__()

	Movable.animation

	Movable.attach()

	Movable.can_move()

	Movable.collides_with()

	Movable.column

	Movable.debug_info()

	Movable.detach()

	Movable.display()

	Movable.distance_to()

	Movable.dtmove

	Movable.handle_notification()

	Movable.has_inventory()

	Movable.heading

	Movable.height

	Movable.inventory_space

	Movable.layer

	Movable.load()

	Movable.model

	Movable.notify()

	Movable.overlappable()

	Movable.particle_emitter

	Movable.pickable()

	Movable.position_as_vector()

	Movable.render_to_buffer()

	Movable.restorable()

	Movable.row

	Movable.screen_column

	Movable.screen_row

	Movable.serialize()

	Movable.set_can_move()

	Movable.set_overlappable()

	Movable.set_pickable()

	Movable.set_restorable()

	Movable.size

	Movable.store_position()

	Movable.store_screen_position()

	Movable.width









	NPC
	NPC
	NPC.__init__()

	NPC.animation

	NPC.attach()

	NPC.can_move()

	NPC.collides_with()

	NPC.column

	NPC.debug_info()

	NPC.detach()

	NPC.display()

	NPC.distance_to()

	NPC.dtmove

	NPC.handle_notification()

	NPC.has_inventory()

	NPC.heading

	NPC.height

	NPC.inventory_space

	NPC.layer

	NPC.load()

	NPC.model

	NPC.notify()

	NPC.overlappable()

	NPC.particle_emitter

	NPC.pickable()

	NPC.position_as_vector()

	NPC.render_to_buffer()

	NPC.restorable()

	NPC.row

	NPC.screen_column

	NPC.screen_row

	NPC.serialize()

	NPC.set_can_move()

	NPC.set_overlappable()

	NPC.set_pickable()

	NPC.set_restorable()

	NPC.size

	NPC.store_position()

	NPC.store_screen_position()

	NPC.width









	Player
	Player
	Player.__init__()

	Player.animation

	Player.attach()

	Player.can_move()

	Player.collides_with()

	Player.column

	Player.debug_info()

	Player.detach()

	Player.display()

	Player.distance_to()

	Player.dtmove

	Player.handle_notification()

	Player.has_inventory()

	Player.heading

	Player.height

	Player.inventory_space

	Player.layer

	Player.load()

	Player.model

	Player.notify()

	Player.overlappable()

	Player.particle_emitter

	Player.pickable()

	Player.position_as_vector()

	Player.render_to_buffer()

	Player.restorable()

	Player.row

	Player.screen_column

	Player.screen_row

	Player.serialize()

	Player.set_can_move()

	Player.set_overlappable()

	Player.set_pickable()

	Player.set_restorable()

	Player.size

	Player.store_position()

	Player.store_screen_position()

	Player.width









	Projectile
	Projectile
	Projectile.__init__()

	Projectile.add_directional_animation()

	Projectile.add_directional_model()

	Projectile.animation

	Projectile.attach()

	Projectile.can_move()

	Projectile.collides_with()

	Projectile.column

	Projectile.debug_info()

	Projectile.detach()

	Projectile.direction

	Projectile.directional_animation()

	Projectile.directional_model()

	Projectile.display()

	Projectile.distance_to()

	Projectile.dtmove

	Projectile.handle_notification()

	Projectile.has_inventory()

	Projectile.heading

	Projectile.height

	Projectile.hit()

	Projectile.inventory_space

	Projectile.layer

	Projectile.load()

	Projectile.model

	Projectile.notify()

	Projectile.overlappable()

	Projectile.particle_emitter

	Projectile.pickable()

	Projectile.position_as_vector()

	Projectile.remove_directional_animation()

	Projectile.remove_directional_model()

	Projectile.render_to_buffer()

	Projectile.restorable()

	Projectile.row

	Projectile.screen_column

	Projectile.screen_row

	Projectile.serialize()

	Projectile.set_can_move()

	Projectile.set_direction()

	Projectile.set_overlappable()

	Projectile.set_pickable()

	Projectile.set_restorable()

	Projectile.size

	Projectile.store_position()

	Projectile.store_screen_position()

	Projectile.width









	TextItem
	TextItem
	TextItem.__init__()

	TextItem.animation

	TextItem.attach()

	TextItem.can_move()

	TextItem.collides_with()

	TextItem.column

	TextItem.debug_info()

	TextItem.detach()

	TextItem.display()

	TextItem.distance_to()

	TextItem.handle_notification()

	TextItem.heading

	TextItem.height

	TextItem.inventory_space

	TextItem.item()

	TextItem.layer

	TextItem.load()

	TextItem.model

	TextItem.notify()

	TextItem.overlappable()

	TextItem.particle_emitter

	TextItem.pickable()

	TextItem.position_as_vector()

	TextItem.render_to_buffer()

	TextItem.restorable()

	TextItem.row

	TextItem.screen_column

	TextItem.screen_row

	TextItem.serialize()

	TextItem.set_can_move()

	TextItem.set_overlappable()

	TextItem.set_pickable()

	TextItem.set_restorable()

	TextItem.size

	TextItem.sprite

	TextItem.store_position()

	TextItem.store_screen_position()

	TextItem.text

	TextItem.update_sprite()

	TextItem.width









	Tile
	Tile
	Tile.__init__()

	Tile.animation

	Tile.attach()

	Tile.can_move()

	Tile.collides_with()

	Tile.column

	Tile.debug_info()

	Tile.detach()

	Tile.display()

	Tile.distance_to()

	Tile.handle_notification()

	Tile.heading

	Tile.height

	Tile.inventory_space

	Tile.item()

	Tile.layer

	Tile.load()

	Tile.model

	Tile.notify()

	Tile.overlappable()

	Tile.particle_emitter

	Tile.pickable()

	Tile.position_as_vector()

	Tile.render_to_buffer()

	Tile.restorable()

	Tile.row

	Tile.screen_column

	Tile.screen_row

	Tile.serialize()

	Tile.set_can_move()

	Tile.set_overlappable()

	Tile.set_pickable()

	Tile.set_restorable()

	Tile.size

	Tile.sprite

	Tile.store_position()

	Tile.store_screen_position()

	Tile.update_sprite()

	Tile.width









	Treasure
	Treasure
	Treasure.__init__()

	Treasure.animation

	Treasure.attach()

	Treasure.can_move()

	Treasure.collides_with()

	Treasure.column

	Treasure.debug_info()

	Treasure.detach()

	Treasure.display()

	Treasure.distance_to()

	Treasure.handle_notification()

	Treasure.heading

	Treasure.height

	Treasure.inventory_space

	Treasure.layer

	Treasure.load()

	Treasure.model

	Treasure.notify()

	Treasure.overlappable()

	Treasure.particle_emitter

	Treasure.pickable()

	Treasure.position_as_vector()

	Treasure.render_to_buffer()

	Treasure.restorable()

	Treasure.row

	Treasure.screen_column

	Treasure.screen_row

	Treasure.serialize()

	Treasure.set_can_move()

	Treasure.set_overlappable()

	Treasure.set_pickable()

	Treasure.set_restorable()

	Treasure.size

	Treasure.store_position()

	Treasure.store_screen_position()

	Treasure.width









	Wall
	Wall
	Wall.__init__()

	Wall.animation

	Wall.attach()

	Wall.can_move()

	Wall.collides_with()

	Wall.column

	Wall.debug_info()

	Wall.detach()

	Wall.display()

	Wall.distance_to()

	Wall.handle_notification()

	Wall.heading

	Wall.height

	Wall.inventory_space

	Wall.layer

	Wall.load()

	Wall.model

	Wall.notify()

	Wall.overlappable()

	Wall.particle_emitter

	Wall.pickable()

	Wall.position_as_vector()

	Wall.render_to_buffer()

	Wall.restorable()

	Wall.row

	Wall.screen_column

	Wall.screen_row

	Wall.serialize()

	Wall.set_can_move()

	Wall.set_overlappable()

	Wall.set_pickable()

	Wall.set_restorable()

	Wall.size

	Wall.store_position()

	Wall.store_screen_position()

	Wall.width
















            

          

      

      

    

  

  
    
    

    Actionable
    

    

    
 
  

    
      
          
            
  
Actionable


	
class pygamelib.board_items.Actionable(action=None, action_parameters=None, perm=None, **kwargs)

	Bases: Immovable

This class derives Immovable. It adds the
ability to an Immovable BoardItem to be triggered and execute some code.

If an actionable board item is activated by an item (this mechanism is taken care of
by the Board class), the function passed as the action parameter is called with
action_parameters as parameters. Subclass may implement a different mechanism for
activation so please read their documentations.


	Parameters:

	
	action (function) – the reference to a function (Attention: no parentheses at
the end of the function name). It needs to be callable.


	action_parameters (list) – the parameters to the action function.


	perm (constants) – The permission that defines what types of items can actually
activate the actionable. The permission has to be one of the
permissions defined in constants. By default it is set to
Permission.PLAYER_AUTHORIZED.








On top of these parameters Actionable accepts all parameters from
Immovable and therefor from
BoardItem.


Note

The common way to use this class is to use
GenericActionableStructure. Please refer to
GenericActionableStructure
for more details.




Important

There’s a complete tutorial about Actionable items on the pygamelib
wiki [https://github.com/pygamelib/pygamelib/wiki/Actionable-Items]




	
__init__(action=None, action_parameters=None, perm=None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([action, action_parameters, perm])

	Like the object class, this class constructor takes no parameter.



	activate()

	This function is calling the action function with the action_parameters.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
activate()

	This function is calling the action function with the
action_parameters.

The action callback function should therefor have a signature like:


def my_callback_function(actionable, action_parameters)




With actionable being the Actionable current reference to self.

Usually it’s automatically called by move()
when a Player or NPC (see board_items)






	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    ActionableTile
    

    

    
 
  

    
      
          
            
  
ActionableTile


	
class pygamelib.board_items.ActionableTile(**kwargs)

	Bases: Actionable, Tile

The ActionableTile is the complex (i.e: multi-cells items) version of the
GenericActionableStructure. It allows you to create any type of in game
object that is represented with more than one character in the terminal and that is
Actionable.
Actionable object have a callback system that is automatically called when the
player collide with the object.


Important

There’s a complete tutorial about Actionable items on the pygamelib
wiki [https://github.com/pygamelib/pygamelib/wiki/Actionable-Items]




	
__init__(**kwargs)

	Please have a look at the documentation for Tile and
Actionable for the list of possible constructor’s parameters.





Methods



	__init__(**kwargs)

	Please have a look at the documentation for Tile and Actionable for the list of possible constructor's parameters.



	activate()

	This function is calling the action function with the action_parameters.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	A Tile cannot move.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	item(row, column)

	Return the item component at the row, column position if it is within the complex item's boundaries.



	load(data)

	Load data and create a new Tile out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the complex board item from the display buffer to the frame buffer.



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.



	update_sprite()

	Update the complex item with the current sprite.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	sprite

	A property to easily access and update a complex item's sprite.



	width

	Convenience method to get the width of the item.







	
activate()

	This function is calling the action function with the
action_parameters.

The action callback function should therefor have a signature like:


def my_callback_function(actionable, action_parameters)




With actionable being the Actionable current reference to self.

Usually it’s automatically called by move()
when a Player or NPC (see board_items)






	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	A Tile cannot move.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
item(row, column)

	Return the item component at the row, column position if it is within the
complex item’s boundaries.


	Return type:

	~pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new Tile out of it.


	Parameters:

	data (dict) – Data to create a new tile (usually generated by
serialize())



	Returns:

	A new complex npc.



	Return type:

	~pygamelib.board_items.Tile










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
property sprite

	A property to easily access and update a complex item’s sprite.


	Parameters:

	new_sprite (Sprite) – The sprite to set





Example:

npc1 = board_items.ComplexNpc(
                                sprite=npc_sprite_collection['npc1_idle']
                            )
# to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:
    game.screen.place(
        base.Text(
            'Big boi detected!!!',
            core.Color(255,0,0),
            style=TextStyle.BOLD,
        ),
        notifications.row,
        notifications.column,
    )
# And to set it:
if game.player in game.neighbors(3, npc1):
    npc1.sprite = npc_sprite_collection['npc1_fight']










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
update_sprite()

	Update the complex item with the current sprite.


Note

This method use to need to be called every time the sprite was
changed. Starting with version 1.3.0, it is no longer a requirement as
BoardComplexItem.sprite was turned into a property that takes care of calling
update_sprite().



Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:
    # This is not only no longer required but also wasteful as
    # update_sprite() is called twice here.
    item.sprite = s
    item.update_sprite()
    board.move(item, Direction.RIGHT, 1)
    time.sleep(0.2)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    BoardComplexItem
    

    

    
 
  

    
      
          
            
  
BoardComplexItem


	
class pygamelib.board_items.BoardComplexItem(sprite=None, size=None, null_sprixel=None, base_item_type=None, **kwargs)

	Bases: BoardItem


New in version 1.2.0.



A BoardComplexItem is the base item for multi cells elements. It inherits from
BoardItem and accepts all its parameters.

The main difference is that a complex item can use
Sprite as representation.

You can see a complex item as a collection of other items that are ruled by the
same laws. They behave as one but a complex item is actually made of complex
components. At first it is not important but you may want to exploit that as a
feature for your game.

On top of BoardItem the constructor accepts the following parameters:


	Parameters:

	
	sprite (Sprite) – A sprite representing the item.


	size (array[int]) – The size of the item as [WIDTH, HEIGHT]. It impact movement and
collision detection amongst other things. If it is left empty the Sprite size is
used. If no sprite is given to the constructor the default size is 2x2.


	base_item_type (BoardItemComplexComponent) – the building block of the complex item. The complex item is
built from a 2D array of base items.






	Null_sprixel:

	The null_sprixel is a bit of a special parameter: during construction
a null sprixel is replaced by a BoardItemVoid. This is a trick to show the
background (i.e transparency). A sprixel can take the color of the background
but a complex item with a null_sprixel that correspond to transparent zone of a
sprite will really be transparent and show the background.



	Null_sprixel:

	Sprixel






	
__init__(sprite=None, size=None, null_sprixel=None, base_item_type=None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([sprite, size, null_sprixel, ...])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Returns True if the item can move, False otherwise.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	item(row, column)

	Return the item component at the row, column position if it is within the complex item's boundaries.



	load(data)

	Load data and create a new BoardComplexItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the complex board item from the display buffer to the frame buffer.



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.



	update_sprite()

	Update the complex item with the current sprite.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	sprite

	A property to easily access and update a complex item's sprite.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
    print('The item can move')










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
item(row, column)

	Return the item component at the row, column position if it is within the
complex item’s boundaries.


	Return type:

	~pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardComplexItem out of it.


	Parameters:

	data (dict) – Data to create a new complex item (usually generated by
serialize())



	Returns:

	A new complex item.



	Return type:

	~pygamelib.board_items.BoardComplexItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
property sprite

	A property to easily access and update a complex item’s sprite.


	Parameters:

	new_sprite (Sprite) – The sprite to set





Example:

npc1 = board_items.ComplexNpc(
                                sprite=npc_sprite_collection['npc1_idle']
                            )
# to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:
    game.screen.place(
        base.Text(
            'Big boi detected!!!',
            core.Color(255,0,0),
            style=TextStyle.BOLD,
        ),
        notifications.row,
        notifications.column,
    )
# And to set it:
if game.player in game.neighbors(3, npc1):
    npc1.sprite = npc_sprite_collection['npc1_fight']










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
update_sprite()

	Update the complex item with the current sprite.


Note

This method use to need to be called every time the sprite was
changed. Starting with version 1.3.0, it is no longer a requirement as
BoardComplexItem.sprite was turned into a property that takes care of calling
update_sprite().



Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:
    # This is not only no longer required but also wasteful as
    # update_sprite() is called twice here.
    item.sprite = s
    item.update_sprite()
    board.move(item, Direction.RIGHT, 1)
    time.sleep(0.2)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    BoardItemComplexComponent
    

    

    
 
  

    
      
          
            
  
BoardItemComplexComponent


	
class pygamelib.board_items.BoardItemComplexComponent(**kwargs)

	Bases: BoardItem

The default component of a complex item.

It is literally just a BoardItem but is subclassed for easier identification.

It is however scanning its parent for the item’s basic properties (overlappable,
restorable, etc.)

A component can never be pickable by itself.


	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Returns True if the item can move, False otherwise.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns False.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
    print('The item can move')










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns False. A component is never pickable by itself (either the whole complex
item is pickable or not, but not partially)

Example:

if item.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    BoardItem
    

    

    
 
  

    
      
          
            
  
BoardItem


	
class pygamelib.board_items.BoardItem(sprixel=None, model=None, name=None, item_type=None, parent=None, pickable=False, overlappable=False, restorable=False, can_move=False, pos=None, value=None, inventory_space=1, animation: Animation = None, particle_emitter=None)

	Bases: PglBaseObject

Base class for any item that will be placed on a Board.


	Parameters:

	
	type (str) – A type you want to give your item. It can be any string. You can then
use the type for sorting or grouping for example.


	name (str) – A name for this item. For identification purpose.


	pos (list) – the position of this item. When the item is managed by the Board and
Game engine this member hold the last updated position of the item. It is not
updated if you manually move the item. It must be an array of
2 integers [row,column]


	model (str) – The model to use to display this item on the Board. Be mindful of the
space it will require. Default value is ‘*’. This parameter is now deprecated in
favor of “sprixel”. If both “sprixel” and “model” are specified, “model” is
ignored.


	parent – The parent object of the board item. Usually a Board or Game object.


	sprixel (Sprixel) – The sprixel that will represent the item on the Board.


	pickable (bool) – Represent the capacity for a BoardItem to be pick-up by player or
NPC. This parameter is True or False. If sets to None, it’ll be set to False.


	overlappable (bool) – Represent to be overlapped by another BoardItem. This parameter
is True or False. If sets to None, it’ll be set to False.


	restorable (bool) – Represent the capacity for an Immovable BoardItem to be restored
by the board if the item is overlappable and has been overlapped by another
BoardItem. This parameter is True or False. If sets to None, it’ll be set to
False.


	can_move (bool) – Represent the ability of the BoardItem to move on the Board. If
this parameter is False, the Board.move() method will not allow the item to move.
This parameter is True or False. If sets to None, it’ll be set to False.


	pos – The position of the BoardItem on a Board.
Please make sure that you understand what you do before changing that parameter.
The position of an item is managed by the Board object and will be updated. In
most cases you don’t need to use that parameter. The position is a list of 2 or 3
int: [row, column, layer].


	value (int | float) – The value of an item. It can be used for any game purpose: a score
indicator, a trade value, the amount of XP to grant to a player on a kill, etc.


	inventory_space (int) – The space that the item takes in the
pygamelib.engine.Inventory. This parameter used to be available only for
Immovable items but since 1.3.0, every BoardItem can be configured to be
pickable, so every BoardItem can now take space in the inventory. Default value
is 1.


	animation (Animation) – An animation to animate the item sprixel.


	particle_emitter (ParticleEmitter) – A particle emitter that is attached to this item.









Note

Starting with version 1.2.0 and introduction of complex items,
BoardItems have a size. That size CANNOT be set. It is always 1x1.
This is because a BoardItem always takes 1 cell, regardless of its actual number
of characters. The size is a read-only property.




Important

In version 1.3.0 the BoardItem object has been reworked to make sure
that the pickable, restorable, overlappable and can_move properties are
configurable for all items independently of their type. This fixes an issue with
restorable: only Immovable objects could be restorable. Now all items
can be any combination of these properties. As a developer you are now
encouraged to use the corresponding functions to determine the abilities of an
item.




Warning

An item cannot be restorable and pickable at the same time. If it’s
pickable, it’s put into the inventory of the item overlapping it. Therefor, it
cannot be restored. If both restorable and pickable are set to True, one of the 2
is set to False depending on the value of overlappable: if True restorable is set
to True and pickable to False and the contrary if overlappable is False.




	
__init__(sprixel=None, model=None, name=None, item_type=None, parent=None, pickable=False, overlappable=False, restorable=False, can_move=False, pos=None, value=None, inventory_space=1, animation: Animation = None, particle_emitter=None)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([sprixel, model, name, item_type, ...])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Returns True if the item can move, False otherwise.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
    print('The item can move')










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    BoardItemVoid
    

    

    
 
  

    
      
          
            
  
BoardItemVoid


	
class pygamelib.board_items.BoardItemVoid(**kwargs)

	Bases: BoardItem

A class that represent a void cell.


	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Returns True if the item can move, False otherwise.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	A BoardItemVoid is obviously overlappable (so player and NPC can walk over).



	pickable()

	A BoardItemVoid is not pickable, therefor this method return false.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
    print('The item can move')










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	A BoardItemVoid is obviously overlappable (so player and NPC can walk over).


	Returns:

	True










	
property particle_emitter

	




	
pickable()

	A BoardItemVoid is not pickable, therefor this method return false.


	Returns:

	False










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Camera
    

    

    
 
  

    
      
          
            
  
Camera


	
class pygamelib.board_items.Camera(actuator=None, **kwargs)

	Bases: Movable


New in version 1.3.0.



A Camera is a special item: it does not appear on the Board and actually is not even
registered on it. It is only an item that you can center the board on (when using
partial display). It helps for cut scenes for example.

The main difference with a regular BoardItem is that the row and column properties
are writable. This means that you can directly manipulate its coordinates and
partially render a huge board around that focal point.

The Screen buffer rendering system introduced in version
1.3.0 require a board item to be declared as the focus point of the
board if partial display is enabled.

The Camera object inherits from Movable and can accept an actuator parameter.
However, it is up to the developer to activate the actuators mechanics as the
Camera object does not register as a NPC or a Player.
The support for actuators is mainly thought for pre-scripted cut-scenes.

Example:

# This example leverage the Screen buffer system introduced in v1.3.0.
# It pans the camera over a huge map. The Screen.update() method automatically
# uses the Board.partial_display_focus coordinates to adjust the displayed area.
camera = Camera()
huge_board.partial_display_focus = camera
while camera.column < huge_board.width:
    camera.column += 1
    game.screen.update()






	
__init__(actuator=None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([actuator])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Movable implements can_move().



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	has_inventory()

	This is a virtual method that must be implemented in deriving class.



	load(data)

	Load data and create a new Movable out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Serialize the Immovable object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	dtmove

	



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move() → bool

	Movable implements can_move().


	Returns:

	True



	Return type:

	Boolean










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
property dtmove

	




	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
has_inventory() → bool

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a Movable to have an inventory.






	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new Movable out of it.


	Parameters:

	data (dict) – Data to create a new movable item (usually generated by
serialize())



	Returns:

	A new complex item.



	Return type:

	~pygamelib.board_items.Movable










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serialize the Immovable object.

This returns a dictionary that contains all the key/value pairs that makes up
the object.






	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Character
    

    

    
 
  

    
      
          
            
  
Character


	
class pygamelib.board_items.Character(max_hp=None, hp=None, max_mp=None, mp=None, remaining_lives=None, attack_power=None, defense_power=None, strength=None, intelligence=None, agility=None, **kwargs)

	Bases: Movable

A base class for a character (playable or not)


	Parameters:

	
	agility (int) – Represent the agility of the character


	attack_power (int) – Represent the attack power of the character.


	defense_power (int) – Represent the defense_power of the character


	hp (int) – Represent the hp (Health Point) of the character


	intelligence (int) – Represent the intelligence of the character


	max_hp (int) – Represent the max_hp of the character


	max_mp (int) – Represent the max_mp of the character


	mp (int) – Represent the mp (Mana/Magic Point) of the character


	remaining_lives (int) – Represent the remaining_lives of the character. For a NPC
it is generally a good idea to set that to 1. Unless the NPC is a multi phased
boss.


	strength (int) – Represent the strength of the character








These characteristics are here to be used by the game logic but very few of them are
actually used by the Game (pygamelib.engine) engine.


	
__init__(max_hp=None, hp=None, max_mp=None, mp=None, remaining_lives=None, attack_power=None, defense_power=None, strength=None, intelligence=None, agility=None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([max_hp, hp, max_mp, mp, ...])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Movable implements can_move().



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	has_inventory()

	This is a virtual method that must be implemented in deriving class.



	load(data)

	Load data and create a new Character out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Serialize the Character object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	dtmove

	



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move() → bool

	Movable implements can_move().


	Returns:

	True



	Return type:

	Boolean










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
property dtmove

	




	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
has_inventory() → bool

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a Movable to have an inventory.






	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new Character out of it.


	Parameters:

	data (dict) – Data to create a new character item (usually generated by
serialize())



	Returns:

	A new character item.



	Return type:

	~pygamelib.board_items.Character










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serialize the Character object.

This returns a dictionary that contains all the key/value pairs that makes up
the object.






	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    ComplexDoor
    

    

    
 
  

    
      
          
            
  
ComplexDoor


	
class pygamelib.board_items.ComplexDoor(**kwargs)

	Bases: Door, BoardComplexItem


New in version 1.2.0.



A complex door is nothing more than a Door mashed with a
BoardComplexItem.

It supports all parameters of both with inheritance going first to Door and second
to BoardComplexItem.

The main interest is of course the multiple cell representation and the Sprites
support.

Example:

castle_door = ComplexDoor(
        sprite=sprite_castle_door
    )






	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	item(row, column)

	Return the item component at the row, column position if it is within the complex item's boundaries.



	load(data)

	Load data and create a new ComplexDoor out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the complex board item from the display buffer to the frame buffer.



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.



	update_sprite()

	Update the complex item with the current sprite.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	sprite

	A property to easily access and update a complex item's sprite.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
item(row, column)

	Return the item component at the row, column position if it is within the
complex item’s boundaries.


	Return type:

	~pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new ComplexDoor out of it.


	Parameters:

	data (dict) – Data to create a new complex door (usually generated by
serialize())



	Returns:

	A new complex npc.



	Return type:

	~pygamelib.board_items.ComplexDoor










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
property sprite

	A property to easily access and update a complex item’s sprite.


	Parameters:

	new_sprite (Sprite) – The sprite to set





Example:

npc1 = board_items.ComplexNpc(
                                sprite=npc_sprite_collection['npc1_idle']
                            )
# to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:
    game.screen.place(
        base.Text(
            'Big boi detected!!!',
            core.Color(255,0,0),
            style=TextStyle.BOLD,
        ),
        notifications.row,
        notifications.column,
    )
# And to set it:
if game.player in game.neighbors(3, npc1):
    npc1.sprite = npc_sprite_collection['npc1_fight']










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
update_sprite()

	Update the complex item with the current sprite.


Note

This method use to need to be called every time the sprite was
changed. Starting with version 1.3.0, it is no longer a requirement as
BoardComplexItem.sprite was turned into a property that takes care of calling
update_sprite().



Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:
    # This is not only no longer required but also wasteful as
    # update_sprite() is called twice here.
    item.sprite = s
    item.update_sprite()
    board.move(item, Direction.RIGHT, 1)
    time.sleep(0.2)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    ComplexNPC
    

    

    
 
  

    
      
          
            
  
ComplexNPC


	
class pygamelib.board_items.ComplexNPC(**kwargs)

	Bases: NPC, BoardComplexItem


New in version 1.2.0.



A complex NPC is nothing more than a NPC mashed with a
BoardComplexItem.

It supports all parameters of both with inheritance going first to NPC and second
to BoardComplexItem.

The main interest is of course the multiple cell representation and the Sprites
support.

Example:

player = ComplexNPC(
        name='Idiot McComplexStupid',
        sprite=npc_sprite_collection['troll_licking_stones']
    )






	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Movable implements can_move().



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	has_inventory()

	Define if the NPC has an inventory.



	item(row, column)

	Return the item component at the row, column position if it is within the complex item's boundaries.



	load(data)

	Load data and create a new ComplexNPC out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Define if the NPC is pickable.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the complex board item from the display buffer to the frame buffer.



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Serialize the NPC object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.



	update_sprite()

	Update the complex item with the current sprite.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	dtmove

	



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	sprite

	A property to easily access and update a complex item's sprite.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move() → bool

	Movable implements can_move().


	Returns:

	True



	Return type:

	Boolean










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
property dtmove

	




	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
has_inventory()

	Define if the NPC has an inventory.

This method returns false because the game engine doesn’t manage NPC inventory
yet but it could be in the future. It’s a good habit to check the value returned
by this function.


	Returns:

	False



	Return type:

	Boolean





Example:

if mynpc.has_inventory():
    print("Cool: we can pickpocket that NPC!")
else:
    print("No pickpocketing XP for us today :(")










	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
item(row, column)

	Return the item component at the row, column position if it is within the
complex item’s boundaries.


	Return type:

	~pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new ComplexNPC out of it.


	Parameters:

	data (dict) – Data to create a new complex npc (usually generated by
serialize())



	Returns:

	A new complex npc.



	Return type:

	~pygamelib.board_items.ComplexNPC










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Define if the NPC is pickable.

Obviously this method always return False.


	Returns:

	False



	Return type:

	Boolean





Example:

if mynpc.pickable():
    Utils.warn("Something is fishy, that NPC is pickable"
        "but is not a Pokemon...")










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serialize the NPC object.

This returns a dictionary that contains all the key/value pairs that makes up
the object.






	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
property sprite

	A property to easily access and update a complex item’s sprite.


	Parameters:

	new_sprite (Sprite) – The sprite to set





Example:

npc1 = board_items.ComplexNpc(
                                sprite=npc_sprite_collection['npc1_idle']
                            )
# to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:
    game.screen.place(
        base.Text(
            'Big boi detected!!!',
            core.Color(255,0,0),
            style=TextStyle.BOLD,
        ),
        notifications.row,
        notifications.column,
    )
# And to set it:
if game.player in game.neighbors(3, npc1):
    npc1.sprite = npc_sprite_collection['npc1_fight']










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
update_sprite()

	Update the complex item with the current sprite.


Note

This method use to need to be called every time the sprite was
changed. Starting with version 1.3.0, it is no longer a requirement as
BoardComplexItem.sprite was turned into a property that takes care of calling
update_sprite().



Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:
    # This is not only no longer required but also wasteful as
    # update_sprite() is called twice here.
    item.sprite = s
    item.update_sprite()
    board.move(item, Direction.RIGHT, 1)
    time.sleep(0.2)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    ComplexPlayer
    

    

    
 
  

    
      
          
            
  
ComplexPlayer


	
class pygamelib.board_items.ComplexPlayer(**kwargs)

	Bases: Player, BoardComplexItem


New in version 1.2.0.



A complex player is nothing more than a Player mashed with a
BoardComplexItem.

It supports all parameters of both with inheritance going first to Player and second
to BoardComplexItem.

The main interest is of course the multiple cell representation and the Sprites
support.

Example:

player = ComplexPlayer(
        name='Mighty Wizard',
        sprite=sprite_collection['wizard_idle']
    )






	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Movable implements can_move().



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	has_inventory()

	This method returns True (a player has an inventory).



	item(row, column)

	Return the item component at the row, column position if it is within the complex item's boundaries.



	load(data)

	Load data and create a new ComplexPlayer out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	This method returns False (a player is obviously not pickable).



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the complex board item from the display buffer to the frame buffer.



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Serialize the Character object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.



	update_sprite()

	Update the complex item with the current sprite.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	dtmove

	



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	sprite

	A property to easily access and update a complex item's sprite.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move() → bool

	Movable implements can_move().


	Returns:

	True



	Return type:

	Boolean










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
property dtmove

	




	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
has_inventory()

	This method returns True (a player has an inventory).






	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
item(row, column)

	Return the item component at the row, column position if it is within the
complex item’s boundaries.


	Return type:

	~pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new ComplexPlayer out of it.


	Parameters:

	data (dict) – Data to create a new complex player (usually generated by
serialize())



	Returns:

	A new complex npc.



	Return type:

	~pygamelib.board_items.ComplexPlayer










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	This method returns False (a player is obviously not pickable).






	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serialize the Character object.

This returns a dictionary that contains all the key/value pairs that makes up
the object.






	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
property sprite

	A property to easily access and update a complex item’s sprite.


	Parameters:

	new_sprite (Sprite) – The sprite to set





Example:

npc1 = board_items.ComplexNpc(
                                sprite=npc_sprite_collection['npc1_idle']
                            )
# to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:
    game.screen.place(
        base.Text(
            'Big boi detected!!!',
            core.Color(255,0,0),
            style=TextStyle.BOLD,
        ),
        notifications.row,
        notifications.column,
    )
# And to set it:
if game.player in game.neighbors(3, npc1):
    npc1.sprite = npc_sprite_collection['npc1_fight']










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
update_sprite()

	Update the complex item with the current sprite.


Note

This method use to need to be called every time the sprite was
changed. Starting with version 1.3.0, it is no longer a requirement as
BoardComplexItem.sprite was turned into a property that takes care of calling
update_sprite().



Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:
    # This is not only no longer required but also wasteful as
    # update_sprite() is called twice here.
    item.sprite = s
    item.update_sprite()
    board.move(item, Direction.RIGHT, 1)
    time.sleep(0.2)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    ComplexTreasure
    

    

    
 
  

    
      
          
            
  
ComplexTreasure


	
class pygamelib.board_items.ComplexTreasure(**kwargs)

	Bases: Treasure, BoardComplexItem


New in version 1.2.0.



A complex treasure is nothing more than a Treasure mashed with a
BoardComplexItem.

It supports all parameters of both with inheritance going first to Treasure and
second to BoardComplexItem.

The main interest is of course the multiple cell representation and the Sprites
support.

Example:

chest = ComplexTreasure(
        sprite=sprite_chest
    )






	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	item(row, column)

	Return the item component at the row, column position if it is within the complex item's boundaries.



	load(data)

	Load data and create a new ComplexTreasure out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	This represent the capacity for a Treasure to be overlapped by player or NPC.



	pickable()

	This represent the capacity for a Treasure to be picked-up by player or NPC.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the complex board item from the display buffer to the frame buffer.



	restorable()

	This represent the capacity for a Treasure to be restored after being overlapped.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.



	update_sprite()

	Update the complex item with the current sprite.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	sprite

	A property to easily access and update a complex item's sprite.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
item(row, column)

	Return the item component at the row, column position if it is within the
complex item’s boundaries.


	Return type:

	~pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new ComplexTreasure out of it.


	Parameters:

	data (dict) – Data to create a new complex treasure (usually generated by
serialize())



	Returns:

	A new complex npc.



	Return type:

	~pygamelib.board_items.ComplexTreasure










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	This represent the capacity for a Treasure to be overlapped by player or NPC.

A treasure is not overlappable.


	Returns:

	False



	Return type:

	bool










	
property particle_emitter

	




	
pickable()

	This represent the capacity for a Treasure to be picked-up by player or NPC.

A treasure is obviously pickable by the player and potentially NPCs.
Board puts the Treasure in the
Inventory if the picker implements has_inventory()


	Returns:

	True



	Return type:

	bool










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	This represent the capacity for a Treasure to be restored after being
overlapped.

A treasure is not overlappable, therefor is not restorable.


	Returns:

	False



	Return type:

	bool










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
property sprite

	A property to easily access and update a complex item’s sprite.


	Parameters:

	new_sprite (Sprite) – The sprite to set





Example:

npc1 = board_items.ComplexNpc(
                                sprite=npc_sprite_collection['npc1_idle']
                            )
# to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:
    game.screen.place(
        base.Text(
            'Big boi detected!!!',
            core.Color(255,0,0),
            style=TextStyle.BOLD,
        ),
        notifications.row,
        notifications.column,
    )
# And to set it:
if game.player in game.neighbors(3, npc1):
    npc1.sprite = npc_sprite_collection['npc1_fight']










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
update_sprite()

	Update the complex item with the current sprite.


Note

This method use to need to be called every time the sprite was
changed. Starting with version 1.3.0, it is no longer a requirement as
BoardComplexItem.sprite was turned into a property that takes care of calling
update_sprite().



Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:
    # This is not only no longer required but also wasteful as
    # update_sprite() is called twice here.
    item.sprite = s
    item.update_sprite()
    board.move(item, Direction.RIGHT, 1)
    time.sleep(0.2)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    ComplexWall
    

    

    
 
  

    
      
          
            
  
ComplexWall


	
class pygamelib.board_items.ComplexWall(**kwargs)

	Bases: Wall, BoardComplexItem


New in version 1.2.0.



A complex wall is nothing more than a Wall mashed with a
BoardComplexItem.

It supports all parameters of both with inheritance going first to Wall and second
to BoardComplexItem.

The main interest is of course the multiple cell representation and the Sprites
support.

Example:

wall = ComplexWall(
        sprite=sprite_brick_wall
    )






	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	item(row, column)

	Return the item component at the row, column position if it is within the complex item's boundaries.



	load(data)

	Load data and create a new ComplexWall out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	This represent the capacity for a BoardItem to be overlapped by player or NPC.



	pickable()

	This represent the capacity for a BoardItem to be pick-up by player or NPC.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the complex board item from the display buffer to the frame buffer.



	restorable()

	This represent the capacity for an Immovable Movable item.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.



	update_sprite()

	Update the complex item with the current sprite.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	sprite

	A property to easily access and update a complex item's sprite.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
item(row, column)

	Return the item component at the row, column position if it is within the
complex item’s boundaries.


	Return type:

	~pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new ComplexWall out of it.


	Parameters:

	data (dict) – Data to create a new complex wall item (usually generated by
serialize())



	Returns:

	A new complex npc.



	Return type:

	~pygamelib.board_items.ComplexWall










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	This represent the capacity for a BoardItem to
be overlapped by player or NPC.


	Returns:

	False



	Return type:

	bool










	
property particle_emitter

	




	
pickable()

	This represent the capacity for a BoardItem to
be pick-up by player or NPC.


	Returns:

	False



	Return type:

	bool





Example:

if mywall.pickable():
    print('Whoaa this wall is really light... and small...')
else:
    print('Really? Trying to pick-up a wall?')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	This represent the capacity for an Immovable
Movable item.
A wall is not overlappable.


	Returns:

	False



	Return type:

	bool










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
property sprite

	A property to easily access and update a complex item’s sprite.


	Parameters:

	new_sprite (Sprite) – The sprite to set





Example:

npc1 = board_items.ComplexNpc(
                                sprite=npc_sprite_collection['npc1_idle']
                            )
# to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:
    game.screen.place(
        base.Text(
            'Big boi detected!!!',
            core.Color(255,0,0),
            style=TextStyle.BOLD,
        ),
        notifications.row,
        notifications.column,
    )
# And to set it:
if game.player in game.neighbors(3, npc1):
    npc1.sprite = npc_sprite_collection['npc1_fight']










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
update_sprite()

	Update the complex item with the current sprite.


Note

This method use to need to be called every time the sprite was
changed. Starting with version 1.3.0, it is no longer a requirement as
BoardComplexItem.sprite was turned into a property that takes care of calling
update_sprite().



Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:
    # This is not only no longer required but also wasteful as
    # update_sprite() is called twice here.
    item.sprite = s
    item.update_sprite()
    board.move(item, Direction.RIGHT, 1)
    time.sleep(0.2)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Door
    

    

    
 
  

    
      
          
            
  
Door


	
class pygamelib.board_items.Door(**kwargs)

	Bases: GenericStructure

A Door is a GenericStructure that is not
pickable, overlappable and restorable. It has a value of 0 and a size of 1 by
default. It is an helper class that allows to focus on game design and mechanics
instead of small building blocks.


	Parameters:

	
	model (str) – The model that will represent the door on the map


	value (int) – The value of the door, it is useless in that case. The default value
is 0.


	inventory_space (int) – The size of the door in the inventory. Unless you make the
door pickable (I have no idea why you would do that…), this parameter is not
used.


	type (str) – The type of the door. It is often used as a type identifier for your
game main loop. For example: unlocked_door or locked_door.


	pickable (Boolean) – Is this door pickable by the player? Default value is False.


	overlappable (Boolean) – Is this door overlappable by the player? Default value is True.


	restorable (Boolean) – Is this door restorable after being overlapped? Default value is
True.









Note

All the options from
GenericStructure are also available to
this constructor.



Example:

door1 = Door(model=graphics.Models.DOOR,type='locked_door')






	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    GenericActionableStructure
    

    

    
 
  

    
      
          
            
  
GenericActionableStructure


	
class pygamelib.board_items.GenericActionableStructure(**kwargs)

	Bases: GenericStructure, Actionable

A GenericActionableStructure is the combination of a
GenericStructure and an
Actionable.
It is only a helper combination.

Please see the documentation for
GenericStructure and
Actionable for more information.


Important

There’s a complete tutorial about Actionable items on the pygamelib
wiki [https://github.com/pygamelib/pygamelib/wiki/Actionable-Items]




	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	activate()

	This function is calling the action function with the action_parameters.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
activate()

	This function is calling the action function with the
action_parameters.

The action callback function should therefor have a signature like:


def my_callback_function(actionable, action_parameters)




With actionable being the Actionable current reference to self.

Usually it’s automatically called by move()
when a Player or NPC (see board_items)






	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    GenericStructureComplexComponent
    

    

    
 
  

    
      
          
            
  
GenericStructureComplexComponent


	
class pygamelib.board_items.GenericStructureComplexComponent(**kwargs)

	Bases: GenericStructure, BoardItemComplexComponent

A ComplexComponent specifically for generic structures.


	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns False.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns False. A component is never pickable by itself (either the whole complex
item is pickable or not, but not partially)

Example:

if item.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    GenericStructure
    

    

    
 
  

    
      
          
            
  
GenericStructure


	
class pygamelib.board_items.GenericStructure(value=0, **kwargs)

	Bases: Immovable

A GenericStructure is as the name suggest, a generic object to create all kind of
structures.

It can be tweaked with all the properties of
BoardItem, Immovable
and it can be made pickable, overlappable or restorable or any combination of these.

If you need an action to be done when a Player and/or a NPC touch the structure
please have a look at pygamelib.board_items.GenericActionableStructure.


	Parameters:

	
	pickable (bool) – Define if the structure can be picked-up by a Player or NPC.


	overlappable (bool) – Define if the structure can be overlapped by a Player or NPC.


	restorable (bool) – Define if the structure can be restored by the Board after a
Player or NPC passed through. For example, you want a door or an activator
structure (see GenericActionableStructure for that) to remain on the board after
it’s been overlapped by a player. But you could also want to develop some kind
of Space Invaders game were the protection block are overlappable but not
restorable.


	value (int|float) – The value of the structure. It can be used for scoring, resource
spending, etc.








On top of these, this object takes all parameters of
BoardItem and
Immovable


Important

If you need a structure with a permission system please have a look
at GenericActionableStructure. This class
has a permission system for activation.




	
__init__(value=0, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([value])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Immovable
    

    

    
 
  

    
      
          
            
  
Immovable


	
class pygamelib.board_items.Immovable(inventory_space: int = None, **kwargs)

	Bases: BoardItem

This class derive BoardItem and describe an object that cannot move or be
moved (like a wall).
can_move() cannot be configured and return False. The other
properties can be configured. They have the same default values than
BoardItem.


	Parameters:

	inventory_space (int) – The space the immovable item takes into an
Inventory (in case the item is pickable). By default
it is 0.






	
__init__(inventory_space: int = None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([inventory_space])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Movable
    

    

    
 
  

    
      
          
            
  
Movable


	
class pygamelib.board_items.Movable(step: int = None, step_vertical: int = None, step_horizontal: int = None, movement_speed: float = None, **kwargs)

	Bases: BoardItem

A class representing BoardItem capable of movements.

Movable subclasses BoardItem.


	Parameters:

	
	step (int) – the amount of cell a movable can cross in one turn. Default value: 1.


	step_vertical (int) – the amount of cell a movable can vertically cross in one turn.
Default value: step value.


	step_horizontal (int) – the amount of cell a movable can horizontally cross in one
turn. Default value: step value.


	movement_speed (int|float) – The time (in seconds) between 2 movements of a Movable. It is
used by all the Game’s actuation methods to enforce move speed of NPC and
projectiles.








The movement_speed parameter is only used when the Game is configured with MODE_RT.
Additionally the dtmove property is used to accumulate time between frames. It is
entirely managed by the Game object and most of the time you shouldn’t mess up with
it. Unless you want to manage movements by yourself. If so, have fun! That’s the
point of the pygamelib to let you do whatever you like.

This class derive BoardItem and describe an object that can move or be
moved (like a player or NPC).
Thus this class implements BoardItem.can_move().
However it does not implement BoardItem.pickable() or
BoardItem.overlappable()


	
__init__(step: int = None, step_vertical: int = None, step_horizontal: int = None, movement_speed: float = None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([step, step_vertical, ...])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Movable implements can_move().



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	has_inventory()

	This is a virtual method that must be implemented in deriving class.



	load(data)

	Load data and create a new Movable out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Serialize the Immovable object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	dtmove

	



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move() → bool

	Movable implements can_move().


	Returns:

	True



	Return type:

	Boolean










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
property dtmove

	




	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
has_inventory() → bool

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a Movable to have an inventory.






	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new Movable out of it.


	Parameters:

	data (dict) – Data to create a new movable item (usually generated by
serialize())



	Returns:

	A new complex item.



	Return type:

	~pygamelib.board_items.Movable










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serialize the Immovable object.

This returns a dictionary that contains all the key/value pairs that makes up
the object.






	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    NPC
    

    

    
 
  

    
      
          
            
  
NPC


	
class pygamelib.board_items.NPC(actuator=None, **kwargs)

	Bases: Character

A class that represent a non playable character controlled by the computer.
For the NPC to be successfully managed by the Game, you need to set an actuator.

None of the parameters are mandatory, however it is advised to make good use of some
of them (like type or name) for game design purpose.


	In addition to its own member variables, this class inherits all members from:
	
	pygamelib.board_items.Character


	pygamelib.board_items.Movable


	pygamelib.board_items.BoardItem








This class sets a couple of variables to default values:



	max_hp: 10


	hp: 10


	remaining_lives: 1


	attack_power: 5


	
	movement_speed: 0.25 (one movement every 0.25 second). Only useful if the game
	mode is set to MODE_RT.













	Parameters:

	actuator (pygamelib.actuators.Actuator) – An actuator, it can be any class but it need to implement
pygamelib.actuators.Actuator.





Example:

mynpc = NPC(name='Idiot McStupid', type='dumb_enemy')
mynpc.step = 1
mynpc.actuator = RandomActuator()






	
__init__(actuator=None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([actuator])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Movable implements can_move().



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	has_inventory()

	Define if the NPC has an inventory.



	load(data)

	Load data and create a new NPC out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Define if the NPC is pickable.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Serialize the NPC object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	dtmove

	



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move() → bool

	Movable implements can_move().


	Returns:

	True



	Return type:

	Boolean










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
property dtmove

	




	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
has_inventory()

	Define if the NPC has an inventory.

This method returns false because the game engine doesn’t manage NPC inventory
yet but it could be in the future. It’s a good habit to check the value returned
by this function.


	Returns:

	False



	Return type:

	Boolean





Example:

if mynpc.has_inventory():
    print("Cool: we can pickpocket that NPC!")
else:
    print("No pickpocketing XP for us today :(")










	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new NPC out of it.


	Parameters:

	data (dict) – Data to create a new npc (usually generated by
serialize())



	Returns:

	A new npc.



	Return type:

	~pygamelib.board_items.NPC










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Define if the NPC is pickable.

Obviously this method always return False.


	Returns:

	False



	Return type:

	Boolean





Example:

if mynpc.pickable():
    Utils.warn("Something is fishy, that NPC is pickable"
        "but is not a Pokemon...")










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serialize the NPC object.

This returns a dictionary that contains all the key/value pairs that makes up
the object.






	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Player
    

    

    
 
  

    
      
          
            
  
Player


	
class pygamelib.board_items.Player(inventory=None, **kwargs)

	Bases: Character

A class that represent a player controlled by a human.

This can take all parameter from Character,
Movable and obviously
BoardItem.

It is a specific board item as the whole Game class assumes only one player. Aside
from the wrapper functions (like Game.move_player for example), there is no reel
limitations to use more than one player.

The player also has a couple of attributes that are added for your convenience. You
are free to use them or not. They are (name and default value):



	max_hp: 100


	hp: 100


	remaining_lives: 3


	attack_power: 10


	
	movement_speed: 0.1 (one movement every 0.1 second). Only useful if the game mode
	is set to MODE_RT.







	
	inventory: A Inventory object. If none is provided,
	one is created automatically.












A player can be animated by providing a Animation
object to its animation attribute.

Like all other board items, you can specify a sprixel attribute that will be the
representation of the player on the board.

Example:

player = Player(
    name="Player",
    # A sprixel with "@" as the model, no background color, a cyan foreground
    # color and we set the background to be transparent.
    sprixel=core.Sprixel("@", None, core.Color(0, 255, 255), True),
    max_hp=200,
)






	
__init__(inventory=None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([inventory])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Movable implements can_move().



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	has_inventory()

	This method returns True (a player has an inventory).



	load(data)

	Load data and create a new Character out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	This method returns False (a player is obviously not pickable).



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Serialize the Character object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	dtmove

	



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move() → bool

	Movable implements can_move().


	Returns:

	True



	Return type:

	Boolean










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
property dtmove

	




	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
has_inventory()

	This method returns True (a player has an inventory).






	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new Character out of it.


	Parameters:

	data (dict) – Data to create a new character item (usually generated by
serialize())



	Returns:

	A new character item.



	Return type:

	~pygamelib.board_items.Character










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	This method returns False (a player is obviously not pickable).






	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serialize the Character object.

This returns a dictionary that contains all the key/value pairs that makes up
the object.






	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Projectile
    

    

    
 
  

    
      
          
            
  
Projectile


	
class pygamelib.board_items.Projectile(name='projectile', direction=Direction.RIGHT, step=1, range=5, model='⌁', movement_animation=None, hit_animation=None, hit_model=None, hit_callback=None, is_aoe=False, aoe_radius=0, parent=None, callback_parameters=None, movement_speed=0.15, collision_exclusions=None, **kwargs)

	Bases: Movable

A class representing a projectile type board item.
That class can be sub-classed to represent all your needs (fireballs,
blasters shots, etc.).

That class support the 2 types of representations: model and animations.
The animation cases are slightly more evolved than the regular item.animation.
It does use the item.animation but with more finesse as a projectile can travel in
many directions. So it also keeps track of models and animation per travel
direction.

You probably want to subclass Projectile. It is totally ok to use it as it, but it
is easier to create a subclass that contains all your Projectile information and let
the game engine deal with orientation, range keeping, etc.
Please see examples/07_projectiles.py for a good old fireball example.

By default, Projectile travels in straight line in one direction. This behavior can
be overwritten by setting a specific actuator (a projectile is a
Movable so you can use my_projectile.actuator).

The general way to use it is as follow:


	Create a factory object with your static content (usually the static models,
default direction and hit callback)


	Add the direction related models and/or animation (keep in mind that animation
takes precedence over static models)


	deep copy that object when needed and add it to the projectiles stack of the game
object.


	use Game.actuate_projectiles(level) to let the Game engine do the heavy lifting.




The Projectile constructor takes the following parameters:


	Parameters:

	
	direction (Direction) – A direction from the constants module


	range (int) – The maximum range of the projectile in number of cells that can be
crossed. When range is attained the hit_callback is called with a BoardItemVoid
as a collision object.


	step (int) – the amount of cells a projectile can cross in one turn


	model (str) – the default model of the projectile.


	movement_animation (Animation) – the default animation of a projectile. If a projectile is
sent in a direction that has no explicit and specific animation, then
movement_animation is used if defined.


	hit_animation (Animation) – the animation used when the projectile collide with something.


	hit_model (str) – the model used when the projectile collide with something.


	hit_callback (function) – A reference to a function that will be called upon collision.
The hit_callback is receiving the object it collides with as first parameter.


	is_aoe (bool) – Is this an ‘area of effect’ type of projectile? Meaning, is it doing
something to everything around (mass heal, exploding rocket, fireball, etc.)?
If yes, you must set that parameter to True and set the aoe_radius. If not, the
Game object will only send the colliding object in front of the projectile.


	aoe_radius (int) – the radius of the projectile area of effect. This will force the
Game object to send a list of all objects in that radius.


	callback_parameters (list) – A list of parameters to pass to hit_callback.


	movement_speed (int|float) – The movement speed of the projectile


	collision_exclusions (list) – A list of TYPES of objects that should not collides
with that projectile. It is usually a good idea to put the projectile type in the
exclusion list. This prevent the projectile to collide with other instances of
itself. Adding the projectile’s emitter is also a valid idea.


	parent – The parent object (usually a Board object or some sort of BoardItem).









Important

The effects of a Projectile are determined by the callback. No
callback == no effect!



Example:

fireball = Projectile(
                        name="fireball",
                        model=Utils.red_bright(black_circle),
                        hit_model=graphics.Models.EXPLOSION,
                        # won't collide with other projectiles.
                        collision_exclusions = [Projectile],
                    )
fireball.set_direction(Direction.RIGHT)
my_game.add_projectile(1, fireball,
                       my_game.player.pos[0], my_game.player.pos[1] + 1)






	
__init__(name='projectile', direction=Direction.RIGHT, step=1, range=5, model='⌁', movement_animation=None, hit_animation=None, hit_model=None, hit_callback=None, is_aoe=False, aoe_radius=0, parent=None, callback_parameters=None, movement_speed=0.15, collision_exclusions=None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([name, direction, step, range, ...])

	Like the object class, this class constructor takes no parameter.



	add_directional_animation(direction, animation)

	Add an animation for a specific direction.



	add_directional_model(direction, model)

	Add an model for a specific direction.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Movable implements can_move().



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	directional_animation(direction)

	Return the animation for a specific direction.



	directional_model(direction)

	Return the model for a specific direction.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	has_inventory()

	Projectile cannot have inventory by default.



	hit(objects)

	A method that is called when the projectile hit something.



	load(data)

	Load data and create a new Movable out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Projectile are overlappable by default.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	remove_directional_animation(direction)

	Remove an animation for a specific direction.



	remove_directional_model(direction)

	Remove the model for a specific direction.



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	We assume that by default, Projectiles are restorable.



	serialize()

	Serialize the Immovable object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_direction(direction)

	Set the direction of a projectile



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	direction

	The direction of the projectile.



	dtmove

	



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
add_directional_animation(direction, animation)

	Add an animation for a specific direction.


	Parameters:

	
	direction (int) – A direction from the constants module.


	animation (Animation) – The animation for the direction








Example:

fireball.add_directional_animation(Direction.UP, Direction.UP, animation)










	
add_directional_model(direction, model)

	Add an model for a specific direction.


	Parameters:

	
	direction (int) – A direction from the constants module.


	model (str) – The model for the direction








Example:

fireball.add_directional_animation(Direction.UP, upward_animation)










	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move() → bool

	Movable implements can_move().


	Returns:

	True



	Return type:

	Boolean










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
property direction

	The direction of the projectile.

Updating this property also updates the UnidirectionalActuator’s direction.


	Parameters:

	value (int | Vector2D) – some param






Warning

If your projectile uses directional model and/or animation you
should use set_direction() to set the projectile direction.



Example:

bullet.direction = Vector2D(0, 1)










	
directional_animation(direction)

	Return the animation for a specific direction.


	Parameters:

	direction (int) – A direction from the constants module.



	Return type:

	Animation





Example:

# No more animation for the UP direction
fireball.directional_animation(Direction.UP)










	
directional_model(direction)

	Return the model for a specific direction.


	Parameters:

	direction (int) – A direction from the constants module.



	Return type:

	str





Example:

fireball.directional_model(Direction.UP)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
property dtmove

	




	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
has_inventory()

	Projectile cannot have inventory by default.


	Returns:

	False



	Return type:

	Boolean










	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
hit(objects)

	A method that is called when the projectile hit something.

That method is automatically called by the Game object when the Projectile
collide with another object or is at the end of its range.

Here are the call cases covered by the Game object:



	range is reached without collision and projectile IS NOT an AoE type: hit()
is called with a single BoardItemVoid in the objects list.


	range is reached without collision and projectile IS an AoE type: hit()
is called with the list of all objects within aoe_radius (including
structures).


	projectile collide with something and IS NOT an AoE type: hit() is called
with the single colliding object in the objects list.


	projectile collide with something and IS an AoE type: hit() is called with
the list of all objects within aoe_radius (including structures).







In turn, that method calls the hit_callback with the following parameters (in
that order):



	the projectile object


	the list of colliding objects (that may contain only one object)


	the callback parameters (from the constructor callback_parameters)








	Parameters:

	objects – A list of objects hit by or around the projectile.





Example:

my_projectile.hit([npc1])










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new Movable out of it.


	Parameters:

	data (dict) – Data to create a new movable item (usually generated by
serialize())



	Returns:

	A new complex item.



	Return type:

	~pygamelib.board_items.Movable










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Projectile are overlappable by default.


	Returns:

	True



	Return type:

	Boolean










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
remove_directional_animation(direction)

	Remove an animation for a specific direction.


	Parameters:

	direction (int) – A direction from the constants module.





Example:

# No more animation for the UP direction
fireball.remove_directional_animation(Direction.UP)










	
remove_directional_model(direction)

	Remove the model for a specific direction.


	Parameters:

	direction (int) – A direction from the constants module.





Example:

fireball.directional_model(Direction.UP)










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	We assume that by default, Projectiles are restorable.


	Returns:

	True



	Return type:

	bool










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Serialize the Immovable object.

This returns a dictionary that contains all the key/value pairs that makes up
the object.






	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_direction(direction)

	Set the direction of a projectile

This method will set a UnidirectionalActuator with the direction.
It will also take care of updating the model and animation for the given
direction if they are specified.


	Parameters:

	direction (int) – A direction from the constants module.





Example:

fireball.set_direction(Direction.UP)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    TextItem
    

    

    
 
  

    
      
          
            
  
TextItem


	
class pygamelib.board_items.TextItem(text=None, **kwargs)

	Bases: BoardComplexItem


New in version 1.2.0.



The text item is a board item that can contains text. The text can then be
manipulated and placed on a Board.

It is overall a BoardComplexItem (so it takes all the parameters of that
class). The big difference is that the first parameter is the text you want to
display.

The text parameter can be either a regular string or a Text
object (in case you want formatting and colors).


	Parameters:

	text (str | Text) – The text you want to display.





Example:

city_name = TextItem('Super City')
fancy_city_name = TextItem(text=base.Text('Super City', base.Fore.GREEN,
    base.Back.BLACK,
    base.Style.BRIGHT
))
my_board.place_item(city_name, 0, 0)
my_board.place_item(fancy_city_name, 1, 0)






	
__init__(text=None, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([text])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Returns True if the item can move, False otherwise.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	item(row, column)

	Return the item component at the row, column position if it is within the complex item's boundaries.



	load(data)

	Load data and create a new TextItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the complex board item from the display buffer to the frame buffer.



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.



	update_sprite()

	Update the complex item with the current sprite.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	A property to get and set the size that the BoardItem takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	sprite

	A property to easily access and update a complex item's sprite.



	text

	The text within the item.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
    print('The item can move')










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	A property to get and set the size that the BoardItem takes in the
Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
item(row, column)

	Return the item component at the row, column position if it is within the
complex item’s boundaries.


	Return type:

	~pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new TextItem out of it.


	Parameters:

	data (dict) – Data to create a new text item (usually generated by
serialize())



	Returns:

	A new complex npc.



	Return type:

	~pygamelib.board_items.TextItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
property sprite

	A property to easily access and update a complex item’s sprite.


	Parameters:

	new_sprite (Sprite) – The sprite to set





Example:

npc1 = board_items.ComplexNpc(
                                sprite=npc_sprite_collection['npc1_idle']
                            )
# to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:
    game.screen.place(
        base.Text(
            'Big boi detected!!!',
            core.Color(255,0,0),
            style=TextStyle.BOLD,
        ),
        notifications.row,
        notifications.column,
    )
# And to set it:
if game.player in game.neighbors(3, npc1):
    npc1.sprite = npc_sprite_collection['npc1_fight']










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property text

	The text within the item.

TextItem.text can be set to either a string or a Text
object.

It will always return a Text object.

Internally it translate the text to a Sprite to
display it correctly on a Board. If print()-ed it
will do so like the Text object.






	
update_sprite()

	Update the complex item with the current sprite.


Note

This method use to need to be called every time the sprite was
changed. Starting with version 1.3.0, it is no longer a requirement as
BoardComplexItem.sprite was turned into a property that takes care of calling
update_sprite().



Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:
    # This is not only no longer required but also wasteful as
    # update_sprite() is called twice here.
    item.sprite = s
    item.update_sprite()
    board.move(item, Direction.RIGHT, 1)
    time.sleep(0.2)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Tile
    

    

    
 
  

    
      
          
            
  
Tile


	
class pygamelib.board_items.Tile(**kwargs)

	Bases: BoardComplexItem, GenericStructure


New in version 1.2.0.



A Tile is a standard BoardComplexItem configured by default to:



	be overlappable


	be restorable


	be not pickable


	be immovable.







Aside from the movable attributes (it inherit from GenericStructure so it’s an
Immovable object), everything else is configurable.

It is particularly useful to display a Sprite on the
background or to create terrain.

Example:

grass_sprite = Sprite.load_from_ansi_file('textures/grass.ans')
for pos in grass_positions:
    outdoor_level.place_item( Tile(sprite=grass_sprite), pos[0], pos[1] )






	
__init__(**kwargs)

	
	Parameters:

	
	overlappable (bool) – Defines if the Tile can be overlapped.


	restorable (bool) – Defines is the Tile should be restored after being
overlapped.


	pickable (bool) – Defines if the Tile can be picked up by the Player or NPC.








Please see BoardComplexItem for additional parameters.





Methods



	__init__(**kwargs)

	
	param overlappable:

	Defines if the Tile can be overlapped.









	attach(observer)

	Attach an observer to this instance.



	can_move()

	A Tile cannot move.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	item(row, column)

	Return the item component at the row, column position if it is within the complex item's boundaries.



	load(data)

	Load data and create a new Tile out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	Returns True if the item is overlappable, False otherwise.



	pickable()

	Returns True if the item is pickable, False otherwise.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the complex board item from the display buffer to the frame buffer.



	restorable()

	Returns True if the item is restorable, False otherwise.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.



	update_sprite()

	Update the complex item with the current sprite.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	sprite

	A property to easily access and update a complex item's sprite.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	A Tile cannot move.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
item(row, column)

	Return the item component at the row, column position if it is within the
complex item’s boundaries.


	Return type:

	~pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new Tile out of it.


	Parameters:

	data (dict) – Data to create a new tile (usually generated by
serialize())



	Returns:

	A new complex npc.



	Return type:

	~pygamelib.board_items.Tile










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
    print('The item is overlappable')










	
property particle_emitter

	




	
pickable()

	Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
    print('The item is pickable')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
    print('The item is restorable')










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
property sprite

	A property to easily access and update a complex item’s sprite.


	Parameters:

	new_sprite (Sprite) – The sprite to set





Example:

npc1 = board_items.ComplexNpc(
                                sprite=npc_sprite_collection['npc1_idle']
                            )
# to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:
    game.screen.place(
        base.Text(
            'Big boi detected!!!',
            core.Color(255,0,0),
            style=TextStyle.BOLD,
        ),
        notifications.row,
        notifications.column,
    )
# And to set it:
if game.player in game.neighbors(3, npc1):
    npc1.sprite = npc_sprite_collection['npc1_fight']










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
update_sprite()

	Update the complex item with the current sprite.


Note

This method use to need to be called every time the sprite was
changed. Starting with version 1.3.0, it is no longer a requirement as
BoardComplexItem.sprite was turned into a property that takes care of calling
update_sprite().



Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:
    # This is not only no longer required but also wasteful as
    # update_sprite() is called twice here.
    item.sprite = s
    item.update_sprite()
    board.move(item, Direction.RIGHT, 1)
    time.sleep(0.2)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Treasure
    

    

    
 
  

    
      
          
            
  
Treasure


	
class pygamelib.board_items.Treasure(value=10, **kwargs)

	Bases: Immovable

A Treasure is an Immovable that is pickable and
with a non zero value. It is an helper class that allows to focus on game design and
mechanics instead of small building blocks.


	Parameters:

	
	model (str) – The model that will represent the treasure on the map


	value (int) – The value of the treasure, it is usually used to calculate the score.


	inventory_space (int) – The space occupied by the treasure. It is used by
Inventory as a measure of space. If the treasure’s
size exceed the Inventory size (or the cumulated size of all items + the
treasure exceed the inventory max_size()) the
Inventory will refuse to add the treasure.









Note

All the options from Immovable are also
available to this constructor.



Example:

money_bag = Treasure(
    model=graphics.Models.MONEY_BAG,value=100,inventory_space=2
)
print(f"This is a money bag {money_bag}")
player.inventory.add_item(money_bag)
print(f"The inventory value is {player.inventory.value()} and is at
    {player.inventory.size()}/{player.inventory.max_size}")






	
__init__(value=10, **kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([value])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	This represent the capacity for a Treasure to be overlapped by player or NPC.



	pickable()

	This represent the capacity for a Treasure to be picked-up by player or NPC.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	This represent the capacity for a Treasure to be restored after being overlapped.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	This represent the capacity for a Treasure to be overlapped by player or NPC.

A treasure is not overlappable.


	Returns:

	False



	Return type:

	bool










	
property particle_emitter

	




	
pickable()

	This represent the capacity for a Treasure to be picked-up by player or NPC.

A treasure is obviously pickable by the player and potentially NPCs.
Board puts the Treasure in the
Inventory if the picker implements has_inventory()


	Returns:

	True



	Return type:

	bool










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	This represent the capacity for a Treasure to be restored after being
overlapped.

A treasure is not overlappable, therefor is not restorable.


	Returns:

	False



	Return type:

	bool










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    Wall
    

    

    
 
  

    
      
          
            
  
Wall


	
class pygamelib.board_items.Wall(**kwargs)

	Bases: Immovable

A Wall is a specialized Immovable object that as
unmodifiable characteristics:


	It is not pickable (and cannot be).


	It is not overlappable (and cannot be).


	It is not restorable (and cannot be).




As such it’s an object that cannot be moved, cannot be picked up or modified by
Player or NPC and block their ways. It is therefor advised to create one per board
and reuse it in many places.


	Parameters:

	
	model (str) – The representation of the Wall on the Board.


	name (str) – The name of the Wall.


	size (int) – The size of the Wall. This parameter will probably be deprecated as
size is only used for pickable objects.









	
__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__(**kwargs)

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	can_move()

	Return the capability of moving of an item.



	collides_with(other[, projection_offset])

	Tells if this item collides with another item.



	debug_info()

	Return a string with the list of the attributes and their current value.



	detach(observer)

	Detach an observer from this instance.



	display()

	Print the model WITHOUT carriage return.



	distance_to(other)

	Calculates the distance with an item.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load data and create a new BoardItem out of it.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	overlappable()

	This represent the capacity for a BoardItem to be overlapped by player or NPC.



	pickable()

	This represent the capacity for a BoardItem to be pick-up by player or NPC.



	position_as_vector()

	Returns the current item position as a Vector2D



	render_to_buffer(buffer, row, column, ...)

	Render the board item into a display buffer (not a screen buffer).



	restorable()

	This represent the capacity for an Immovable Movable item.



	serialize()

	Return a dictionary with all the attributes of this object.



	set_can_move(value)

	Set the value of the can_move property to value.



	set_overlappable(value)

	Set the value of the overlappable property to value.



	set_pickable(value)

	Set the value of the pickable property to value.



	set_restorable(value)

	Set the value of the restorable property to value.



	store_position(row, column[, layer])

	Store the BoardItem position for self access.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	animation

	A property to get and set an Animation for this item.



	column

	Convenience method to get the current stored column of the item.



	heading

	Return the heading of the item.



	height

	Convenience method to get the height of the item.



	inventory_space

	Return the size that the Immovable item takes in the Inventory.



	layer

	Convenience method to get the current stored layer number of the item.



	model

	



	particle_emitter

	



	row

	Convenience method to get the current stored row of the item.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size

	A read-only property that gives the size of the item as a 2 dimensions list.



	width

	Convenience method to get the width of the item.







	
property animation

	A property to get and set an Animation for
this item.


Important

When an animation is set, the item is setting the animation’s
parent to itself.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.


	Returns:

	False



	Return type:

	bool










	
collides_with(other, projection_offset: Vector2D = None)

	Tells if this item collides with another item.


Important

collides_with() does not take the layer into account! It is not
desirable for the pygamelib to assume that 2 items on different layers wont
collide. For example, if a player is over a door, they are on different
layers, but logically speaking they are colliding. The player is overlapping
the door. Therefor, it is the responsibility of the developer to check for
layers in collision, if it is important to the game logic.




	Parameters:

	
	other (BoardItem) – The item you want to check for collision.


	projection_offset (Vector2D) – A vector to offset this board item’s position (not the
position of the other item). Use this to detect a collision before moving
the board item. You can pass the movement vector before moving to check if
a collision will occur when moving.






	Return type:

	bool





Example:

if projectile.collides_with(game.player):
    game.player.hp -= 5










	
property column

	Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].


	Returns:

	The column coordinate



	Return type:

	int





Example:

if item.column != item.pos[1]:
    print('Something extremely unlikely just happened...')










	
debug_info()

	Return a string with the list of the attributes and their current value.


	Return type:

	str










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display()

	Print the model WITHOUT carriage return.






	
distance_to(other)

	Calculates the distance with an item.


	Parameters:

	other (BoardItem) – The item you want to calculate the distance to.



	Returns:

	The distance between this item and the other.



	Return type:

	float





Example:

if npc.distance_to(game.player) <= 2.0:
    npc.seek_and_destroy = True










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property heading

	Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It
gives the difference between the item’s centroid current and previous position.
Thus, giving you both the direction and the distance of the movement. You can
get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of
a moving item.


	Returns:

	The heading of the item.



	Return type:

	Vector2D





Example:

if my_item.heading.column > 0:
    my_item.sprixel.model = item_models["heading_right"]






Warning

Just after placing an item on the board, and before moving it, the
heading cannot be trusted! The heading represent the direction and
orientation of the movement, therefore, it is not reliable before the
item moved.








	
property height

	Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].


	Returns:

	The height



	Return type:

	int





Example:

if item.height > board.height:
    print('The item is too big for the board.')










	
property inventory_space

	Return the size that the Immovable item takes
in the Inventory.


	Returns:

	The size of the item.



	Return type:

	int










	
property layer

	Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].


	Returns:

	The layer number



	Return type:

	int





Example:

if item.layer != item.pos[2]:
    print('Something extremely unlikely just happened...')










	
classmethod load(data)

	Load data and create a new BoardItem out of it.


	Parameters:

	data (dict) – Data to create a new item (usually generated by
serialize())



	Returns:

	A new item.



	Return type:

	~pygamelib.board_items.BoardItem










	
property model

	




	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
overlappable()

	This represent the capacity for a BoardItem to
be overlapped by player or NPC.


	Returns:

	False



	Return type:

	bool










	
property particle_emitter

	




	
pickable()

	This represent the capacity for a BoardItem to
be pick-up by player or NPC.


	Returns:

	False



	Return type:

	bool





Example:

if mywall.pickable():
    print('Whoaa this wall is really light... and small...')
else:
    print('Really? Trying to pick-up a wall?')










	
position_as_vector()

	Returns the current item position as a Vector2D


	Returns:

	The position as a 2D vector



	Return type:

	Vector2D





Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()










	
render_to_buffer(buffer, row, column, height, width)

	Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
restorable()

	This represent the capacity for an Immovable
Movable item.
A wall is not overlappable.


	Returns:

	False



	Return type:

	bool










	
property row

	Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].


	Returns:

	The row coordinate



	Return type:

	int





Example:

if item.row != item.pos[0]:
    print('Something extremely unlikely just happened...')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize() → dict

	Return a dictionary with all the attributes of this object.


	Returns:

	A dictionary with all the attributes of this object.



	Return type:

	dict










	
set_can_move(value)

	Set the value of the can_move property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_can_move(False)










	
set_overlappable(value)

	Set the value of the overlappable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_overlappable(False)










	
set_pickable(value)

	Set the value of the pickable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_pickable(False)










	
set_restorable(value)

	Set the value of the restorable property to value.


	Parameters:

	value (bool) – The value to set.





Example:

item.set_restorable(False)










	
property size

	A read-only property that gives the size of the item as a 2 dimensions list.
The first element is the width and the second the height.


	Returns:

	The size.



	Return type:

	list





Example:

# This is a silly example because the Board object does not allow
# that use case.
if item.column + item.size[0] >= board.width:
    Game.instance().screen.display_line(
        f"{item.name} cannot be placed at {item.pos}."
    )










	
store_position(row: int, column: int, layer: int = 0)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
position. It is a redundant information and might not be synchronized.


	Parameters:

	
	row (int) – the row of the item in the Board.


	column (int) – the column of the item in the Board.


	layer – the layer of the item in the Board. By
default layer is set to 0.








Example:

item.store_position(3,4)










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].


	Returns:

	The width



	Return type:

	int





Example:

if item.width > board.width:
    print('The item is too big for the board.')
















            

          

      

      

    

  

  
    
    

    constants
    

    

    
 
  

    
      
          
            
  
constants

Accessible constants are the following:

General purpose:


	PYGAMELIB_VERSION





	
enum pygamelib.constants.Alignment(value)

	Alignment regroup constants that used for various alignment purpose when organizing
UI elements or other such graphical elements.

V_CENTER and H_CENTER respectively stand for Vertical center and Horizontal Center.


	Member Type:

	int





Valid values are as follows:


	
LEFT = <Alignment.LEFT: 30000011>

	




	
RIGHT = <Alignment.RIGHT: 30000100>

	




	
CENTER = <Alignment.CENTER: 30000101>

	




	
TOP = <Alignment.TOP: 30000110>

	




	
BOTTOM = <Alignment.BOTTOM: 30000111>

	




	
V_CENTER = <Alignment.V_CENTER: 30001000>

	




	
H_CENTER = <Alignment.H_CENTER: 30001001>

	








	
enum pygamelib.constants.Algorithm(value)

	A set of constants to identify the different algorithms used in the library (when a
choice is possible). For now, it’s only the path finding algorithm.


	Member Type:

	int





Valid values are as follows:


	
BFS = <Algorithm.BFS: 90000100>

	




	
ASTAR = <Algorithm.ASTAR: 90000101>

	








	
enum pygamelib.constants.Direction(value)

	Direction hold the basic constants for directions in the pygamelib. It is used for
a wide variety of use cases from moving a player or NPC to indicate the direction of
the movement of a cursor in the UI module!


	Member Type:

	int





Valid values are as follows:


	
NO_DIR = <Direction.NO_DIR: 10000000>

	




	
UP = <Direction.UP: 10000001>

	




	
DOWN = <Direction.DOWN: 10000010>

	




	
LEFT = <Direction.LEFT: 10000011>

	




	
RIGHT = <Direction.RIGHT: 10000100>

	




	
DRUP = <Direction.DRUP: 10000101>

	




	
DRDOWN = <Direction.DRDOWN: 10000110>

	




	
DLUP = <Direction.DLUP: 10000111>

	




	
DLDOWN = <Direction.DLDOWN: 10001000>

	








	
enum pygamelib.constants.EngineConstant(value)

	A couple of constants that controls the behavior of the engine itself.


	Member Type:

	int





Valid values are as follows:


	
NO_PLAYER = <EngineConstant.NO_PLAYER: 90000001>

	








	
enum pygamelib.constants.EngineMode(value)

	Constants that controls the mode of the engine. So far, it’s a choice between real
time and turn by turn, but in the future there could be additional modes.


	Member Type:

	int





Valid values are as follows:


	
MODE_REAL_TIME = <EngineMode.MODE_REAL_TIME: 90000002>

	




	
MODE_TURN_BY_TURN = <EngineMode.MODE_TURN_BY_TURN: 90000003>

	








	
enum pygamelib.constants.InputValidator(value)

	InputValidators are used in the UI module to indicate what type of inputs are valid
and/or accepted from the user.


	Member Type:

	int





Valid values are as follows:


	
INTEGER_FILTER = <InputValidator.INTEGER_FILTER: 50000001>

	




	
PRINTABLE_FILTER = <InputValidator.PRINTABLE_FILTER: 50000002>

	








	
enum pygamelib.constants.Orientation(value)

	Orientation regroup constants that are used to describe the orientation of graphical
elements. The best example, is the BoxLayout: it can be organized vertically or
horizontally.


	Member Type:

	int





Valid values are as follows:


	
HORIZONTAL = <Orientation.HORIZONTAL: 30000001>

	




	
VERTICAL = <Orientation.VERTICAL: 30000010>

	








	
enum pygamelib.constants.Permission(value)

	Permission constants to separate what objects are allowed to interact with others.
Mostly used to separate NPCs from Players.


	Member Type:

	int





Valid values are as follows:


	
PLAYER_AUTHORIZED = <Permission.PLAYER_AUTHORIZED: 20000001>

	




	
NPC_AUTHORIZED = <Permission.NPC_AUTHORIZED: 20000010>

	




	
ALL_CHARACTERS_AUTHORIZED = <Permission.ALL_CHARACTERS_AUTHORIZED: 20000011>

	




	
ALL_MOVABLE_AUTHORIZED = <Permission.ALL_MOVABLE_AUTHORIZED: 20000100>

	




	
NONE_AUTHORIZED = <Permission.NONE_AUTHORIZED: 20000101>

	








	
enum pygamelib.constants.SizeConstraint(value)

	SizeConstraint regroup constants that are used in element which the size can vary
depending on context.


	Member Type:

	int





Valid values are as follows:


	
DEFAULT_SIZE = <SizeConstraint.DEFAULT_SIZE: 60000001>

	




	
MINIMUM_SIZE = <SizeConstraint.MINIMUM_SIZE: 60000002>

	




	
MAXIMUM_SIZE = <SizeConstraint.MAXIMUM_SIZE: 60000003>

	




	
EXPAND = <SizeConstraint.EXPAND: 60000004>

	








	
enum pygamelib.constants.State(value)

	A set of constants that describe the internal state of something. For example the,
state of the Game engine that are used to process or not
some events.


	Member Type:

	int





Valid values are as follows:


	
RUNNING = <State.RUNNING: 40000001>

	




	
PAUSED = <State.PAUSED: 40000010>

	




	
STOPPED = <State.STOPPED: 40000011>

	








	
enum pygamelib.constants.TextStyle(value)

	TextStyling is used to format characters or text. It is mostly used by
Text.


	Member Type:

	str





Valid values are as follows:


	
BOLD = <TextStyle.BOLD: '\x1b[1m'>

	




	
UNDERLINE = <TextStyle.UNDERLINE: '\x1b[4m'>

	







The following constants are used in versions <= 1.3.0 and have been deprecated starting version 1.4.0.

Directions:


	NO_DIR: This one is used when no direction can be provided by an actuator (destination reached for a PathFinder for example)


	UP


	DOWN


	LEFT


	RIGHT


	DRUP : Diagonal right up


	DRDOWN : Diagonal right down


	DLUP : Diagonal Left up


	DLDOWN : Diagonal left down




Permissions:


	PLAYER_AUTHORIZED


	NPC_AUTHORIZED


	ALL_PLAYABLE_AUTHORIZED (deprecated in 1.2.0 in favor of ALL_CHARACTERS_AUTHORIZED)


	ALL_CHARACTERS_AUTHORIZED


	ALL_MOVABLE_AUTHORIZED


	NONE_AUTHORIZED




UI positions:


	ORIENTATION_HORIZONTAL


	ORIENTATION_VERTICAL


	ALIGN_LEFT


	ALIGN_RIGHT


	ALIGN_CENTER




Actions states (for Actuators for example):


	RUNNING


	PAUSED


	STOPPED




Accepted input (mainly used in pygamelib.gfx.ui for input dialogs):
* INTEGER_FILTER
* PRINTABLE_FILTER

Path Finding Algorithm Constants:


	ALGO_BFS


	ALGO_ASTAR




Text styling constants:


	BOLD


	UNDERLINE




Special constants:


	NO_PLAYER : That constant is used to tell the Game object not to manage the player.


	MODE_RT : Set the game object to Real Time mode. The game runs independently from the user input.


	MODE_TBT : Set the game object to Turn By Turn mode. The game runs turn by turn and pause between each user input.







            

          

      

      

    

  

  
    
    

    engine
    

    

    
 
  

    
      
          
            
  
engine



	Board
	Board
	Board.__init__()

	Board.attach()

	Board.check_sanity()

	Board.clear_cell()

	Board.detach()

	Board.display()

	Board.display_around()

	Board.generate_void_cell()

	Board.get_immovables()

	Board.get_movables()

	Board.handle_notification()

	Board.height

	Board.init_board()

	Board.init_cell()

	Board.instantiate_item()

	Board.item()

	Board.layers()

	Board.load()

	Board.move()

	Board.neighbors()

	Board.notify()

	Board.place_item()

	Board.remove_item()

	Board.render_cell()

	Board.render_to_buffer()

	Board.screen_column

	Board.screen_row

	Board.serialize()

	Board.store_screen_position()

	Board.width









	Game
	Game
	Game.__init__()

	Game.actuate_npcs()

	Game.actuate_projectiles()

	Game.add_board()

	Game.add_npc()

	Game.add_projectile()

	Game.animate_items()

	Game.attach()

	Game.change_level()

	Game.clear_screen()

	Game.clear_session_logs()

	Game.config()

	Game.create_config()

	Game.current_board()

	Game.delete_all_levels()

	Game.delete_level()

	Game.detach()

	Game.display_board()

	Game.display_player_stats()

	Game.get_board()

	Game.get_key()

	Game.handle_notification()

	Game.insert_board()

	Game.instance()

	Game.load_board()

	Game.load_config()

	Game.move_player()

	Game.neighbors()

	Game.notify()

	Game.pause()

	Game.remove_npc()

	Game.run()

	Game.save_board()

	Game.save_config()

	Game.screen_column

	Game.screen_row

	Game.session_log()

	Game.session_logs()

	Game.start()

	Game.state

	Game.stop()

	Game.store_screen_position()









	Inventory
	Inventory
	Inventory.__init__()

	Inventory.add_constraint()

	Inventory.add_item()

	Inventory.attach()

	Inventory.available_space()

	Inventory.clear_constraints()

	Inventory.constraints

	Inventory.delete_item()

	Inventory.delete_items()

	Inventory.detach()

	Inventory.empty()

	Inventory.get_item()

	Inventory.get_items()

	Inventory.handle_notification()

	Inventory.items

	Inventory.items_name()

	Inventory.load()

	Inventory.notify()

	Inventory.remove_constraint()

	Inventory.screen_column

	Inventory.screen_row

	Inventory.search()

	Inventory.serialize()

	Inventory.size()

	Inventory.store_screen_position()

	Inventory.value()









	Screen
	Screen
	Screen.__init__()

	Screen.attach()

	Screen.buffer

	Screen.clear()

	Screen.clear_buffers()

	Screen.clear_frame_buffer()

	Screen.delete()

	Screen.detach()

	Screen.display_at()

	Screen.display_line()

	Screen.display_sprite()

	Screen.display_sprite_at()

	Screen.force_render()

	Screen.force_update()

	Screen.get()

	Screen.handle_notification()

	Screen.hcenter

	Screen.height

	Screen.need_rendering

	Screen.notify()

	Screen.place()

	Screen.render()

	Screen.screen_column

	Screen.screen_row

	Screen.store_screen_position()

	Screen.trigger_rendering()

	Screen.update()

	Screen.vcenter

	Screen.width
















            

          

      

      

    

  

  
    
    

    Board
    

    

    
 
  

    
      
          
            
  
Board


	
class pygamelib.engine.Board(name: str = 'Board', size: list = None, ui_borders: str = None, ui_border_bottom: str = '-', ui_border_top: str = '-', ui_border_left: str = '|', ui_border_right: str = '|', ui_board_void_cell=' ', ui_board_void_cell_sprixel: Sprixel = None, player_starting_position: list = None, DISPLAY_SIZE_WARNINGS=False, parent=None, partial_display_viewport=None, partial_display_focus=None, enable_partial_display=False)

	Bases: PglBaseObject

A class that represent a game board.

The board object is a 2D matrix of board items. This means that you can visualize it
as a chessboard for example. All board items are positioned on this chessboard-like
object and can be moved around.

The Board object is the base object to build a level. Once created to your liking
you can add items from the board_items module. You can also derived
BoardItem to create your own board items, specific
to your game.

If you want a detailed introduction to the Board object, go the the pygamelib wiki
and read the “Getting started: the Board [https://github.com/pygamelib/pygamelib/wiki/Getting-started-Board]” article.


Note

In version 1.3.0 a new screen rendering stack was introduced. With this
came the need for some object to hold more information about their state. This is
the case for Board. To use partial display with the Screen buffer system
the board itself needs to hold the information about were to draw and on what to
focus on. The existing code will still work as the Game object takes
care of forwarding the information to the Board. However, it is now possible to
exploit the Camera object to create cut scenes
and more interesting movements.




Important

Partial display related parameters are information used by the
display_around() method and the Screen
object to either display directly the board (display_around) or render the Board
in the frame buffer. You have to make sure that the focus element’s position
is updated. If you use the player, you have nothing to do but the Camera object
needs to be manually updated for example.




Warning

in 1.3.0 the notion of layers was added to the Board object. Layers are
used to better manage items overlapping. For the moment, layers are automatically
managed to expand and shrink on demand (or on a need basis). You can use the
layer system to add some depth to your game but you should be warned that you may
experience some issues. If it is the case please report them on the
Github issues page [https://github.com/pygamelib/pygamelib/issues].
For existing code, the entire Board object behaves exactly like in version 1.2.x.




	
__init__(name: str = 'Board', size: list = None, ui_borders: str = None, ui_border_bottom: str = '-', ui_border_top: str = '-', ui_border_left: str = '|', ui_border_right: str = '|', ui_board_void_cell=' ', ui_board_void_cell_sprixel: Sprixel = None, player_starting_position: list = None, DISPLAY_SIZE_WARNINGS=False, parent=None, partial_display_viewport=None, partial_display_focus=None, enable_partial_display=False)

	
	Parameters:

	
	name (str) – the name of the Board


	size (list) – array [width,height] with width and height being int.
The size of the board. If layers is not specified it is set to 5.


	player_starting_position (list) – array [row,column] with row and
column being int. The coordinates at which Game will place the player
on change_level().


	ui_borders (str) – To set all the borders to the same value


	ui_border_left (str) – A string that represents the left border.


	ui_border_right (str) – A string that represents the right border.


	ui_border_top (str) – A string that represents the top border.


	ui_border_bottom (str) – A string that represents the bottom border.


	ui_board_void_cell (str) – A string that represents an empty cell. This
option is going to be the model of the BoardItemVoid
(see pygamelib.board_items.BoardItemVoid)


	parent (Game) – The parent object (usually the Game object).


	DISPLAY_SIZE_WARNINGS (bool) – A boolean to show or hide the warning about boards
bigger than 80 rows and/or columns.


	enable_partial_display (bool) – A boolean to tell the Board to enable or not
partial display of boards. Default: False.


	partial_display_viewport (list) – A 2 int elements array that gives the
radius of the partial display in number of row and column. Please see
display_around().


	partial_display_focus (BoardItem or
Vector2D) – An item to focus (i.e center) the view on. When
partial display is enabled the rendered view will be centered on this focus
point/item. It can be an item or a vector.












Methods



	__init__([name, size, ui_borders, ...])

	
	param name:

	the name of the Board









	attach(observer)

	Attach an observer to this instance.



	check_sanity()

	Check the board sanity.



	clear_cell(row, column[, layer])

	Clear cell (row, column, layer)



	detach(observer)

	Detach an observer from this instance.



	display()

	Display the entire board.



	display_around(item, row_radius, column_radius)

	Display only a part of the board.



	generate_void_cell()

	This method return a void cell.



	get_immovables(**kwargs)

	Return a list of all the Immovable objects in the Board.



	get_movables(**kwargs)

	Return a list of all the Movable objects in the Board.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	init_board()

	Initialize the board with BoardItemVoid that uses ui_board_void_cell_sprixel or ui_board_void_cell (in that order of preference) as model.



	init_cell(row, column[, layer])

	Initialize a specific cell of the board with BoardItemVoid that uses ui_board_void_cell as model.



	instantiate_item(data)

	Instantiate a BoardItem from its serialized data.



	item(row, column[, layer])

	Return the item at the row, column, layer position if within board's boundaries.



	layers(row, column)

	A method to get the number of layers at the Board's given coordinates.



	load([data])

	Create a new Board object based on serialized data.



	move(item, direction[, step])

	Board.move() is a routing function.



	neighbors(obj[, radius])

	Returns a list of neighbors (non void item) around an object.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	place_item(item, row, column[, layer, ...])

	Place an item at coordinates row, column and layer.



	remove_item(item)

	Remove an item from the board.



	render_cell(row, column)

	
New in version 1.3.0.







	render_to_buffer(buffer, row, column, ...)

	Render the board into from the display buffer to the frame buffer.



	serialize()

	Return a serialized version of the board.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	height

	A convenience read only property to get the height of the Board.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	width

	A convenience read only property to get the width of the Board.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
check_sanity() → None

	Check the board sanity.

This is essentially an internal method called by the constructor.






	
clear_cell(row, column, layer=0)

	Clear cell (row, column, layer)

This method clears a cell, meaning it position a
void_cell BoardItemVoid at these coordinates.

It also removes the items from the the list of movables and immovables.


	Parameters:

	
	row (int) – The row of the item to remove


	column (int) – The column of the item to remove


	layer (int) – The layer of the item to remove. The default value is 0 to remain
coherent with previous version of the library.








Example:

myboard.clear_cell(3,4,0)






Warning

This method does not check the content before,
it will overwrite the content.




Important

In the case of a BoardComplexItem derivative (Tile, ComplexPlayer
, ComplexNPC, etc.) clearing one cell of the entire item is enough to remove
the entire item from the list of movables or immovables.




Note

Starting in 1.3.0 and the addition of board’s layers, there is no
more overlapping matrix. With no more moving items around this method should
be a little faster. It also means that the layer parameter is really
important (a wrong layer means that you’ll clear the wrong cell). Be ready to
catch an IndexError exception








	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display() → None

	Display the entire board.

This method display the Board (as in print()), taking care of
displaying the borders, and everything inside.

It uses the __str__ method of the item, which by default uses (in order)
BoardItem.sprixel and (if no sprixel is defined) BoardItem.model. If you want to
override this behavior you have to subclass BoardItem.






	
display_around(item, row_radius, column_radius) → None

	Display only a part of the board.

This method behaves like display() but only display a part of the board around
an item (usually the player).
Example:

# This will display only a total of 30 cells vertically and
# 60 cells horizontally.
board.display_around(player, 15, 30)






	Parameters:

	
	item (BoardItem) – an item to center the view on (it has to be a subclass
of BoardItem)


	row_radius (int) – The radius of display in number of rows showed. Remember that
it is a radius not a diameter…


	column_radius (int) – The radius of display in number of columns showed.
Remember that… Well, same thing.








It uses the same display algorithm than the regular display() method.






	
generate_void_cell()

	This method return a void cell.

If ui_board_void_cell_sprixel is defined it uses it, otherwise use
ui_board_void_cell to generate the void item.


	Returns:

	A void board item



	Return type:

	BoardItemVoid





Example:

board.generate_void_cell()










	
get_immovables(**kwargs)

	Return a list of all the Immovable objects in the Board.


	See pygamelib.board_items.Immovable for more on
	an Immovable object.






	Parameters:

	**kwargs – an optional dictionnary with keys matching
Immovables class members and value being something
contained in that member.



	Returns:

	A list of Immovable items





Example:

for m in myboard.get_immovables():
    print(m.name)

# Get all the Immovable objects that type contains "wall"
    AND name contains fire
walls = myboard.get_immovables(type="wall",name="fire")










	
get_movables(**kwargs)

	Return a list of all the Movable objects in the Board.

See pygamelib.board_items.Movable for more on a Movable object.


	Parameters:

	**kwargs – an optional dictionnary with keys matching
Movables class members and value being something contained
in that member.



	Returns:

	A list of Movable items





Example:

for m in myboard.get_movables():
    print(m.name)

# Get all the Movable objects that has a type that contains "foe"
foes = myboard.get_movables(type="foe")










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property height

	A convenience read only property to get the height of the Board.

It is absolutely equivalent to access to board.size[1].


	Returns:

	The height of the board.



	Return type:

	int





Example:

if board.size[1] != board.height:
    print('Houston, we have a problem...')










	
init_board()

	Initialize the board with BoardItemVoid that uses ui_board_void_cell_sprixel or
ui_board_void_cell (in that order of preference) as model.

This method is automatically called by the Board’s constructor.

Example:

myboard.init_board()










	
init_cell(row, column, layer=0) → None

	Initialize a specific cell of the board with BoardItemVoid that
uses ui_board_void_cell as model.


	Parameters:

	
	row (int) – the row coordinate.


	column (int) – the column coordinate.








Example:

myboard.init_cell(2,3,0)










	
static instantiate_item(data: dict)

	Instantiate a BoardItem from its serialized data.


	Parameters:

	data (dict) – The data to use to build the item.



	Returns:

	an instance of a BoardItem.






Important

The actual object depends on the serialized data. It can be any
derivative of BoardItem (even custom objects as long as they inherit from
BoardItem) as long as they are importable by this class.



Example:

# First get some board item serialization data. For example:
data = super_duper_npc.serialize()
# Then instantiate a new one:
another_super_duper_npc = Board.instantiate_item(data)










	
item(row, column, layer=-1)

	Return the item at the row, column, layer position if within
board’s boundaries.


	Parameters:

	
	row (int) – The row to probe.


	column (int) – The column to probe.


	layer (int) – The layer to probe (default: -1 i.e the top item).






	Return type:

	pygamelib.board_items.BoardItem



	Raises:

	PglOutOfBoardBoundException – if row, column or layer are
out of bound.










	
layers(row, column) → int

	A method to get the number of layers at the Board’s given coordinates.


	Returns:

	The number of layers of the board.



	Return type:

	int





Example:

if board.layers(game.player.row, game.player.column) > 1:
    print('The player is stomping on something!')










	
classmethod load(data: dict = None)

	Create a new Board object based on serialized data.

If data is None, None is returned.

If a color component is missing from data, it is set to 0 (see examples).

Raises an exception if the color components are not integer.


	Parameters:

	data (dict) – Data loaded from JSON data (serialized).



	Returns:

	Either a Board object or None if data where empty.



	Return type:

	Board | NoneType



	Raise:

	PglInvalidTypeException





Example:

# Loading from parsed JSON data
new_board = Board.load(json.load("board_lvl_01.json"))










	
move(item, direction, step=1)

	Board.move() is a routing function. It does 2 things:



	1 - If the direction is a Vector2D, round the
	values to the nearest integer (as move works with entire board cells, i.e
integers).



	2 - route toward the right moving function depending if the item is complex or
	not.








Move an item in the specified direction for a number of steps.


	Parameters:

	
	item (pygamelib.board_items.Movable) – an item to move (it has to be a subclass of Movable)


	direction (Direction or
Vector2D) – a direction from constants


	step (int) – the number of steps to move the item.








If the number of steps is greater than the Board, the item will
be move to the maximum possible position.

If the item is not a subclass of Movable, an PglObjectIsNotMovableException
exception (see pygamelib.base.PglObjectIsNotMovableException).

Example:

board.move(player,Direction.UP,1)






Important

if the move is successful, an empty BoardItemVoid
(see pygamelib.boards_item.BoardItemVoid) will be put at the
departure position (unless the movable item is over an overlappable
item). If the movable item is over an overlappable item, the
overlapped item is restored.




Important

Also important: If the direction is a
Vector2D, the values will be rounded to the
nearest integer (as move works with entire board cells). It allows for
movement accumulation before actually moving. The step parameter is not used
in that case.








	
neighbors(obj, radius: int = 1)

	Returns a list of neighbors (non void item) around an object.

This method returns a list of objects that are all around an object between the
position of an object and all the cells at radius.


	Parameters:

	
	radius (int) – The radius in which non void item should be included


	obj (BoardItem) – The central object. The neighbors are calculated for that object.






	Returns:

	A list of BoardItem. No BoardItemVoid is included.



	Raises:

	PglInvalidTypeException – If radius is not an int.





Example:

for item in game.neighbors(npc, 2):
    print(f'{item.name} is around {npc.name} at coordinates '
        '({item.pos[0]},{item.pos[1]})')










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
place_item(item, row: int, column: int, layer: int = 0, auto_layer: bool = True)

	Place an item at coordinates row, column and layer.

If row, column or layer are out of the board boundaries,
a PglOutOfBoardBoundException is raised.

If the item is not a subclass of BoardItem, a PglInvalidTypeException

The observers are notified of a successful placement with the
pygamelib.engine.Board.place_item:item_placed event. The item
that was deleted is passed as the value of the event.


Warning

Nothing prevents you from placing an object on top of
another. Be sure to check that. This method will check for items that
are both overlappable and restorable to save them, but that’s
the extend of it.








	
remove_item(item)

	Remove an item from the board.

If the item is a single BoardItem, this method is absolutely equivalent to
calling clear_cell().
If item is a derivative of BoardComplexItem, it is not as clear_cell() only
clears a specific cell (that can be part of a complex item). This method
actually remove the entire item and clears all its cells.

The observers are notified of a successful removal with the
pygamelib.engine.Board.remove_item:item_removed event. The item
that was deleted is passed as the value of the event.


	Parameters:

	item (BoardItem) – The item to remove.





Example:

game.current_board().remove_item(game.player)










	
render_cell(row, column)

	
New in version 1.3.0.



Render the cell at given position.

This method always return a Sprixel (it could be an
empty one though). It automatically render the highest item (if items are
overlapping for example). If the rendered Sprixel
is configured to have transparent background, this method is going to go through
the layers to make sure that it is rendering the sprixels correctly (i.e: with
the right background color).

For basic usage of the library it is unlikely that you will use it. It is part
of the screen rendering stack introduced in version 1.3.0.
Actually unless you need to write a different rendering system you won’t use
that method.


	Parameters:

	
	row (int) – The row to render.


	column (int) – The column to render.






	Return type:

	Sprixel



	Raises:

	PglOutOfBoardBoundException – if row or column are
out of bound.





Example:

# This renders the board from the top left corner of the screen.
for row in range(0, myboard.height):
    for column in range(0, myboard.height):
        myscreen.place(
            myboard.render_cell(row, column)
        ),
        row,
        column,










	
render_to_buffer(buffer, row, column, buffer_height, buffer_width) → None

	Render the board into from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A frame buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Return a serialized version of the board.


	Returns:

	A dictionary containing the board’s attributes.





Example:

serialized_board_data = myboard.serialize()










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width

	A convenience read only property to get the width of the Board.

It is absolutely equivalent to access to board.size[0].


	Returns:

	The width of the board.



	Return type:

	int





Example:

if board.size[0] != board.width:
    print('Houston, we have a problem...')
















            

          

      

      

    

  

  
    
    

    Game
    

    

    
 
  

    
      
          
            
  
Game


	
class pygamelib.engine.Game(name: str = 'Game', player: Player = None, boards={}, current_level=None, enable_partial_display=False, partial_display_viewport=None, partial_display_focus=None, mode=EngineMode.MODE_TURN_BY_TURN, user_update=None, input_lag=0.01, user_update_paused=None)

	Bases: PglBaseObject

A class that serve as a game engine.

This object is the central system that allow the management of a game. It holds
boards (see pygamelib.engine.Board), associate it to level, takes care of
level changing, etc.


Note

The game object has an object_library member that is always an empty array
except just after loading a board. In this case, if the board have a “library”
field, it is going to be used to populate object_library. This library is
accessible through the Game object mainly so people have access to it across
different Boards during level design in the editor. That architecture decision
is debatable.




Note

The constructor of Game takes care of initializing the terminal to
properly render the colors on Windows.




Important

The Game object automatically assumes ownership over the Player.




	
__init__(name: str = 'Game', player: Player = None, boards={}, current_level=None, enable_partial_display=False, partial_display_viewport=None, partial_display_focus=None, mode=EngineMode.MODE_TURN_BY_TURN, user_update=None, input_lag=0.01, user_update_paused=None)

	
	Parameters:

	
	name (str) – The Game name.


	boards (dict) – A dictionary of boards with the level number as key and a board
reference as value.


	current_level (int) – The current level.


	enable_partial_display (bool) – A boolean to tell the Game object to enable or
not partial display of boards. Default: False.


	partial_display_viewport (list) – A 2 int elements array that gives the
radius of the partial display in number of row and column. Please see
display_around().


	partial_display_focus (BoardItem) – The object that is going to be the center of the
view when the board is displayed.


	mode (EngineMode) – The mode parameter configures the way the run() method is going to
behave. The default value is EngineMode.MODE_TURN_BY_TURN. In that mode,
the Game object wait for an user input before looping.
Exactly like when you wait for user input with get_key(). The other possible
value is EngineMode.MODE_TURN_BY_TURN. RT stands for “Real Time”. In that
mode, the Game object waits for a minimal amount of time (0.01 i.e 100 FPS,
configurable through the input_lag parameter) in order to get the input from
the user and call the update function right away. This parameter is only
useful if you use Game.run().


	user_update (function) – A reference to the main program update function. The update
function is called for each new frame. It is called with 3 parameters: the
game object, the user input (can be None) and the elapsed time since last
frame.


	user_update_paused (function) – A reference to the update function called when the
game is paused. It is called with the same 3 parameters than the regular
update function: the game object, the user input (can be None) and the
elapsed time since last frame. If not specified, the regular update function
is called but nothing is done regarding NPCs, projectiles, animations, etc.


	input_lag (float|int) – The amount of time the run() function is going to wait for a
user input before returning None and calling the update function. Default is
0.01.












Methods



	__init__([name, player, boards, ...])

	
	param name:

	The Game name.









	actuate_npcs(level_number[, elapsed_time])

	Actuate all NPCs on a given level



	actuate_projectiles(level_number[, elapsed_time])

	Actuate all Projectiles on a given level



	add_board(level_number, board)

	Add a board for the level number.



	add_npc(level_number, npc[, row, column, ...])

	Add a NPC to the game.



	add_projectile(level_number, projectile[, ...])

	Add a Projectile to the game.



	animate_items(level_number[, elapsed_time])

	That method goes through all the BoardItems of a given map and call Animation.next_frame().



	attach(observer)

	Attach an observer to this instance.



	change_level(level_number)

	Change the current level, load the board and place the player to the right place.



	clear_screen()

	Clear the whole screen (i.e: remove everything written in terminal)



	clear_session_logs()

	Delete all the log lines from the logs.



	config([section])

	Get the content of a previously loaded configuration section.



	create_config(section)

	Initialize a new config section.



	current_board()

	This method return the board object corresponding to the current_level.



	delete_all_levels()

	Delete all boards and their associated levels from the game object.



	delete_level([lvl_number])

	Delete a level and its associated Board from the game object.



	detach(observer)

	Detach an observer from this instance.



	display_board()

	Display the current board.



	display_player_stats([life_model, void_model])

	Display the player name and health.



	get_board(level_number)

	This method returns the board associated with a level number.



	get_key()

	Reads the next key-stroke returning it as a string.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	insert_board(level_number, board)

	Insert a board for the level number.



	instance(*args, **kwargs)

	Returns the instance of the Game object



	load_board(filename[, lvl_number])

	Load a saved board



	load_config(filename[, section])

	Load a configuration file from the disk.



	move_player(direction[, step])

	Easy wrapper for Board.move().



	neighbors([radius, obj])

	Get a list of neighbors (non void item) around an object.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	pause()

	Set the game engine state to PAUSE.



	remove_npc(level_number, npc)

	This methods remove the NPC from the level in parameter.



	run()

	
New in version 1.2.0.







	save_board(lvl_number, filename)

	Save a board to a JSON file



	save_config([section, filename, append])

	Save a configuration section.



	session_log(line)

	Add a line to the session logs.



	session_logs()

	Return the complete session logs since instantiation.



	start()

	Set the game engine state to RUNNING.



	stop()

	Set the game engine state to STOPPED.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	state

	Get/set the state of the game.







	
actuate_npcs(level_number, elapsed_time=0.0)

	Actuate all NPCs on a given level

This method actuate all NPCs on a board associated with a level. At the moment
it means moving the NPCs but as the Actuators become more capable this method
will evolve to allow more choice (like attack use objects, etc.)

When all NPCs have been successfully actuated, the observers are notified of the
change with the pygamelib.engine.Game.actuate_npcs:npcs_actuated
event. Their is value passed for that event.


	Parameters:

	
	level_number (int) – The number of the level to actuate NPCs in.


	elapsed_time (float) – The amount of time that passed since last call. This
parameter is not mandatory.








Example:

mygame.actuate_npcs(1)






Note

This method only move NPCs when their actuator state is RUNNING. If it
is PAUSED or STOPPED, the NPC is not moved.




Note

Since version 1.2.0 it’s possible for a Movable item to have
different vertical and horizontal movement steps, so actuate_npc respect that
by integrating the steps with a unit direction vector. It should be
completely transparent and you should not expect any change. Just more
movement freedom. If you do experience issues, please report a bug.




Note

Since version 1.2.0 and the appearance of the realtime mode, we have
to account for movement speed. This method does it.








	
actuate_projectiles(level_number, elapsed_time=0.0)

	Actuate all Projectiles on a given level

This method actuate all Projectiles on a board associated with a level.
This method differs from actuate_npcs() as some logic is involved with
projectiles that NPC do not have.
This method decrease the available range by projectile.step each time it’s
called.
It also detects potential collisions.
If the available range falls to 0 or a collision is detected the projectile
hit_callback is called.

This method respects the Projectile.collision_exclusions parameter and does not
register collisions with objects of a type present in that list.


Important

In this method, projectiles do not collide with overlappable
items. If you want to detect collisions with overlappable objects, please
implement your own projectile actuation method.




	Parameters:

	
	level_number (int) – The number of the level to actuate Projectiles in.


	elapsed_time (float) – The amount of time that passed since last call. This
parameter is not mandatory.








When all Projectiles have been successfully actuated, the observers are notified
of the change with the
pygamelib.engine.Game.actuate_projectiles:projectiles_actuated
event. Their is value passed for that event.

Example:

mygame.actuate_projectiles(1)






Note

This method only move Projectiles when their actuator state is
RUNNING. If it is PAUSED or STOPPED, the Projectile is not moved.




Important

Please have a look at the
pygamelib.board_items.Projectile.hit() method for more information on
the projectile hit mechanic.








	
add_board(level_number: int, board: Board) → None

	Add a board for the level number.

This method associate a Board (pygamelib.engine.Board) to a level
number.

If the partial display is enabled at Game level (i.e: partial_display_viewport
is not None and enable_partial_display is True), this method propagate the
settings to the board automatically. Same for partial_display_focus.

Example:

game.add_board(1,myboard)






	Parameters:

	
	level_number (int) – the level number to associate the board to.


	board (pygamelib.engine.Board) – a Board object corresponding to the level number.






	Raises:

	PglInvalidTypeException – If either of these parameters are not of the
correct type.










	
add_npc(level_number, npc, row=None, column=None, layer=None, auto_layer=True)

	Add a NPC to the game. It will be placed on the board corresponding to the
level_number. If row and column are not None, the NPC is placed at these
coordinates. Else, it’s randomly placed in an empty cell.

Example:

game.add_npc(1,my_evil_npc,5,2)






	Parameters:

	
	level_number (int) – the level number of the board.


	npc (pygamelib.board_items.NPC) – the NPC to place.


	row (int) – the row coordinate to place the NPC at.


	column (int) – the column coordinate to place the NPC at.








If either of these parameters are not of the correct type, a
PglInvalidTypeException exception is raised.


Important

If the NPC does not have an actuator, this method is going to
affect a pygamelib.actuators.RandomActuator() to
npc.actuator. And if npc.step == None, this method sets it to 1








	
add_projectile(level_number, projectile, row=None, column=None)

	Add a Projectile to the game. It will be placed on the board corresponding to
level_number. Neither row nor column can be None.

Example:

game.add_projectile(1, fireball, 5, 2)






	Parameters:

	
	level_number (int) – the level number of the board.


	projectile (Projectile) – the Projectile to place.


	row (int) – the row coordinate to place the Projectile at.


	column (int) – the column coordinate to place the Projectile at.








If either of these parameters are not of the correct type, a
PglInvalidTypeException exception is raised.


Important

If the Projectile does not have an actuator, this method is going
to affect pygamelib.actuators.RandomActuator(moveset=[RIGHT])
to projectile.actuator. And if projectile.step == None, this method sets it
to 1.








	
animate_items(level_number, elapsed_time=0.0)

	That method goes through all the BoardItems of a given map and call
Animation.next_frame().

When all items have been successfully animated, the observers are notified of
the change with the
pygamelib.engine.Game.animate_items:items_animated
event. Their is value passed for that event.


	Parameters:

	
	level_number (int) – The number of the level to animate items in.


	elapsed_time (float) – The amount of time that passed since last call. This
parameter is not mandatory.






	Raise:

	PglInvalidLevelException
PglInvalidTypeException





Example:

mygame.animate_items(1)










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
change_level(level_number: int) → None

	Change the current level, load the board and place the player to the right
place.

Example:

game.change_level(1)






	Parameters:

	level_number (int) – the level number to change to.



	Raises:

	base.PglInvalidTypeException – If parameter is not an int.










	
clear_screen()

	Clear the whole screen (i.e: remove everything written in terminal)


Deprecated since version 1.2.0: Starting 1.2.0 we are using the pygamelib.engine.Screen object to manage
the screen. That function is a simple forward and is kept for backward
compatibility only. You should use Game.screen.clear()








	
clear_session_logs() → None

	Delete all the log lines from the logs.

Example:

game = Game.instance()
game.clear_logs()






Note

The session log system is nothing more than a list to do your “debug
prints”. If you want a real logging system, please use Python logging module.








	
config(section: str = 'main') → dict

	Get the content of a previously loaded configuration section.


	Parameters:

	section (str) – The name of the section.





Example:

if mygame.config('main')['pgl-version-required'] < 10200:
    print('The pygamelib version 1.2.0 or greater is required.')
    exit()










	
create_config(section: str) → None

	Initialize a new config section.

The new section is a dictionary.


	Parameters:

	section (str) – The name of the new section.





Example:

if mygame.config('high_scores') is None:
    mygame.create_config('high_scores')
mygame.config('high_scores')['first_place'] = mygame.player.name










	
current_board() → Board

	This method return the board object corresponding to the current_level.

Example:

game.current_board().display()





If current_level is set to a value with no corresponding board a PglException
exception is raised with an invalid_level error.






	
delete_all_levels()

	Delete all boards and their associated levels from the game object.

You might want to think twice before using that function…

Example:

game.delete_all_levels()










	
delete_level(lvl_number: int = None)

	Delete a level and its associated Board from the game object.

Both the level and the board can’t be used after that (unless they are reloaded
or replaced of course).


	Parameters:

	lvl_number (int) – The number of the level to remove.



	Raises:

	
	base.PglInvalidTypeException – If parameter is not an int.


	base.PglInvalidLevelException – If parameter is not a valid level.








Example:

my_game.delete_level(1)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display_board()

	Display the current board.

The behavior of that function is dependant on how you configured this object.
If you set enable_partial_display to True AND partial_display_viewport is set
to a correct value, it will call Game.current_board().display_around() with the
correct parameters.
The partial display will be centered on the player (Game.player).
Otherwise it will just call Game.current_board().display().

If the player is not set or is set to EngineConstant.NO_PLAYER partial display
won’t activate automatically.

Example:

mygame.enable_partial_display = True
# Number of rows, number of column (on each side, total viewport
# will be 20x20 in that case).
mygame.partial_display_viewport = [10, 10]
# This will call Game.current_board().display_around()
mygame.display()
mygame.enable_partial_display = False
# This will call Game.current_board().display()
mygame.display()










	
display_player_stats(life_model='\x1b[41m \x1b[0m', void_model='\x1b[40m \x1b[0m')

	Display the player name and health.


Deprecated since version This: method is completely deprecated and not even compatible
with the Screen Buffer system. It will be removed in 1.4.0.



This method print the Player name, a health bar (20 blocks of life_model). When
life is missing the complement (20-life missing) is printed using void_model.
It also display the inventory value as “Score”.


	Parameters:

	
	life_model (str) – The character(s) that should be used to represent the
remaining life.


	void_model (str) – The character(s) that should be used to represent the
lost life.









Note

This method might change in the future. Particularly it could take a
template of what to display.








	
get_board(level_number: int) → Board

	This method returns the board associated with a level number.
:param level_number: The number of the level.
:type level_number: int


	Raises:

	PglInvalidTypeException – if the level_number is not an int.





Example:

level1_board = mygame.get_board(1)










	
static get_key()

	Reads the next key-stroke returning it as a string.

Example:

key = Utils.get_key()
if key == Utils.key.UP:
    print("Up")
elif key == "q"
    exit()






Note

See readkey documentation in readchar package.








	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
insert_board(level_number: int, board: Board) → None

	Insert a board for the level number.

This method does basically the same thing than add_board() except that if
the level number is already associated it re-affect the numbers down.

Example:

game.insert_board(1,myboard_1)
# level number 1 is associated with myboard_1
game.insert_board(2,myboard_2)
# level number 1 is associated with myboard_1
# level number 2 is associated with myboard_2
game.insert_board(2,myboard_3)
# level number 1 is associated with myboard_1
# level number 2 is now associated with myboard_3
# level number 3 is associated with myboard_2






	Parameters:

	
	level_number (int) – the level number to associate the board to.


	board (pygamelib.engine.Board) – a Board object corresponding to the level number.






	Raises:

	PglInvalidTypeException – If either of these parameters are not of the
correct type.










	
classmethod instance(*args, **kwargs)

	Returns the instance of the Game object

Creates a Game object on first call an then returns the same instance
on further calls


	Returns:

	Instance of Game object










	
load_board(filename, lvl_number=0)

	Load a saved board

Load a Board saved on the disk as a JSON file. This method creates a new Board
object, populate it with all the elements (except a Player) and then return it.

If the filename argument is not an existing file, the open function is going to
raise an exception.

This method, load the board from the JSON file, populate it with all BoardItem
included, check for sanity, init the board with BoardItemVoid and then associate
the freshly created board to a lvl_number.
It then create the NPCs and add them to the board.


	Parameters:

	
	filename (str) – The file to load


	lvl_number (int) – The level number to associate the board to. Default is 0.






	Returns:

	a newly created board (see pygamelib.engine.Board)





Example:

mynewboard = game.load_board( 'awesome_level.json', 1 )
game.change_level( 1 )










	
load_config(filename: str, section: str = 'main') → dict

	Load a configuration file from the disk.
The configuration file must respect the INI syntax.
The goal of these methods is to simplify configuration files management.


	Parameters:

	
	filename (str) – The filename to load. does not check for existence.


	section (str) – The section to put the read config file into. This allow for
multiple files for multiple purpose. Section is a human readable unique
identifier.






	Raises:

	
	FileNotFoundError – If filename is not found on the disk.


	json.decoder.JSONDecodeError – If filename could not be decoded as JSON.






	Returns:

	The parsed data.



	Return type:

	dict






Warning

breaking changes: before v1.1.0 that method use to load file
using the configparser module. This have been dumped in favor of json files.
Since that methods was apparently not used, there is no backward
compatibility.



Example:

mygame.load_config('game_controls.json','game_control')










	
move_player(direction, step=1)

	Easy wrapper for Board.move().

Example:

mygame.move_player(Direction.RIGHT,1)










	
neighbors(radius=1, obj=None)

	Get a list of neighbors (non void item) around an object.

This method returns a list of objects that are all around an object between the
position of an object and all the cells at radius.


	Parameters:

	
	radius (int) – The radius in which non void item should be included


	object (pygamelib.board_items.BoardItem) – The central object. The neighbors are calculated for that object.
If None, the player is the object.






	Returns:

	A list of BoardItem. No BoardItemVoid is included.



	Raises:

	PglInvalidTypeException – If radius is not an int.





Example:

for item in game.neighbors(2):
    print(f'{item.name} is around player at coordinates '
        '({item.pos[0]},{item.pos[1]})')










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
pause()

	Set the game engine state to PAUSE.

Example:

mygame.pause()










	
remove_npc(level_number, npc)

	This methods remove the NPC from the level in parameter.


	Parameters:

	
	level (int) – The number of the level from where the NPC is to be removed.


	npc (NPC) – The NPC object to remove.








Example:

mygame.remove_npc(1, dead_npc)










	
run()

	
New in version 1.2.0.



The run() method act as the main game loop and does a number of things for you:



	It grabs the user input. If the Game object is configured with MODE_TBT (the
default), nothing happen until the user hit a key. If the mode is set to
MODE_RT, it will wait for input_lag secondes for a user input before going
to step 3.


	It calculate the elapsed time between 2 frames.


	Accumulates the elapsed time in the player dtmove variable (if there is a
player object configured)


	It sets the cursor position to 0,0 (meaning that your user_update function
will draw on top of the previously drawn window). The Board.display() and
Board.display_around() method clean the end of their line.


	It calls the user_update function with 3 parameters: the game object, the
key hit by the user (it can be None) and the elapsed time between to calls.


	Clears the end of the screen.


	Actuates NPCs (If there is at least one Board manage by Game).


	Actuates projectiles (If there is at least one Board manage by Game).


	Animates items (If there is at least one Board manage by Game).







On the subject of particle emitters, the Board object automatically
update the ones that are attached to BoardItems. For all other particle emitters
you need to call the update method of the emitters yourself (for now).

In version 1.2.X, there was a bug when the game was paused. In that case nothing
was happening anymore. The user update function was not called and events were
not processed. On top of that it was impossible to use run() without associating
a board object with a level.
Starting with version 1.3.0, it is now possible to use run() without associating
a board object with a level. There is also a new parameter to the
constructor (user_update_paused) that allows you to specify a function that will
be called when the game is paused. This function will be called with the same
3 parameters than the regular update function: the game object, the user input
(can be None) and the elapsed time since last frame.


Important

If you try to set the game state to PAUSED and the
user_update_paused function is not defined, a notification will be issued
and the game will continue to run. The notification message is
pygamelib.engine.Game.run:PauseNotAvailable




	Raises:

	PglInvalidTypeException, PglInvalidTypeException





Example:

mygame.run()










	
save_board(lvl_number, filename)

	Save a board to a JSON file

This method saves a Board and everything in it but the BoardItemVoid.

Not check are done on the filename, if anything happen you get the exceptions
from open().


	Parameters:

	
	lvl_number (int) – The level number to get the board from.


	filename (str) – The path to the file to save the data to.






	Raises:

	
	PglInvalidTypeException – If any parameter is not of the right type


	PglInvalidLevelException – If the level is not associated with a Board.








Example:

game.save_board( 1, 'hac-maps/level1.json')





If Game.object_library is not an empty array, it will be saved also.


Warning

In version 1.3.0 the Board class changed
a lot and a layer system has been added. Therefor, boards saved from version
1.3.0+ are not compatible with previous version. Previous boards can be
loaded (Game.load_board() is backward compatible), but when saved
they will be converted to the new format.








	
save_config(section: str = None, filename: str = None, append: bool = False) → None

	Save a configuration section.


	Parameters:

	
	section (str) – The name of the section to save on disk.


	filename (str) – The file to write in. If not provided it will write in the file
that was used to load the given section. If section was not loaded from a
file, save will raise an exception.


	append (bool) – Do we need to append to the file or replace the content
(True = append, False = replace)








Example:

mygame.save_config('game_controls', 'data/game_controls.json')










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
session_log(line: str) → None

	Add a line to the session logs.

Session logs needs to be activated first.


	Parameters:

	line (str) – The line to add to the logs.





Example:

game = Game.instance()
game.ENABLE_SESSION_LOGS = True
game.session_log('Game engine initialized')






Note

The session log system is nothing more than a list to do your “debug
prints”. If you want a real logging system, please use Python logging module.








	
session_logs() → list

	Return the complete session logs since instantiation.

Example:

game = Game.instance()
game.ENABLE_SESSION_LOGS = True
for line in game.logs():
    print(line)






Note

The session log system is nothing more than a list to do your “debug
prints”. If you want a real logging system, please use Python logging module.








	
start()

	Set the game engine state to RUNNING.

The game has to be RUNNING for actuate_npcs() and move_player() to do anything.

Example:

mygame.start()










	
property state

	Get/set the state of the game.


	Parameters:

	value (State) – The new state of the game (from the constants module).



	Returns:

	The state of the game.



	Return type:

	State





The observers are notified of a change of state with the
pygamelib.engine.Game.state event. The new state is passed as the
value of the event.






	
stop()

	Set the game engine state to STOPPED.

Example:

mygame.stop()










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)
















            

          

      

      

    

  

  
    
    

    Inventory
    

    

    
 
  

    
      
          
            
  
Inventory


	
class pygamelib.engine.Inventory(max_size=10, parent=None)

	Bases: PglBaseObject

A class that represent the Player (or NPC) inventory.

This class is pretty straightforward: it is an object container, you can add, get
and remove items and you can get a value from the objects in the inventory.

On top of that, starting with version 1.3.0, a constraints system has been added.
It allows to specify a certain amount of constraints that will be applied to the
items when they are added to the inventory.

For the moment, constraints are limited to the number of items with a given type/
name/value (any combination of these three).

When a constraint is violated, the item is not added to the inventory and a
notification is broadcasted to the observers of the inventory. A
PglInventoryException is also raised with name “constraint_violation” and the
constraint details in description.


Note

You can print() the inventory. This is mostly useful for debug as you want
to have a better display in your game.




Warning

The Game engine and
Player takes care to initiate an inventory for
the player, you don’t need to do it.




	
__init__(max_size=10, parent=None)

	The constructor takes two parameters: the maximum size of the inventory. And the
Inventory owner/parent.

Each BoardItem that is going to be put in the
inventory has a size (default is 1), the total addition of all these size cannot
exceed max_size.


	Parameters:

	
	max_size (int) – The maximum size of the inventory. Default value: 10.


	parent – The parent object (usually a BoardItem).












Methods



	__init__([max_size, parent])

	The constructor takes two parameters: the maximum size of the inventory.



	add_constraint(constraint_name[, item_type, ...])

	[image: _images/-Alpha-orange.svg]



	add_item(item)

	Add an item to the inventory.



	attach(observer)

	Attach an observer to this instance.



	available_space()

	Return the available space in the inventory.



	clear_constraints()

	Remove all constraints from the inventory.



	delete_item(name)

	Delete THE FIRST item matching the name given in argument.



	delete_items(name)

	Delete ALL items matching the name given in argument.



	detach(observer)

	Detach an observer from this instance.



	empty()

	Empty the inventory.



	get_item(name)

	Return the FIRST item corresponding to the name given in argument.



	get_items(name)

	Return ALL items matching the name given in argument.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	items_name()

	Return the list of all items names in the inventory.



	load(data)

	Load serialized data into a new Inventory object.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	remove_constraint(constraint_name)

	[image: _images/-Alpha-orange.svg]



	search(query)

	Search for objects in the inventory.



	serialize()

	Serialize the inventory in a dictionary.



	size()

	Return the cumulated size of the inventory.



	store_screen_position(row, column)

	Store the screen position of the object.



	value()

	Return the cumulated value of the inventory.






Attributes



	constraints

	[image: _images/-Alpha-orange.svg]



	items

	Return the list of all items in the inventory.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
add_constraint(constraint_name: str, item_type: str = None, item_name: str = None, item_value: int = None, max_number: int = 1)

	[image: _images/-Alpha-orange.svg]Add a constraint to the inventory.


	Parameters:

	
	constraint_name (str) – the name of the constraint.


	item_type (str) – the type of the item.


	item_name (int) – the name of the item.


	item_value – the value of the item.


	max_number (int) – the maximum number of items that match the item_* parameters
that can be in the inventory.








The observers are notified of the addition of the constraint with the
pygamelib.engine.Inventory.add_constraint event. The constraint that
was added is passed as the value of the event as a dictionnary.


New in version 1.3.0.








	
add_item(item)

	Add an item to the inventory.

This method will add an item to the inventory unless:



	it is not an instance of BoardItem,


	you try to add an item that is not pickable,


	there is no more space left in the inventory (i.e: the cumulated size of the
inventory + your item.inventory_space is greater than the inventory max_size)


	An existing constraint is violated.








	Parameters:

	item (BoardItem) – the item you want to add



	Returns:

	The index of the newly added item in the inventory or None if the item
could not be added.



	Return type:

	int|None



	Raise:

	PglInventoryException,
PglInvalidTypeException





When an item is successfully added, the observers are notified of the change
with the pygamelib.engine.Inventory.add_item event. The item that
was added is passed as the value of the event.

When something goes wrong exceptions are raised. The following exceptions can be
raised (PglInventoryException):


	not_pickable: The item you try to add is not pickable.


	not_enough_space: There is not enough space left in the inventory.


	constraint_violation: A constraint is violated.




A PglInvalidTypeException is raised when the item you
try to add is not a BoardItem.

Example:

item = Treasure(model=graphics.Models.MONEY_BAG,size=2,name='Money bag')
try:
    mygame.player.inventory.add_item(item)
expect PglInventoryException as e:
    if e.error == 'not_enough_space':
        print(f"Impossible to add {item.name} to the inventory, there is no"
        "space left in it!")
        print(e.message)
    elif e.error == 'not_pickable':
        print(e.message)






Note

In versions prior to 1.3.0, the inventory object was changing the
name of the item if another item with the same name was already in the
inventory. This is (fortunately) not the case anymore. The Inventory class
does NOT modify the items that are stored into it anymore.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
available_space() → int

	Return the available space in the inventory.

That is to say, Inventory.max_size - Inventory.size().

The returned number is comprised between 0 and Inventory.max_size.


	Returns:

	The size as an int.



	Return type:

	int





Example:

method()










	
clear_constraints()

	Remove all constraints from the inventory.

The observers are notified with the
pygamelib.engine.Inventory.clear_constraints event. The
value is set to None for this event.


New in version 1.3.0.








	
property constraints

	[image: _images/-Alpha-orange.svg]Return the list of all constraints in the inventory.


	Returns:

	a list of constraints (dict)



	Return type:

	list





Example:

for cstr in game.player.inventory.constraints:
    print(f" - {cstr[name]}")










	
delete_item(name)

	Delete THE FIRST item matching the name given in argument.


	Parameters:

	name (str) – the name of the items you want to delete.





When an item is successfully removed, the observers are notified of the change
with the pygamelib.engine.Inventory.delete_item event. The item that
was deleted is passed as the value of the event.

Example:

mygame.player.inventory.delete_item('heart_1')






Important

Starting with version 1.3.0 this method does not raise exceptions
anymore. It’s behavior also changed from deleting a precise item to deleting
the first one that matches the name.








	
delete_items(name)

	Delete ALL items matching the name given in argument.


	Parameters:

	name (str) – the name of the items you want to delete.





The observers are notified of each deletion
with the pygamelib.engine.Inventory.delete_item event. The item
that was deleted is passed as the value of the event.

Example:

mygame.player.inventory.delete_items('heart_1')






New in version 1.3.0.








	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
empty()

	Empty the inventory.

The observers are notified that the Inventory has been emptied with the
pygamelib.engine.Inventory.empty event. Nothing is passed as the
value.

Example:

if inventory.size() > 0:
    inventory.empty()










	
get_item(name)

	Return the FIRST item corresponding to the name given in argument.


	Parameters:

	name (str) – the name of the item you want to get.



	Returns:

	An item.



	Return type:

	BoardItem | None





Example:

life_container = mygame.player.inventory.get_item('heart_1')
if isinstance(life_container,GenericActionableStructure):
    life_container.action(life_container.action_parameters)






Note

Please note that the item object reference is returned but nothing is
changed in the inventory. The item hasn’t been removed.




Important

Starting with version 1.3.0 this method does not raise exceptions
anymore. Instead it returns None if no item is found. It’s behavior also
changed from returning a precise item to the first one that matches the name.








	
get_items(name)

	Return ALL items matching the name given in argument.


	Parameters:

	name (str) – the name of the item you want to get.



	Returns:

	An array of items.



	Return type:

	list





Example:

for life_container in mygame.player.inventory.get_items('heart_1'):
    if isinstance(life_container,GenericActionableStructure):
        life_container.action(life_container.action_parameters)






Note

Please note that the item object reference is returned but nothing is
changed in the inventory. The item hasn’t been removed.




New in version 1.3.0.








	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property items

	Return the list of all items in the inventory.


	Returns:

	a list of BoardItem



	Return type:

	list





Example:

for item in game.player.inventory.items:
    print(f"This is a mighty item: {item.name}")










	
items_name()

	Return the list of all items names in the inventory.


	Returns:

	a list of string representing the items names.



	Return type:

	list










	
classmethod load(data: dict)

	Load serialized data into a new Inventory object.


	Parameters:

	data (dict) – The serialized data



	Returns:

	A new Inventory object.



	Return type:

	Inventory






New in version 1.3.0.



Example:

my_player.inventory = Inventory.load(data)










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
remove_constraint(constraint_name: str)

	[image: _images/-Alpha-orange.svg]Remove a constraint from the inventory.


	Parameters:

	constraint_name (str) – the name of the constraint.





The observers are notified of the removal of the constraint with the
pygamelib.engine.Inventory.remove_constraint event. The constraint
that was removed is passed as the value of the event as a dictionnary.


New in version 1.3.0.








	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
search(query)

	Search for objects in the inventory.

All objects that matches the query are going to be returned. Search is performed
on the name and type of the object.


	Parameters:

	query – the query that items in the inventory have to match to be returned



	Returns:

	a list of BoardItems.



	Return type:

	list





Example:

for item in game.player.inventory.search('mighty'):
    print(f"This is a mighty item: {item.name}")










	
serialize()

	Serialize the inventory in a dictionary.


	Returns:

	The serialized data.



	Return type:

	dict






New in version 1.3.0.



Example:

json.dump(my_inventory.serialize(), out_file)










	
size()

	Return the cumulated size of the inventory.
It can be used in the UI to display the size compared to max_size for example.


	Returns:

	size of inventory



	Return type:

	int





Example:

print(f"Inventory: {mygame.player.inventory.size()}/"
"{mygame.player.inventory.max_size}")










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
value()

	Return the cumulated value of the inventory.
It can be used for scoring for example.


	Returns:

	value of inventory



	Return type:

	int





Example:

if inventory.value() >= 10:
    print('Victory!')
    break
















            

          

      

      

    

  

  
    
    

    Screen
    

    

    
 
  

    
      
          
            
  
Screen


	
class pygamelib.engine.Screen(width: int = None, height: int = None)

	Bases: PglBaseObject

The screen object is pretty straightforward: it is an object that allow manipulation
of the screen.


Warning

Starting with version 1.3.0 the terminal parameter has been removed.
The Screen object now takes advantage of base.Console.instance() to get a
reference to a blessed.Terminal object.



Version 1.3.0 introduced a new way of managing the screen. It rely on an internally
managed display buffer that allows for easier positioning and more regular
rendering. This comes at a cost though as the performances takes a hit. The screen
should still be able to be refreshed between 50 and 60+ times per seconds (and still
around 30 times per second within a virtual machine). These numbers obviously
depends on the terminal used, the screen size and the content to display.

This change introduce two ways of displaying things on the screen:



	The Improved Screen Management stack (referred to as ISM later
in the doc).


	The Legacy Direct Display stack.







It is safer to consider them mutually incompatible. In reality the Improved Screen
Management will always use the whole display but you can use the methods from the
Direct Display stack to write over the buffer. It is really NOT advised.

We introduced the Improved Screen Management stack because the direct display is
messy and does not allow us to do what we want in term of positioning, UI, etc.

A typical usage consist of:



	Placing elements on the screen with place()


	Update the screen with update()







That’s it! The screen maintain its own state and knows when to re-render the display
buffer. You don’t need to manually call render(). This helps with
performances as the frame buffer is only rendered when needed.

Example:

screen = Screen()
# The next 3 lines do the same thing: display a message centered on the screen.
# Screen Buffer style
screen.place('This is centered', screen.vcenter, screen.hcenter)
screen.update()
# Direct Display style
screen.display_at('This is centered', screen.vcenter, screen.hcenter)
# The rest of this example uses the Screen Buffer (because placing a Board
# anywhere on the Screen is not supported by the Direct Display stack).
# delete the previous message and place a Board at the center of the screen
screen.delete(screen.vcenter, screen.hcenter)
screen.place(
    my_awesome_board,
    screen.vcenter - int(my_awesome_board.height/2),
    screen.hcenter - int(my_awesome_board.width/2)
)
screen.update()





Precisions about the Improved Screen Management stack:

You don’t need to know how the frame buffer works to use it. However, if you are
interested in more details, here they are.

The Improved Screen Management stacks uses a double numpy buffer to represent the
screen. One buffer is used to place elements as objects (that’s the buffer managed
by place() or delete()). It is never directly printed to the screen.
It is here to simplify screen maintenance. This buffer is called the display
buffer. It is practical to use to place, move and delete elements on the screen
space. But as said before it cannot be directly printed to the screen. It needs to
be rendered first.

For example, if you want to use a sprite on a title screen and want to move it
around (or animate the screen). Normally (i.e with Direct Display) you would display
the sprite at a specific position and then would either call clear() or
overwrite all the sprite with spaces to erase and replace and/or move it. And that’s
very slow.

With the Improved Screen Management you place() the sprite and then just
delete() it. And since it is only one object reference it is a very fast
operation (we only place or delete one cell of the buffer).

When update() is called, it first look at the state of the buffers and call
render() if needed (i.e: if something has change in the display buffer). The
buffers are only rendered when needed.

When render() is called it goes through the display buffer and render
each elements transforming it into a printable sequence that is stored in the
frame buffer. The rendering is done from the bottom right corner of the screen to
the top left corner. This allows for cleaning junk characters at no additional cost.

TL;DR: The display buffer hold the objects placed on the screen while the
frame buffer hold the rendered representation of the display buffer.

The Screen object also inherits from the PglBaseObject and
if the object that is place()-ed is an instance of
PglBaseObject, the screen will automatically attach itself
to the object. When notified of a change it will trigger a render cycle before the
next update.

In terms of performances, depending on your terminal emulator and CPU you will most
certainly achieve over 30 FPS. Here are a couple of benchmark results:



	On an Intel Core i7 @ 4.20 GHz: 50 to 70 FPS.


	On an AMD Ryzen 9 5950X @ 4.80 GHz: 60 to 100 FPS.







The new Improved Screen Management is faster than the legacy stack in most of
the cases. The only case when the legacy Direct Display stack might be faster is
in the case of a game or application with only simple ASCII characters and not a lot
of things to display.

Here are some compiled benchmark results of both of systems over 150 runs:



	Benchmark

	Improved Screen Management

	Legacy Direct Display





	Sprite (place, render
and update screen),
Sprite size: 155x29

	10.0 msec. or 71 FPS

	380.0 msec. or 3 FPS



	Sprite 200 updates

	620.0 msec. or 76 FPS

	9830.0 msec. or 20 FPS



	Phase 1 - 500 frames.
Single board avg load

	11.02 msec. per frame
or 91 FPS

	12.65 msec. per frame
or 79 FPS



	Phase 2 - 500 frames.
Dual board high load

	18.18 msec. per frame
or 55 FPS

	28.34 msec. per frame
or 35 FPS



	Overall - 1000 frames.

	14.60 msec. per frame
or 68 FPS

	20.49 msec. per frame
or 49 FPS






You can use the 2 benchmark scripts to compare on your system:



	benchmark-screen-buffer.py


	benchmark-screen-direct-display.py







The frame buffer system has been tested on the following terminals:


	xterm-256color


	Konsole


	Kitty


	Alacritty


	GNOME Terminal




Performances are consistent across the different terminals. The only exception is
the GNOME Terminal, which is slower than the others (about 20~30 % slower).


	
__init__(width: int = None, height: int = None)

	The constructor takes the following (optional) parameters.


	Parameters:

	
	width (int) – The width of the screen.


	height (int) – The height of the screen.








Setting any of these parameters fixes the screen size regardless of the actual
console/terminal resolution. Leaving any of these parameters unset will let the
constructor use the actual console/terminal resolution instead.

Please have a look at the examples for more on this topic.

Example:

# Let's assume a terminal resolution of 170(width)x75(height).
screen = Screen()
# Next line display: "Screen width=170 height=75"
print(f"Screen width={screen.width} height={screen.height}")
screen = Screen(50)
# Next line display: "Screen width=50 height=75"
print(f"Screen width={screen.width} height={screen.height}")
screen = Screen(height=50)
# Next line display: "Screen width=170 height=50"
print(f"Screen width={screen.width} height={screen.height}")
screen = Screen(50, 50)
# Next line display: "Screen width=50 height=50"
print(f"Screen width={screen.width} height={screen.height}")









Methods



	__init__([width, height])

	The constructor takes the following (optional) parameters.



	attach(observer)

	Attach an observer to this instance.



	clear()

	This methods clear the screen.



	clear_buffers()

	This methods clear the Screen's buffers (both display and frame buffer).



	clear_frame_buffer()

	This methods clear the frame buffer (but not the display buffer).



	delete([row, column])

	Delete a element on screen.



	detach(observer)

	Detach an observer from this instance.



	display_at(text[, row, column, clear_eol, ...])

	Displays text at a given position.



	display_line(*text[, end, file, flush])

	A wrapper to Python's print() builtin function except it will always add an ANSI sequence to clear the end of the line.



	display_sprite(sprite[, filler, file, flush])

	Displays a sprite at the current cursor position.



	display_sprite_at(sprite[, row, column, ...])

	Displays a sprite at a given position.



	force_render()

	Force the immediate rendering of the display buffer.



	force_update()

	Same as force_render() but also force the immediate screen update.



	get(row, column)

	Get an element from the display buffer at the specified screen coordinates.



	handle_notification(subject[, attribute, value])

	When a Screen object is notified, it set the display buffer to be rendered before the next update.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	place([element, row, column, rendering_pass])

	Place an element on the screen.



	render()

	Render the display buffer into the frame buffer.



	store_screen_position(row, column)

	Store the screen position of the object.



	trigger_rendering()

	Trigger the frame buffer for rendering at the next update.



	update()

	Update the screen.






Attributes



	buffer

	The buffer property return a numpy.array as a writable frame buffer.



	hcenter

	Return the horizontal center of the screen as an int.



	height

	This property returns the height of the terminal window in number of characters.



	need_rendering

	This property return True if the display buffer has been updated since the last rendering cycle and the screen needs to re-render the frame buffer.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	vcenter

	Return the vertical center of the screen as an int.



	width

	This property returns the width of the terminal window in number of characters.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property buffer

	The buffer property return a numpy.array as a writable frame buffer.

The buffer is a 2D plane (like a screen) and anything can render in it. However,
it is recommended to place objects through Screen.place() and update the screen
with Screen.update() (update calls render() if needed and do the actual
display).


Warning

Everything that is stored in the buffer must be printable. Each
cell of the frame buffer represent a single character on screen, so you need
to take care of that when you write into that buffer or you will corrupt the
display. If need_rendering returns True, you need to manually call
render() before writing anything into the frame buffer. Or else it
will be squashed in the next rendering cycle.




New in version 1.3.0.



[image: _images/rendering%2520stack-ISM-green.svg]
Note

This method is part of the Improved Screen Management rendering
stack and is incompatible with the methods identified as being part of the
Legacy Direct Display stack.








	
clear()

	This methods clear the screen.






	
clear_buffers()

	This methods clear the Screen’s buffers (both display and frame buffer).

Make sure that you really want to clear the buffers before doing so, because
this is a slow operation.

Once the buffer is cleared nothing is left in it, you have to reposition (place)
everything.


New in version 1.3.0.



[image: _images/rendering%2520stack-ISM-green.svg]
Note

This method is part of the Improved Screen Management rendering
stack and is incompatible with the methods identified as being part of the
Legacy Direct Display stack.








	
clear_frame_buffer()

	This methods clear the frame buffer (but not the display buffer). This means
that the next time update() is called, rendering will be triggered.

Make sure that you really want to clear the buffers before doing so, because
this is a slow operation. It might however be faster than manually update screen
cells.

Once the buffer is cleared nothing is left in it, it sets the Screen for a
rendering update.


New in version 1.3.0.



[image: _images/rendering%2520stack-ISM-green.svg]
Note

This method is part of the Improved Screen Management rendering
stack and is incompatible with the methods identified as being part of the
Legacy Direct Display stack.








	
delete(row=None, column=None)

	Delete a element on screen.

It is important to note that if you placed an element that occupies more than 1
cell, you only have to erase that specific position not the entire area.


	Parameters:

	
	row (int) – The row coordinate of the element to delete.


	column (int) – The column coordinate of the element to delete.








Example:

board = Board(size=[20,20])
screen.place(board, 2, 2)
# With this we have placed a board at screen coordinates 2,2 and the board
# will display on screen coordinates from 2,2 to 22,22.
# However, to delete the board we don't need to clean all these cells.
# Just the one where we placed the board:
screen.delete(2, 2)






New in version 1.3.0.



[image: _images/rendering%2520stack-ISM-green.svg]
Note

This method is part of the Improved Screen Management rendering
stack and is incompatible with the methods identified as being part of the
Legacy Direct Display stack.








	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
display_at(text, row=0, column=0, clear_eol=False, end='\n', file=<colorama.ansitowin32.StreamWrapper object>, flush=False)

	Displays text at a given position. If clear_eol is True, also clear the end of
line.
Additionally you can specify all the parameters of a regular print() if you
need to.


	Parameters:

	
	text (str) – The text to display. Please note that in that case text is a single
string.


	row (int) – The row position in the terminal window.


	column (int) – The column position in the terminal window.


	clear_eol (bool) – If True this clears the end of the line (everything after the
last character displayed by that method).


	end (str) – end sub string added to the printed text. Usually a carriage return.


	file (stream) – 


	flush (bool) – 









Important

The cursor is only moved for printing the text. It is returned to
its previous position after.




Note

The position respect the row/column convention accross the library. It
is reversed compared to the blessed module.



Example:

screen.display_at('This is centered',
                  int(screen.height/2),
                  int(screen.width/2),
                  clear_eol=True,
                  end=''
                )





[image: _images/6dc6c361640c2252298f9f99b568f2f6c20e4820.svg]
Note

This method is part of the Legacy Direct Display rendering stack
and is incompatible with the methods identified as being part of the
Improved Screen Management stack.








	
display_line(*text, end='\n', file=<colorama.ansitowin32.StreamWrapper object>, flush=False)

	A wrapper to Python’s print() builtin function except it will always add an
ANSI sequence to clear the end of the line. Making it more suitable to use in
a user_update callback.

The reason is that with line with variating length, if you use run() but not
clear(), some characters will remain on screen because run(), for performances
concerns does not clear the entire screen. It just bring the cursor back to the
top left corner of the screen.
So if you want to benefit from the increase performances you should use
display_line().


	Parameters:

	
	*text (str|objects) – objects that can serialize to str. The ANSI sequence to clear the
end of the line is always appended to the the text.


	end (str) – end sub string added to the printed text. Usually a carriage return.


	file (stream) – 


	flush (bool) – 








Example:

screen.display_line(f'This line will display correctly: {elapsed_time}')
# That line will have trailing characters that are not cleared after redraw
# if you don't use clear().
print(f'That one won't: {elapsed_time}')






New in version 1.2.0.



[image: _images/6dc6c361640c2252298f9f99b568f2f6c20e4820.svg]
Note

This method is part of the Legacy Direct Display rendering stack
and is incompatible with the methods identified as being part of the
Improved Screen Management stack.








	
display_sprite(sprite, filler= 
  
    
    

    gfx
    

    

    
 
  

    
      
          
            
  
gfx

The gfx (for graphics) sub-module holds all the classes related to the graphics system.



	core
	Animation
	Animation
	Animation.__init__()

	Animation.add_frame()

	Animation.current_frame()

	Animation.dtanimate

	Animation.load()

	Animation.next_frame()

	Animation.pause()

	Animation.play_all()

	Animation.remove_frame()

	Animation.reset()

	Animation.search_frame()

	Animation.serialize()

	Animation.start()

	Animation.stop()









	Font
	Font
	Font.__init__()

	Font.colorable

	Font.glyph()

	Font.glyphs_map

	Font.height

	Font.horizontal_spacing

	Font.load()

	Font.monospace

	Font.name

	Font.scalable

	Font.vertical_spacing









	SpriteCollection
	SpriteCollection
	SpriteCollection.__init__()

	SpriteCollection.add()

	SpriteCollection.clear()

	SpriteCollection.copy()

	SpriteCollection.fromkeys()

	SpriteCollection.get()

	SpriteCollection.items()

	SpriteCollection.keys()

	SpriteCollection.load()

	SpriteCollection.load_json_file()

	SpriteCollection.pop()

	SpriteCollection.popitem()

	SpriteCollection.rename()

	SpriteCollection.serialize()

	SpriteCollection.setdefault()

	SpriteCollection.to_json_file()

	SpriteCollection.update()

	SpriteCollection.values()









	Sprite
	Sprite
	Sprite.__init__()

	Sprite.attach()

	Sprite.calculate_size()

	Sprite.copy()

	Sprite.detach()

	Sprite.empty()

	Sprite.flip_horizontally()

	Sprite.flip_vertically()

	Sprite.from_text()

	Sprite.handle_notification()

	Sprite.height

	Sprite.load()

	Sprite.load_from_ansi_file()

	Sprite.modulate()

	Sprite.notify()

	Sprite.render_to_buffer()

	Sprite.scale()

	Sprite.screen_column

	Sprite.screen_row

	Sprite.serialize()

	Sprite.set_sprixel()

	Sprite.set_transparency()

	Sprite.sprixel()

	Sprite.store_screen_position()

	Sprite.tint()

	Sprite.width









	Sprixel
	Sprixel
	Sprixel.__init__()

	Sprixel.attach()

	Sprixel.bg_color

	Sprixel.black_rect()

	Sprixel.black_square()

	Sprixel.blue_rect()

	Sprixel.blue_square()

	Sprixel.copy()

	Sprixel.cyan_rect()

	Sprixel.cyan_square()

	Sprixel.detach()

	Sprixel.fg_color

	Sprixel.from_ansi()

	Sprixel.green_rect()

	Sprixel.green_square()

	Sprixel.handle_notification()

	Sprixel.length

	Sprixel.load()

	Sprixel.magenta_rect()

	Sprixel.magenta_square()

	Sprixel.model

	Sprixel.notify()

	Sprixel.red_rect()

	Sprixel.red_square()

	Sprixel.render_to_buffer()

	Sprixel.screen_column

	Sprixel.screen_row

	Sprixel.serialize()

	Sprixel.store_screen_position()

	Sprixel.white_rect()

	Sprixel.white_square()

	Sprixel.yellow_rect()

	Sprixel.yellow_square()









	Color
	Color
	Color.__init__()

	Color.attach()

	Color.b

	Color.blend()

	Color.copy()

	Color.detach()

	Color.from_ansi()

	Color.g

	Color.handle_notification()

	Color.load()

	Color.notify()

	Color.r

	Color.random()

	Color.randomize()

	Color.screen_column

	Color.screen_row

	Color.serialize()

	Color.store_screen_position()













	ui
	Box
	Box
	Box.__init__()

	Box.config

	Box.height

	Box.render_to_buffer()

	Box.title

	Box.width









	BoxLayout
	BoxLayout
	BoxLayout.__init__()

	BoxLayout.add_widget()

	BoxLayout.attach()

	BoxLayout.count()

	BoxLayout.detach()

	BoxLayout.handle_notification()

	BoxLayout.height

	BoxLayout.notify()

	BoxLayout.orientation

	BoxLayout.parent

	BoxLayout.render_to_buffer()

	BoxLayout.screen_column

	BoxLayout.screen_row

	BoxLayout.size_constraint

	BoxLayout.spacing

	BoxLayout.store_screen_position()

	BoxLayout.widgets()

	BoxLayout.width









	ColorPickerDialog
	ColorPickerDialog
	ColorPickerDialog.__init__()

	ColorPickerDialog.config

	ColorPickerDialog.render_to_buffer()

	ColorPickerDialog.set_color()

	ColorPickerDialog.set_selection()

	ColorPickerDialog.show()

	ColorPickerDialog.title

	ColorPickerDialog.user_input









	ColorPicker
	ColorPicker
	ColorPicker.__init__()

	ColorPicker.blue

	ColorPicker.color

	ColorPicker.green

	ColorPicker.red

	ColorPicker.render_to_buffer()

	ColorPicker.selection









	Cursor
	Cursor
	Cursor.__init__()

	Cursor.attach()

	Cursor.detach()

	Cursor.handle_notification()

	Cursor.lock_position()

	Cursor.notify()

	Cursor.parent

	Cursor.relative_column

	Cursor.relative_row

	Cursor.render_to_buffer()

	Cursor.screen_column

	Cursor.screen_row

	Cursor.sprixel

	Cursor.store_screen_position()

	Cursor.unlock_position()









	Dialog
	Dialog
	Dialog.__init__()

	Dialog.config

	Dialog.show()

	Dialog.user_input









	FileDialog
	FileDialog
	FileDialog.__init__()

	FileDialog.config

	FileDialog.filter

	FileDialog.path

	FileDialog.render_to_buffer()

	FileDialog.show()

	FileDialog.show_hidden_files

	FileDialog.user_input









	FormLayout
	FormLayout
	FormLayout.__init__()

	FormLayout.add_row()

	FormLayout.add_widget()

	FormLayout.attach()

	FormLayout.column_minimum_width

	FormLayout.count()

	FormLayout.count_columns()

	FormLayout.count_rows()

	FormLayout.detach()

	FormLayout.handle_notification()

	FormLayout.height

	FormLayout.horizontal_spacing

	FormLayout.notify()

	FormLayout.parent

	FormLayout.remove_row()

	FormLayout.render_to_buffer()

	FormLayout.row_minimum_height

	FormLayout.screen_column

	FormLayout.screen_row

	FormLayout.spacing

	FormLayout.store_screen_position()

	FormLayout.vertical_spacing

	FormLayout.widgets()

	FormLayout.width









	GridLayout
	GridLayout
	GridLayout.__init__()

	GridLayout.add_widget()

	GridLayout.attach()

	GridLayout.column_minimum_width

	GridLayout.count()

	GridLayout.count_columns()

	GridLayout.count_rows()

	GridLayout.detach()

	GridLayout.handle_notification()

	GridLayout.height

	GridLayout.horizontal_spacing

	GridLayout.notify()

	GridLayout.parent

	GridLayout.render_to_buffer()

	GridLayout.row_minimum_height

	GridLayout.screen_column

	GridLayout.screen_row

	GridLayout.spacing

	GridLayout.store_screen_position()

	GridLayout.vertical_spacing

	GridLayout.widgets()

	GridLayout.width









	GridSelectorDialog
	GridSelectorDialog
	GridSelectorDialog.__init__()

	GridSelectorDialog.config

	GridSelectorDialog.grid_selector

	GridSelectorDialog.render_to_buffer()

	GridSelectorDialog.show()

	GridSelectorDialog.title

	GridSelectorDialog.user_input









	GridSelector
	GridSelector
	GridSelector.__init__()

	GridSelector.choices

	GridSelector.current_choice

	GridSelector.current_page

	GridSelector.current_sprixel()

	GridSelector.cursor_down()

	GridSelector.cursor_left()

	GridSelector.cursor_right()

	GridSelector.cursor_up()

	GridSelector.items_per_page()

	GridSelector.max_height

	GridSelector.max_width

	GridSelector.nb_pages()

	GridSelector.page_down()

	GridSelector.page_up()

	GridSelector.render_to_buffer()









	Layout
	Layout
	Layout.__init__()

	Layout.add_widget()

	Layout.attach()

	Layout.count()

	Layout.detach()

	Layout.handle_notification()

	Layout.height

	Layout.notify()

	Layout.parent

	Layout.render_to_buffer()

	Layout.screen_column

	Layout.screen_row

	Layout.spacing

	Layout.store_screen_position()

	Layout.widgets()

	Layout.width









	LineInput
	LineInput
	LineInput.__init__()

	LineInput.attach()

	LineInput.backspace()

	LineInput.bg_color

	LineInput.children

	LineInput.clear()

	LineInput.cursor

	LineInput.delete()

	LineInput.detach()

	LineInput.end()

	LineInput.filter

	LineInput.focus

	LineInput.handle_notification()

	LineInput.height

	LineInput.home()

	LineInput.insert_characters()

	LineInput.layout

	LineInput.length()

	LineInput.maximum_height

	LineInput.maximum_width

	LineInput.minimum_height

	LineInput.minimum_width

	LineInput.move_cursor()

	LineInput.notify()

	LineInput.parent

	LineInput.redo()

	LineInput.render_to_buffer()

	LineInput.screen_column

	LineInput.screen_row

	LineInput.size_constraint

	LineInput.store_screen_position()

	LineInput.text

	LineInput.undo()

	LineInput.width

	LineInput.x

	LineInput.y









	LineInputDialog
	LineInputDialog
	LineInputDialog.__init__()

	LineInputDialog.config

	LineInputDialog.label

	LineInputDialog.render_to_buffer()

	LineInputDialog.show()

	LineInputDialog.title

	LineInputDialog.user_input









	Menu
	Menu
	Menu.__init__()

	Menu.activate()

	Menu.add_entry()

	Menu.collapse()

	Menu.config

	Menu.current_entry()

	Menu.entries

	Menu.expand()

	Menu.menu_width()

	Menu.padding

	Menu.render_to_buffer()

	Menu.select_next()

	Menu.select_previous()

	Menu.selected

	Menu.title

	Menu.title_width()









	MenuAction
	MenuAction
	MenuAction.__init__()

	MenuAction.action

	MenuAction.activate()

	MenuAction.config

	MenuAction.padding

	MenuAction.render_to_buffer()

	MenuAction.selected

	MenuAction.title

	MenuAction.title_width()









	MenuBar
	MenuBar
	MenuBar.__init__()

	MenuBar.add_entry()

	MenuBar.close()

	MenuBar.config

	MenuBar.current_entry()

	MenuBar.current_index

	MenuBar.entries

	MenuBar.length()

	MenuBar.render_to_buffer()

	MenuBar.select_next()

	MenuBar.select_previous()

	MenuBar.spacing









	MessageDialog
	MessageDialog
	MessageDialog.__init__()

	MessageDialog.add_line()

	MessageDialog.config

	MessageDialog.height

	MessageDialog.render_to_buffer()

	MessageDialog.show()

	MessageDialog.title

	MessageDialog.user_input









	MultiLineInputDialog
	MultiLineInputDialog
	MultiLineInputDialog.__init__()

	MultiLineInputDialog.config

	MultiLineInputDialog.fields

	MultiLineInputDialog.render_to_buffer()

	MultiLineInputDialog.show()

	MultiLineInputDialog.title

	MultiLineInputDialog.user_input









	ProgressBar
	ProgressBar
	ProgressBar.__init__()

	ProgressBar.config

	ProgressBar.empty_marker

	ProgressBar.maximum

	ProgressBar.progress_marker

	ProgressBar.render_to_buffer()

	ProgressBar.value









	ProgressDialog
	ProgressDialog
	ProgressDialog.__init__()

	ProgressDialog.config

	ProgressDialog.label

	ProgressDialog.maximum

	ProgressDialog.render_to_buffer()

	ProgressDialog.show()

	ProgressDialog.user_input

	ProgressDialog.value









	UiConfig
	UiConfig
	UiConfig.__init__()

	UiConfig.instance()









	Widget
	Widget
	Widget.__init__()

	Widget.attach()

	Widget.bg_color

	Widget.children

	Widget.detach()

	Widget.focus

	Widget.handle_notification()

	Widget.height

	Widget.layout

	Widget.maximum_height

	Widget.maximum_width

	Widget.minimum_height

	Widget.minimum_width

	Widget.notify()

	Widget.parent

	Widget.render_to_buffer()

	Widget.screen_column

	Widget.screen_row

	Widget.size_constraint

	Widget.store_screen_position()

	Widget.width

	Widget.x

	Widget.y













	particles
	CircleEmitter
	CircleEmitter
	CircleEmitter.__init__()

	CircleEmitter.active

	CircleEmitter.apply_force()

	CircleEmitter.attach()

	CircleEmitter.column

	CircleEmitter.detach()

	CircleEmitter.emit()

	CircleEmitter.finished()

	CircleEmitter.handle_notification()

	CircleEmitter.load()

	CircleEmitter.notify()

	CircleEmitter.particle_pool

	CircleEmitter.render_to_buffer()

	CircleEmitter.resize_pool()

	CircleEmitter.row

	CircleEmitter.screen_column

	CircleEmitter.screen_row

	CircleEmitter.serialize()

	CircleEmitter.store_screen_position()

	CircleEmitter.toggle_active()

	CircleEmitter.update()

	CircleEmitter.x

	CircleEmitter.y









	ColorParticle
	ColorParticle
	ColorParticle.__init__()

	ColorParticle.apply_force()

	ColorParticle.attach()

	ColorParticle.column

	ColorParticle.detach()

	ColorParticle.finished()

	ColorParticle.handle_notification()

	ColorParticle.load()

	ColorParticle.notify()

	ColorParticle.render()

	ColorParticle.reset()

	ColorParticle.reset_lifespan()

	ColorParticle.row

	ColorParticle.screen_column

	ColorParticle.screen_row

	ColorParticle.serialize()

	ColorParticle.store_screen_position()

	ColorParticle.terminate()

	ColorParticle.update()

	ColorParticle.x

	ColorParticle.y









	ColorPartitionParticle
	ColorPartitionParticle
	ColorPartitionParticle.__init__()

	ColorPartitionParticle.apply_force()

	ColorPartitionParticle.attach()

	ColorPartitionParticle.column

	ColorPartitionParticle.detach()

	ColorPartitionParticle.finished()

	ColorPartitionParticle.handle_notification()

	ColorPartitionParticle.load()

	ColorPartitionParticle.notify()

	ColorPartitionParticle.render()

	ColorPartitionParticle.reset()

	ColorPartitionParticle.reset_lifespan()

	ColorPartitionParticle.row

	ColorPartitionParticle.screen_column

	ColorPartitionParticle.screen_row

	ColorPartitionParticle.serialize()

	ColorPartitionParticle.store_screen_position()

	ColorPartitionParticle.terminate()

	ColorPartitionParticle.update()

	ColorPartitionParticle.x

	ColorPartitionParticle.y









	EmitterProperties
	EmitterProperties
	EmitterProperties.__init__()

	EmitterProperties.load()

	EmitterProperties.serialize()









	ParticleEmitter
	ParticleEmitter
	ParticleEmitter.__init__()

	ParticleEmitter.active

	ParticleEmitter.apply_force()

	ParticleEmitter.attach()

	ParticleEmitter.column

	ParticleEmitter.detach()

	ParticleEmitter.emit()

	ParticleEmitter.finished()

	ParticleEmitter.handle_notification()

	ParticleEmitter.load()

	ParticleEmitter.notify()

	ParticleEmitter.particle_pool

	ParticleEmitter.render_to_buffer()

	ParticleEmitter.resize_pool()

	ParticleEmitter.row

	ParticleEmitter.screen_column

	ParticleEmitter.screen_row

	ParticleEmitter.serialize()

	ParticleEmitter.store_screen_position()

	ParticleEmitter.toggle_active()

	ParticleEmitter.update()

	ParticleEmitter.x

	ParticleEmitter.y









	ParticlePool
	ParticlePool
	ParticlePool.__init__()

	ParticlePool.count_active_particles()

	ParticlePool.get_particles()

	ParticlePool.pool

	ParticlePool.resize()









	Particle
	Particle
	Particle.__init__()

	Particle.apply_force()

	Particle.attach()

	Particle.column

	Particle.detach()

	Particle.finished()

	Particle.handle_notification()

	Particle.load()

	Particle.notify()

	Particle.render()

	Particle.reset()

	Particle.reset_lifespan()

	Particle.row

	Particle.screen_column

	Particle.screen_row

	Particle.serialize()

	Particle.store_screen_position()

	Particle.terminate()

	Particle.update()

	Particle.x

	Particle.y









	ParticleSprixel
	ParticleSprixel
	ParticleSprixel.__init__()

	ParticleSprixel.attach()

	ParticleSprixel.bg_color

	ParticleSprixel.black_rect()

	ParticleSprixel.black_square()

	ParticleSprixel.blue_rect()

	ParticleSprixel.blue_square()

	ParticleSprixel.copy()

	ParticleSprixel.cyan_rect()

	ParticleSprixel.cyan_square()

	ParticleSprixel.detach()

	ParticleSprixel.fg_color

	ParticleSprixel.from_ansi()

	ParticleSprixel.green_rect()

	ParticleSprixel.green_square()

	ParticleSprixel.handle_notification()

	ParticleSprixel.length

	ParticleSprixel.load()

	ParticleSprixel.magenta_rect()

	ParticleSprixel.magenta_square()

	ParticleSprixel.model

	ParticleSprixel.notify()

	ParticleSprixel.red_rect()

	ParticleSprixel.red_square()

	ParticleSprixel.render_to_buffer()

	ParticleSprixel.screen_column

	ParticleSprixel.screen_row

	ParticleSprixel.serialize()

	ParticleSprixel.store_screen_position()

	ParticleSprixel.white_rect()

	ParticleSprixel.white_square()

	ParticleSprixel.yellow_rect()

	ParticleSprixel.yellow_square()









	PartitionParticle
	PartitionParticle
	PartitionParticle.__init__()

	PartitionParticle.apply_force()

	PartitionParticle.attach()

	PartitionParticle.column

	PartitionParticle.detach()

	PartitionParticle.finished()

	PartitionParticle.handle_notification()

	PartitionParticle.load()

	PartitionParticle.notify()

	PartitionParticle.render()

	PartitionParticle.reset()

	PartitionParticle.reset_lifespan()

	PartitionParticle.row

	PartitionParticle.screen_column

	PartitionParticle.screen_row

	PartitionParticle.serialize()

	PartitionParticle.store_screen_position()

	PartitionParticle.terminate()

	PartitionParticle.update()

	PartitionParticle.x

	PartitionParticle.y









	RandomColorParticle
	RandomColorParticle
	RandomColorParticle.__init__()

	RandomColorParticle.apply_force()

	RandomColorParticle.attach()

	RandomColorParticle.column

	RandomColorParticle.detach()

	RandomColorParticle.finished()

	RandomColorParticle.handle_notification()

	RandomColorParticle.load()

	RandomColorParticle.notify()

	RandomColorParticle.render()

	RandomColorParticle.reset()

	RandomColorParticle.reset_lifespan()

	RandomColorParticle.row

	RandomColorParticle.screen_column

	RandomColorParticle.screen_row

	RandomColorParticle.serialize()

	RandomColorParticle.store_screen_position()

	RandomColorParticle.terminate()

	RandomColorParticle.update()

	RandomColorParticle.x

	RandomColorParticle.y









	RandomColorPartitionParticle
	RandomColorPartitionParticle
	RandomColorPartitionParticle.__init__()

	RandomColorPartitionParticle.apply_force()

	RandomColorPartitionParticle.attach()

	RandomColorPartitionParticle.column

	RandomColorPartitionParticle.detach()

	RandomColorPartitionParticle.finished()

	RandomColorPartitionParticle.handle_notification()

	RandomColorPartitionParticle.load()

	RandomColorPartitionParticle.notify()

	RandomColorPartitionParticle.render()

	RandomColorPartitionParticle.reset()

	RandomColorPartitionParticle.reset_lifespan()

	RandomColorPartitionParticle.row

	RandomColorPartitionParticle.screen_column

	RandomColorPartitionParticle.screen_row

	RandomColorPartitionParticle.serialize()

	RandomColorPartitionParticle.store_screen_position()

	RandomColorPartitionParticle.terminate()

	RandomColorPartitionParticle.update()

	RandomColorPartitionParticle.x

	RandomColorPartitionParticle.y




















            

          

      

      

    

  

  
    
    

    core
    

    

    
 
  

    
      
          
            
  
core



	Animation
	Animation
	Animation.__init__()

	Animation.add_frame()

	Animation.current_frame()

	Animation.dtanimate

	Animation.load()

	Animation.next_frame()

	Animation.pause()

	Animation.play_all()

	Animation.remove_frame()

	Animation.reset()

	Animation.search_frame()

	Animation.serialize()

	Animation.start()

	Animation.stop()









	Font
	Font
	Font.__init__()

	Font.colorable

	Font.glyph()

	Font.glyphs_map

	Font.height

	Font.horizontal_spacing

	Font.load()

	Font.monospace

	Font.name

	Font.scalable

	Font.vertical_spacing









	SpriteCollection
	SpriteCollection
	SpriteCollection.__init__()

	SpriteCollection.add()

	SpriteCollection.clear()

	SpriteCollection.copy()

	SpriteCollection.fromkeys()

	SpriteCollection.get()

	SpriteCollection.items()

	SpriteCollection.keys()

	SpriteCollection.load()

	SpriteCollection.load_json_file()

	SpriteCollection.pop()

	SpriteCollection.popitem()

	SpriteCollection.rename()

	SpriteCollection.serialize()

	SpriteCollection.setdefault()

	SpriteCollection.to_json_file()

	SpriteCollection.update()

	SpriteCollection.values()









	Sprite
	Sprite
	Sprite.__init__()

	Sprite.attach()

	Sprite.calculate_size()

	Sprite.copy()

	Sprite.detach()

	Sprite.empty()

	Sprite.flip_horizontally()

	Sprite.flip_vertically()

	Sprite.from_text()

	Sprite.handle_notification()

	Sprite.height

	Sprite.load()

	Sprite.load_from_ansi_file()

	Sprite.modulate()

	Sprite.notify()

	Sprite.render_to_buffer()

	Sprite.scale()

	Sprite.screen_column

	Sprite.screen_row

	Sprite.serialize()

	Sprite.set_sprixel()

	Sprite.set_transparency()

	Sprite.sprixel()

	Sprite.store_screen_position()

	Sprite.tint()

	Sprite.width









	Sprixel
	Sprixel
	Sprixel.__init__()

	Sprixel.attach()

	Sprixel.bg_color

	Sprixel.black_rect()

	Sprixel.black_square()

	Sprixel.blue_rect()

	Sprixel.blue_square()

	Sprixel.copy()

	Sprixel.cyan_rect()

	Sprixel.cyan_square()

	Sprixel.detach()

	Sprixel.fg_color

	Sprixel.from_ansi()

	Sprixel.green_rect()

	Sprixel.green_square()

	Sprixel.handle_notification()

	Sprixel.length

	Sprixel.load()

	Sprixel.magenta_rect()

	Sprixel.magenta_square()

	Sprixel.model

	Sprixel.notify()

	Sprixel.red_rect()

	Sprixel.red_square()

	Sprixel.render_to_buffer()

	Sprixel.screen_column

	Sprixel.screen_row

	Sprixel.serialize()

	Sprixel.store_screen_position()

	Sprixel.white_rect()

	Sprixel.white_square()

	Sprixel.yellow_rect()

	Sprixel.yellow_square()









	Color
	Color
	Color.__init__()

	Color.attach()

	Color.b

	Color.blend()

	Color.copy()

	Color.detach()

	Color.from_ansi()

	Color.g

	Color.handle_notification()

	Color.load()

	Color.notify()

	Color.r

	Color.random()

	Color.randomize()

	Color.screen_column

	Color.screen_row

	Color.serialize()

	Color.store_screen_position()
















            

          

      

      

    

  

  
    
    

    Animation
    

    

    
 
  

    
      
          
            
  
Animation


	
class pygamelib.gfx.core.Animation(display_time=0.05, auto_replay=True, frames=None, animated_object=None, refresh_screen=None, initial_index=None, parent=None)

	Bases: object

The Animation class is used to give the ability to have more than one model
for a BoardItem. A BoardItem can have an animation and all of them that
are available to the Game object can be animated through
Game.animate_items(lvl_number).
To benefit from that, BoardItem.animation must be set explicitely.
An animation is controlled via the same state system than the Actuators.

The frames are all stored in a list called frames, that you can access
through Animation.frames.


	Parameters:

	
	display_time (float) – The time each frame is displayed


	auto_replay (bool) – controls the auto replay of the animation, if false
once the animation is played it stays on the last
frame of the animation.


	frames (array[str| Sprixel | Sprite ] |
SpriteCollection) – an array of “frames” (string, sprixel, sprite) or a sprite collection


	animated_object (BoardItem) – The object to animate. This parameter is deprecated.
Please use parent instead. It is only kept for backward compatibility.
The parent parameter always takes precedence over this one.


	parent (BoardItem) – The parent object. It is also the object to animate.
Important: We cannot animate anything else that BoardItems and subclasses.


	refresh_screen (function) – The callback function that controls the redrawing of
the screen. This function reference should come from the main game.









Important

When a SpriteCollection is used as the frames parameter
the sprites’ names are ordered so the frames are displayed in correct order. This
means that ‘walk_1’ is going to be displayed before ‘walk_2’. Otherwise
SpriteCollection is un-ordered.



Example

def redraw_screen(game_object):
    game_object.clear_screen()
    game_object.display_board()

item = BoardItem(model=Sprite.ALIEN, name='Friendly Alien')
# By default BoardItem does not have any animation, we have to
# explicitly create one
item.animation = Animation(display_time=0.1, parent=item,
                           refresh_screen=redraw_screen)






	
__init__(display_time=0.05, auto_replay=True, frames=None, animated_object=None, refresh_screen=None, initial_index=None, parent=None)

	



Methods



	__init__([display_time, auto_replay, ...])

	



	add_frame(frame)

	Add a frame to the animation.



	current_frame()

	Return the current frame.



	load(data)

	Load a serialized Animation object.



	next_frame()

	Update the parent's model, sprixel or sprite with the next frame of the animation.



	pause()

	Set the animation state to PAUSED.



	play_all()

	Play the entire animation once.



	remove_frame(index)

	Remove a frame from the animation.



	reset()

	Reset the Animation to the first frame.



	search_frame(frame)

	Search a frame in the animation.



	serialize()

	Serialize the Animation object.



	start()

	Set the animation state to State.RUNNING.



	stop()

	Set the animation state to STOPPED.






Attributes



	dtanimate

	The time elapsed since the last frame was displayed.







	
add_frame(frame)

	Add a frame to the animation.

The frame has to be a string (that includes sprites from the Sprite
module and squares from the Utils module).

Raise an exception if frame is not a string.


	Parameters:

	frame (str|:class:Sprite`|:class:`Sprixel) – The frame to add to the animation.



	Raise:

	pygamelib.base.PglInvalidTypeException





Example:

item.animation.add_frame(Sprite.ALIEN)
item.animation.add_frame(Sprite.ALIEN_MONSTER)










	
current_frame()

	Return the current frame.

Example:

item.model = item.animation.current_frame()










	
property dtanimate

	The time elapsed since the last frame was displayed.






	
classmethod load(data)

	Load a serialized Animation object.


	Parameters:

	data (dict) – The serialized Animation object.



	Returns:

	The loaded Animation object.



	Return type:

	Animation










	
next_frame()

	Update the parent’s model, sprixel or sprite with the next frame of the
animation.

That method takes care of automatically resetting the animation if the
last frame is reached if the state is State.RUNNING.

If the the state is PAUSED it still update the parent.model
and returning the current frame. It does NOT actually go to next frame.

If parent is not a sub class of
BoardItem an exception is raised.


	Raise:

	PglInvalidTypeException





Example:

item.animation.next_frame()






Warning

If you use Sprites as frames, you need to make sure your Animation
is attached to a BoardComplexItem.








	
pause()

	Set the animation state to PAUSED.

Example:

item.animation.pause()










	
play_all()

	Play the entire animation once.

That method plays the entire animation only once, there is no auto
replay as it blocks the game (for the moment).

If the the state is PAUSED or STOPPED, the animation does not play and
the method return False.

If parent is not a sub class of
BoardItem an exception is raised.

If screen_refresh is not defined or is not a function an exception
is raised.


	Raise:

	PglInvalidTypeException





Example:

item.animation.play_all()










	
remove_frame(index)

	Remove a frame from the animation.

That method remove the frame at the specified index and return it
if it exists.

If the index is out of bound an exception is raised.
If the index is not an int an exception is raised.


	Parameters:

	index (int) – The index of the frame to remove.



	Return type:

	str



	Raise:

	IndexError, PglInvalidTypeException





Example:

item.animation.remove_frame( item.animation.search_frame(
    Sprite.ALIEN_MONSTER)
)










	
reset()

	Reset the Animation to the first frame.

Example:

item.animation.reset()










	
search_frame(frame)

	Search a frame in the animation.

That method is returning the index of the first occurrence of “frame”.

Raise an exception if frame is not a string.


	Parameters:

	frame (str) – The frame to find.



	Return type:

	int



	Raise:

	PglInvalidTypeException





Example:

item.animation.remove_frame(
    item.animation.search_frame(Sprite.ALIEN_MONSTER)
)










	
serialize()

	Serialize the Animation object.

The refresh_screen callback function is not serialized. Neither is the parent.


	Returns:

	A dictionary containing the Animation object’s data.



	Return type:

	dict










	
start()

	Set the animation state to State.RUNNING.

If the animation state is not State.RUNNING, animation’s next_frame()
function return the last frame returned.

Example:

item.animation.start()










	
stop()

	Set the animation state to STOPPED.

Example:

item.animation.stop()
















            

          

      

      

    

  

  
    
    

    Font
    

    

    
 
  

    
      
          
            
  
Font


	
class pygamelib.gfx.core.Font(font_name: str = None, search_directories: list = None)

	Bases: object


New in version 1.3.0.



The Font class allow to load and manipulate a pygamelib “font”.
A font consist of a sprite collection and a configuration file.

If you want to create your own font, please have a look at the font creation
tutorial.

In general the Font class is not used directly but passed to a
Text object. The text is then rendered using the font.

For performance consideration, it is advised to load the font once and to reuse the
object in multiple text objects.

Glyphs are cached (particularly if you change the colors) so it is always beneficial
to reuse a font object.

Example:

myfont = Font("8bits")
# If you print() mytext, it will use the terminal font and print in cyan.
# But if you Sreen.place() it, it will render using the 8bits sprite font.
mytext = Text("Here's a cool text", fg_color = Color(0,255,255), font=myfont)






	
__init__(font_name: str = None, search_directories: list = None) → None

	
	Parameters:

	
	font_name (str) – The name of the font to load upon object construction.


	search_directories (list) – A list of directories to search for the font. The
items of the list are strings representing a relative or absolute path.









Important

The search directories must contain a “fonts” directory, that
itself contains the font at the correct format.




Note

Version 1.3.0 comes with a pygamelib specific font called 8bits. It
also comes with a handfull of fonts imported from the figlet fonts.
Please go to http://www.figlet.org/ for more
information.

The conversion script will be made available in the Pygamelib Github
organization (https://github.com/pygamelib
).



Example:

myfont = Font("8bits")









Methods



	__init__([font_name, search_directories])

	
	param font_name:

	The name of the font to load upon object construction.









	glyph([glyph_name, fg_color, bg_color])

	This method take a glyph name in parameter and returns its representation as a Sprite.



	load([font_name])

	Load a font by name.






Attributes



	colorable

	Returns the "colorability" of the font as specified in the font config file.



	glyphs_map

	Returns the glyph map of the font as specified in the font config file.



	height

	Returns the height of the font as specified in the font config file.



	horizontal_spacing

	Returns the horizontal spacing recommended by the font (as specified in the font config file).



	monospace

	Returns if the font is monospace as specified in the font config file.



	name

	Return the name of the font.



	scalable

	Returns the scalability of the font as specified in the font config file.



	vertical_spacing

	Returns the vertical spacing recommended by the font (as specified in the font config file).







	
property colorable: bool

	Returns the “colorability” of the font as specified in the font config file.


	Return type:

	bool










	
glyph(glyph_name: str = None, fg_color: Color = None, bg_color: Color = None) → Sprite

	This method take a glyph name in parameter and returns its representation as a
Sprite.

The glyph name is usually the name of a character (like “a”) but it is not
mandatory and can be anything. The default glyph (returned when no glyph matches
the requested glyph) is called “default” for example.


	Parameters:

	glyph_name (str) – The glyph name



	Returns:

	A glyphe as a Sprite



	Return type:

	Sprite





Example:

myfont = Font("8bits")
row = 5
column = 10
for letter in "this is a text":
    glyph = myfont.glyph(letter)
    screen.place(glyph, row, column)
    column += glyph.width + myfont.horizontal_spacing()

# Please note that in real life you would just do this
mytext = Text("this is a text", font=myfont)
screen.place(mytext, row, column)










	
property glyphs_map: dict

	Returns the glyph map of the font as specified in the font config file.


	Return type:

	dict










	
property height: int

	Returns the height of the font as specified in the font config file.


	Return type:

	int





Example:

screen.place(text, last_row + myfont.height, first_text_column)










	
property horizontal_spacing: int

	Returns the horizontal spacing recommended by the font (as specified in the font
config file).

As a user of the font class using the Font class to change the look of some
text, you will rarely use that value directly (it is directly used by
Text.render_to_buffer()).

If your goal is to use the Font class to do glyph rendering as you see fit, use
the horizontal spacing value to place each glyph relatively to the one on its
left or right.


	Return type:

	int










	
load(font_name: str = None) → None

	Load a font by name. Once the font is loaded glyphs can be accessed through the
glyph() method.

This method is automatically called is the Font constructor is called with a
font name.


	Parameters:

	font_name (str) – The name of the font to load upon object construction.





Example:

# The 2 following examples do exactly the same thing.
# Example 1: instantiate and load
myfont = Font()
myfont.load("8bits")
# Example 2: load from instantiation
myfont2 = Font("8bits")
# At that point myfont and myfont2 are exactly the same (and there is no
# good justification to instantiate or load the font twice).










	
property monospace: bool

	Returns if the font is monospace as specified in the font config file.


	Return type:

	bool










	
property name: str

	Return the name of the font. The name is the string that was used to load the
font.

Example:

myfont = Font("8bits")
if myfont.name() != "8bits":
    print("Something very wrong just occurred!")










	
property scalable: bool

	Returns the scalability of the font as specified in the font config file.


	Return type:

	bool










	
property vertical_spacing: int

	Returns the vertical spacing recommended by the font (as specified in the font
config file).


	Return type:

	int





Example:

screen.place(
    text,
    last_row + myfont.height() + myfont.vertical_spacing(),
    first_text_column
)
















            

          

      

      

    

  

  
    
    

    SpriteCollection
    

    

    
 
  

    
      
          
            
  
SpriteCollection


	
class pygamelib.gfx.core.SpriteCollection(data=None)

	Bases: UserDict

SpriteCollection is a dictionnary class that derives collections.UserDict.

Its main goal is to provide an easy to use object to load and save sprite files.
On top of traditional dict method, it provides the following capabilities:



	loading and writing from and to JSON files,


	data serialization,


	shortcut to add sprites to the dictionnary.







A SpriteCollection is an unordered indexed list of Sprites (i.e a dictionnary).

Sprites are indexed by their names in that collection.

Example:

# Load a sprite file
sprites_village1 = SpriteCollection.load_json_file('gfx/village1.spr')
# display the Sprites with their name
for sprite_name in sprites_village1:
    print(f'{sprite_name}:\n{sprites_village1[sprite_name]}')
# Add an empty sprite with name 'house_placeholder'
sprites_village1.add( Sprite(name='house_placeholder') )
# This is absolutely equivalent to:
sprites_village1['house_placeholder'] = Sprite(name='house_placeholder')
# And now rewrite the sprite file with the new placeholder house
sprites_village1.to_json_file('gfx/village1.spr')






	
__init__(data=None)

	



Methods



	__init__([data])

	



	add(sprite)

	Add a Sprite to the collection.



	clear()

	



	copy()

	



	fromkeys(iterable[, value])

	



	get(k[,d])

	



	items()

	



	keys()

	



	load(data)

	Load serialized data and return a new SpriteCollection object.



	load_json_file(filename)

	Load a JSON sprite file into a new SpriteCollection object.



	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised.



	popitem()

	as a 2-tuple; but raise KeyError if D is empty.



	rename(old_key, new_key)

	Rename a key in the collection.



	serialize()

	Return a serialized version of the SpriteCollection.



	setdefault(k[,d])

	



	to_json_file(filename)

	Export the SpriteCollection object in JSON and writes it on the disk.



	update([E, ]**F)

	If E present and has a .keys() method, does:     for k in E: D[k] = E[k] If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v



	values()

	







	
add(sprite)

	Add a Sprite to the collection. This method is simply a shortcut to the usual
dictionnary affectation. The collection requires the name of the Sprite to be
the key. That method does that automatically.


	Parameters:

	sprite (Sprite) – A Sprite object to add to the collection.






Warning

As SpriteCollection index Sprites by their name if you change the
Sprite’s name after adding it to the collection you will need to manually
update the keys.



Example:

sprites_village1 = SpriteCollection.load_json_file('gfx/village1.spr')
new_village = SpriteCollection()
new_village.add( copy.deepcopy( sprites_village1.get('bakery') ) )
print( new_village['bakery'] )










	
clear() → None.  Remove all items from D.

	




	
copy()

	




	
classmethod fromkeys(iterable, value=None)

	




	
get(k[, d]) → D[k] if k in D, else d.  d defaults to None.

	




	
items() → a set-like object providing a view on D's items

	




	
keys() → a set-like object providing a view on D's keys

	




	
classmethod load(data)

	Load serialized data and return a new SpriteCollection object.


	Parameters:

	data (str) – Serialized data that need to be expanded into objects.



	Returns:

	A new SpriteCollection object.



	Return type:

	SpriteCollection





Example:

sprites_village1 = SpriteCollection.load(
    sprites_village_template.serialize()
)










	
static load_json_file(filename)

	Load a JSON sprite file into a new SpriteCollection object.


	Parameters:

	filename (str) – The complete path (relative or absolute) to the sprite file.



	Returns:

	A new SpriteCollection object.



	Return type:

	SpriteCollection





Example:

sprites_village1 = SpriteCollection.load_json_file('gfx/village1.spr')










	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.






	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.






	
rename(old_key, new_key)

	Rename a key in the collection.

This methods also takes care of renaming the Sprite associated with the old key
name.


	Parameters:

	
	old_key (str) – The key to rename


	new_key (str) – The new key name








Example:

my_collection.rename('panda', 'panda walk 01')










	
serialize()

	Return a serialized version of the SpriteCollection. The serialized data can be
pass to the JSON module to export.


	Returns:

	The SpriteCollection object serialized as a dictionnary.



	Return type:

	dict





Example:

data = sprites_village1.serialize()










	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	




	
to_json_file(filename)

	Export the SpriteCollection object in JSON and writes it on the disk.


	Parameters:

	filename (str) – The complete path (relative or absolute) to the sprite file to
write.





Example:

sprites_village1.to_json_file('gfx/village1.spr')










	
update([E, ]**F) → None.  Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v






	
values() → an object providing a view on D's values

	










            

          

      

      

    

  

  
    
    

    Sprite
    

    

    
 
  

    
      
          
            
  
Sprite


	
class pygamelib.gfx.core.Sprite(sprixels=None, default_sprixel=None, parent=None, size=[2, 2], name=None)

	Bases: PglBaseObject

The Sprite object represent a 2D “image” that can be used to represent any complex
item.
Obviously, a sprite in the pygamelib is not really an image, it is a series of
glyphs (or characters) with colors (foreground and background) information.

A Sprite object is a 2D array of Sprixel.

If you use the climage python module, you can load the generated result into a
Sprite through Sprite.load_from_ansi_file().


	Parameters:

	
	sprixels (list) – A 2D array of Sprixel.


	default_sprixel (Sprixel) – A default Sprixel to complete lines that are not long
enough. By default, it’s an empty Sprixel.


	parent (BoardComplexItem (suggested)) – The parent object of this Sprite. If it’s left to None, the
BoardComplexItem constructor takes ownership of
the sprite.


	size (list) – A 2 elements list that represent the width and height ([width, height])
of the Sprite. It is only needed if you create an empty Sprite. If you load from
a file or provide an array of sprixels it’s obviously calculated automatically.
Default value: [2, 2].


	name (str) – The name of sprite. If none is given, an UUID will be automatically
generated.








Example:

void = Sprixel()
# This represent a panda
panda_sprite = Sprite(
    sprixels=[
        [void, void, void, void, void, void, void, void],
        [
            Sprixel.black_rect(),
            Sprixel.black_rect(),
            void,
            void,
            void,
            void,
            Sprixel.black_rect(),
            Sprixel.black_rect(),
        ],
        [
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
        ],
        [
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.black_rect(),
            Sprixel.black_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.black_rect(),
            Sprixel.black_rect(),
        ],
        [
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.red_rect(),
            Sprixel.red_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
        ],
        [
            void,
            void,
            Sprixel.black_rect(),
            Sprixel.black_rect(),
            Sprixel.black_rect(),
            Sprixel.black_rect(),
            void,
            void,
        ],
        [
            void,
            void,
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.white_rect(),
            Sprixel.black_rect(),
            Sprixel.black_rect(),
        ],
        [
            void,
            void,
            Sprixel.black_rect(),
            Sprixel.black_rect(),
            void,
            void,
            void,
            void,
        ],
    ],
)






	
__init__(sprixels=None, default_sprixel=None, parent=None, size=[2, 2], name=None)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([sprixels, default_sprixel, ...])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	calculate_size()

	Calculate the size of the sprite and update the size variable.



	copy()

	Returns a (deep) copy of the sprite.



	detach(observer)

	Detach an observer from this instance.



	empty()

	Empty the sprite and fill it with default sprixels.



	flip_horizontally()

	Flip the sprite horizontally.



	flip_vertically()

	Flip the sprite vertically (i.e upside/down).



	from_text(text_object)

	Create a Sprite from a Text object.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Create a new Sprite object based on serialized data.



	load_from_ansi_file(filename[, default_sprixel])

	Load an ANSI encoded file into a Sprite object.



	modulate(color[, ratio])

	Modulate the sprite colors with the color in parameters.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render_to_buffer(buffer, row, column, ...)

	Render the sprite from the display buffer to the frame buffer.



	scale([ratio])

	Scale a sprite up and down using the nearest neighbor algorithm.



	serialize()

	Serialize a Sprite into a dictionary.



	set_sprixel(row, column, value)

	Set a specific sprixel in the sprite to the given value.



	set_transparency(state)

	This method enable transparent background to all the sprite's sprixels.



	sprixel([row, column])

	Return a sprixel at a specific position within the sprite.



	store_screen_position(row, column)

	Store the screen position of the object.



	tint(color[, ratio])

	Tint a copy of the sprite with the color.






Attributes



	height

	Property that returns the height of the Sprite.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	width

	Property that returns the width of the Sprite.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
calculate_size()

	Calculate the size of the sprite and update the size variable.

The size is immediately returned.

It is done separately for concerns about performances of doing that everytime
the size is requested.


	Return type:

	list





Example:

spr_size = spr.calculate_size()
if spr_size != spr.size:
    raise PglException(
                'perturbation_in_the_Force',
                'Something is very wrong with the sprite!'
            )










	
copy()

	Returns a (deep) copy of the sprite.


New in version 1.3.0.








	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
empty()

	Empty the sprite and fill it with default sprixels.

Example:

player_sprite.empty()










	
flip_horizontally()

	Flip the sprite horizontally.

This method performs a symmetry versus the vertical axis.

At the moment, glyph are not inverted. Only the position of the sprixels.

The flipped sprite is returned (original sprite is not modified).


	Return type:

	Sprite





Example:

reflection_sprite = player_sprite.flip_horizontally()










	
flip_vertically()

	Flip the sprite vertically (i.e upside/down).

At the moment, glyph are not inverted. Only the position of the sprixels.
There is one exception however, as climage uses the ‘▄’ utf8 glyph as a marker,
that specific glyph is inverted to ‘▀’ and vice versa.

The flipped sprite is returned (original sprite is not modified).


	Return type:

	Sprite





Example:

reflection_sprite = player_sprite.flip_vertically()










	
classmethod from_text(text_object)

	Create a Sprite from a Text object.


	Parameters:

	text_object (Text) – A text object to transform into Sprite.





Example:

# The Text object allow for easy manipulation of text
village_name = base.Text('Khukdale',fg_red, bg_green)
# It can be converted into a Sprite to be displayed on the Board
village_sign = board_items.Tile(sprite=Sprite.from_text(village_name))
# And can be used as formatted text
notifications.push( f'You enter the dreaded village of {village_name}' )










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property height

	Property that returns the height of the Sprite.


New in version 1.3.0.



Contrary to Sprite.size[1], this property always calls Sprite.calculate_size()
before returning the height.






	
classmethod load(data)

	Create a new Sprite object based on serialized data.


New in version 1.3.0.




	Parameters:

	data (dict) – Data loaded from a JSON sprite file (deserialized).



	Return type:

	Sprite





Example:

new_sprite = Sprite.load(json_parsed_data)










	
classmethod load_from_ansi_file(filename, default_sprixel=None)

	Load an ANSI encoded file into a Sprite object.

This class method can load a file produced by the climage python module and
load it into a Sprite class. Each character is properly decoded into a
Sprixel with model, background and foreground colors.

A Sprite is rectangular (at least for the moment), so in case the file is
not shaped as a rectangle, this method automatically fills the void with a
default sprixel (to make sure all lines in the sprite have the same length).
By default, it fills the table with None “values” but you can specify a default
sprixel.

The reasons the default sprixel is set to None is because None values in a
sprite are not translated into a component in
BoardComplexItem (i.e no sub item is generated).


	Parameters:

	
	filename (str) – The path to a file to load.


	default_sprixel (None | Sprixel) – The default Sprixel to fill a non rectangular shaped
sprite.








Example:

player_sprite = gfx_core.Sprite.load_from_ansi_file('gfx/models/player.ans')










	
modulate(color: Color, ratio: float = 0.5)

	Modulate the sprite colors with the color in parameters.


New in version 1.3.0.



This method tint all the sprixels of the sprite with the color at the specified
ratio.
The original sprite IS modified.

If you want to keep the original sprite intact consider using tint().


	Parameters:

	
	color (Color) – The modulation color.


	ratio (float) – The modulation ratio between 0.0 and 1.0 (default: 0.5)






	Returns:

	None





When this method is called, the observers are notified of the change
with the pygamelib.core.Sprite.color:modulated event. No arguments
are passed along this event.

Example:

player_sprites = core.SpriteCollection.load_json_file("gfx/player.spr")
# After that, the sprite is quite not "normal" anymore...
player_sprites["normal"].modulate(core.Color(0, 255, 0), 0.3)










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
render_to_buffer(buffer, row, column, buffer_height, buffer_width)

	Render the sprite from the display buffer to the frame buffer.


New in version 1.3.0.



This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
scale(ratio=1.0)

	Scale a sprite up and down using the nearest neighbor algorithm.


New in version 1.3.0.




	Parameters:

	ratio (float) – The scaling ration.



	Returns:

	An upscaled/downscaled sprite.



	Return type:

	Sprite






Note

The sprites generated with pgl-converter.py don’t scale well yet if
the –unicode flag is active



Example:

bigger_sprite = original_sprite.scale(2)










	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize a Sprite into a dictionary.


New in version 1.3.0.




	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( sprite.serialize() )










	
set_sprixel(row, column, value)

	Set a specific sprixel in the sprite to the given value.


	Parameters:

	
	row (int) – The row of the sprite (WARNING: internal sprite coordinates)


	column (int) – The column of the sprite (same warning)


	value (Sprixel) – The sprixel to set at [row, column]








When a sprixel is changed, the observers are notified of the change
with the pygamelib.gfx.core.Sprite.sprixel:changed event. A
structure is passed as the value parameter. This structure has 3 members: row,
column and sprixel.

Example:

my_sprite.set_sprixel(1, 2, Sprixel("#",fg_color=green))










	
set_transparency(state)

	This method enable transparent background to all the sprite’s sprixels.


New in version 1.3.0.




	Parameters:

	state – a boolean to enable or disable background transparency





When the transparency is changed, the observers are notified of the change
with the pygamelib.gfx.core.Sprite.transparency:changed event. The
new transparency state is passed as the value parameter.

Example:

player_sprite.set_transparency(True)






Warning

This set background transparency on all sprixels, make sure you are
not using background colors as part of your sprite before doing that.
It can also be used as a game/rendering mechanic. Just make sure you know
what you do.
As a reminder, by default, sprixels with no background have transparent
background enable.








	
sprixel(row=0, column=None)

	Return a sprixel at a specific position within the sprite.

If the column is set to None, the whole row is returned.


	Parameters:

	
	row (int) – The row to access within the sprite.


	column (int) – The column to access within the sprite.






	Returns:

	Sprixel





Example:

# Return the entire line at row index 2
scanline = house_sprite.sprixel(2)
# Return the specific sprixel at sprite internal coordinate 2,3
house_sprixel = house_sprite.sprixel(2, 3)






Warning

For performance consideration sprixel() does not check the size of
its matrix. This method is called many times during rendering and 2 calls to
len() in a row are adding up pretty quickly.
It checks the boundary of the sprite using the cached size. Make sure it is
up to date!








	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
tint(color: Color, ratio: float = 0.5)

	Tint a copy of the sprite with the color.


New in version 1.3.0.



This method creates a copy of the sprite and tint all its sprixels with the
color at the specified ratio.
It then returns the new sprite. The original sprite is NOT modified.


	Parameters:

	
	color (Color) – The tint color.


	ratio (float) – The tint ration between 0.0 and 1.0 (default: 0.5)






	Returns:

	Sprite





Example:

player_sprites = core.SpriteCollection.load_json_file("gfx/player.spr")
player_sprites["sick"] = player_sprites["normal"].tint(
                            core.Color(0, 255, 0), 0.3
                        )










	
property width

	Property that returns the width of the Sprite.


New in version 1.3.0.



Contrary to Sprite.size[0], this property always calls Sprite.calculate_size()
before returning the width.












            

          

      

      

    

  

  
    
    

    Sprixel
    

    

    
 
  

    
      
          
            
  
Sprixel


	
class pygamelib.gfx.core.Sprixel(model='', bg_color=None, fg_color=None, is_bg_transparent=None)

	Bases: PglBaseObject

A sprixel is the representation of 1 cell of the sprite or one cell on the Board.
It is not really a pixel but it is the closest notion we’ll have.
A Sprixel has a background color, a foreground color and a model.
All regular BoardItems can now use a sprixel instead of a model (but simple model is
still supported of course).

In the terminal, a sprixel is represented by a single character.

If the background color and the is_bg_transparent are None, the sprixel will be
automatically configured with transparent background.
In that case, as we cannot really achieve transparency in the console, the sprixel
will take the background color of whatever it is overlapping.


Important

BREAKING CHANGE: in version 1.3.0 background and foreground
colors use the new Color object. Therefor, Sprixel does not accept ANSI
sequences anymore for the bg_color and fg_color parameters.



Example:

player = Player(sprixel=Sprixel(
                                '#',
                                Color(128,56,32),
                                Color(255,255,0),
                                ))






	
__init__(model='', bg_color=None, fg_color=None, is_bg_transparent=None)

	
	Parameters:

	
	model (str) – The model, it can be any string. Preferrably a single character.


	bg_color (Color) – A Color object to configure the background color.


	fg_color (Color) – A Color object to configure the foreground color.


	is_bg_transparent (bool) – Set the background of the Sprixel to be transparent.
It tells the engine to replace the background of the Sprixel by the
background color of the overlapped sprixel.












Methods



	__init__([model, bg_color, fg_color, ...])

	
	param model:

	The model, it can be any string. Preferrably a single character.









	attach(observer)

	Attach an observer to this instance.



	black_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLACK_RECT.



	black_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLACK_SQUARE.



	blue_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLUE_RECT.



	blue_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLUE_SQUARE.



	copy()

	Returns a (deep) copy of the sprixel.



	cyan_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.CYAN_RECT.



	cyan_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.CYAN_SQUARE.



	detach(observer)

	Detach an observer from this instance.



	from_ansi(string[, model])

	Takes an ANSI string, parse it and return a Sprixel.



	green_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.GREEN_RECT.



	green_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.GREEN_SQUARE.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Create a new Sprixel object based on serialized data.



	magenta_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.MAGENTA_RECT.



	magenta_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.MAGENTA_SQUARE.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	red_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.RED_RECT.



	red_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.RED_SQUARE.



	render_to_buffer(buffer, row, column, ...)

	Render the sprixel from the display buffer to the frame buffer.



	serialize()

	Serialize a Sprixel into a dictionary.



	store_screen_position(row, column)

	Store the screen position of the object.



	white_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.WHITE_RECT.



	white_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.WHITE_SQUARE.



	yellow_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.YELLOW_RECT.



	yellow_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.YELLOW_SQUARE.






Attributes



	bg_color

	A property to get/set the background color of the Sprixel.



	fg_color

	A property to get/set the foreground color of the Sprixel.



	length

	Return the true length of the model.



	model

	A property to get/set the model of the Sprixel.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property bg_color

	A property to get/set the background color of the Sprixel.


	Parameters:

	value (Color) – The new color





When the bg_color is changed, the observers are notified of the change
with the pygamelib.gfx.core.Sprixel.bg_color:changed event. The new
bg_color is passed as the value parameter.

Example:

# Access the sprixel's color
sprix.bg_color
# Set the sprixel's background color to some blue
sprix.bg_color = Color(0,128,255)










	
classmethod black_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.BLACK_RECT.
The difference is that BLACK_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.black_rect()










	
classmethod black_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.BLACK_SQUARE.
The difference is that BLACK_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.black_square()










	
classmethod blue_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.BLUE_RECT.
The difference is that BLUE_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.blue_rect()










	
classmethod blue_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.BLUE_SQUARE.
The difference is that BLUE_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.blue_square()










	
copy()

	Returns a (deep) copy of the sprixel.


New in version 1.3.0.








	
classmethod cyan_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.CYAN_RECT.
The difference is that CYAN_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.cyan_rect()










	
classmethod cyan_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.CYAN_SQUARE.
The difference is that CYAN_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.cyan_square()










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
property fg_color

	A property to get/set the foreground color of the Sprixel.


	Parameters:

	value (Color) – The new color





When the fg_color is changed, the observers are notified of the change
with the pygamelib.gfx.core.Sprixel.fg_color:changed event. The new
fg_color is passed as the value parameter.

Example:

# Access the sprixel's color
sprix.fg_color
# Set the sprixel's foreground color to some green
sprix.fg_color = Color(0,255,128)










	
static from_ansi(string, model='▄')

	Takes an ANSI string, parse it and return a Sprixel.


	Parameters:

	
	string (str) – The ANSI string to parse.


	model (str) – The character used to represent the sprixel in the ANSI sequence.
Default is “▄”








Example:

new_sprixel = Sprixel.from_ansi(
    "\x1b[48;2;139;22;19m\x1b[38;2;160;26;23m▄\x1b[0m"
)






Warning

This has mainly be tested with ANSI string generated by climage.
If you find any issue, please
report it [https://github.com/pygamelib/pygamelib/issues]








	
classmethod green_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.GREEN_RECT.
The difference is that GREEN_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.green_rect()










	
classmethod green_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.GREEN_SQUARE.
The difference is that GREEN_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.green_square()










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property length

	Return the true length of the model.


New in version 1.3.0.



With UTF8 and emojis the length of a string as returned by python’s
len() function is often very wrong.
For example, the len(”x1b[48;2;139;22;19mx1b[38;2;160;26;23m▄x1b[0m”)
returns 39 when it should return 1.

This method returns the actual printing/display size of the sprixel’s model.


Note

This is a read only value. It is automatically updated when the model
is changed.



Example:

if sprix.length > 2:
    print(
        f"Warning: that sprixel {sprix} will break the rest of the "
        "board's alignement"
        )










	
classmethod load(data)

	Create a new Sprixel object based on serialized data.


New in version 1.3.0.




	Parameters:

	data (dict) – Data loaded from JSON data (deserialized).



	Return type:

	Sprixel





Example:

new_sprite = Sprixel.load(json_parsed_data['default_sprixel'])










	
classmethod magenta_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.MAGENTA_RECT.
The difference is that MAGENTA_RECT is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.magenta_rect()










	
classmethod magenta_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.MAGENTA_SQUARE.
The difference is that MAGENTA_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.magenta_square()










	
property model

	A property to get/set the model of the Sprixel.


	Parameters:

	value (str) – The new model





When the model is changed, the observers are notified of the change
with the pygamelib.gfx.core.Sprixel.model:changed event. The new
model is passed as the value parameter.

Example:

# Get the sprixel's model
sprix.model
# Set the sprixel's model to "@"
sprix.model = "@"










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
classmethod red_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.RED_RECT.
The difference is that RED_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.red_rect()










	
classmethod red_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.RED_SQUARE.
The difference is that RED_SQUARE is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.red_square()










	
render_to_buffer(buffer, row, column, buffer_height, buffer_width)

	Render the sprixel from the display buffer to the frame buffer.


New in version 1.3.0.



This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize a Sprixel into a dictionary.


New in version 1.3.0.




	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( sprixel.serialize() )










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
classmethod white_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.WHITE_RECT.
The difference is that WHITE_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.white_rect()










	
classmethod white_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.WHITE_SQUARE.
The difference is that WHITE_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.white_square()










	
classmethod yellow_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.YELLOW_RECT.
The difference is that YELLOW_RECT is a string and this one is a Sprixel that
can be manipulated more easily.


Note

Yellow is often rendered as brown.



Example:

sprixel = Sprixel.yellow_rect()










	
classmethod yellow_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.YELLOW_SQUARE.
The difference is that YELLOW_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.


Note

Yellow is often rendered as brown.



Example:

sprixel = Sprixel.yellow_square()
















            

          

      

      

    

  

  
    
    

    Color
    

    

    
 
  

    
      
          
            
  
Color


	
class pygamelib.gfx.core.Color(r=0, g=0, b=0)

	Bases: PglBaseObject


New in version 1.3.0.



A color represented by red, green and blue (RGB) components.
Values are integer between 0 and 255 (both included).


	Parameters:

	
	r (int) – The red component of the color.


	g (int) – The green component of the color.


	b (int) – The blue component of the color.








Example:

# color is blue
color = Color(0, 0, 255)
# and now color is pink
color.r = 255






	
__init__(r=0, g=0, b=0)

	Like the object class, this class constructor takes no parameter.





Methods



	__init__([r, g, b])

	Like the object class, this class constructor takes no parameter.



	attach(observer)

	Attach an observer to this instance.



	blend(other_color[, fraction])

	Blend the color with another one.



	copy()

	Returns a (deep) copy of this color.



	detach(observer)

	Detach an observer from this instance.



	from_ansi(string)

	Create and return a Color object based on an ANSI color string.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Create a new Color object based on serialized data.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	random()

	Create and return a new random color.



	randomize()

	Set a random value for each of the components of an existing color.



	serialize()

	Serialize a Color into a dictionary.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	b

	The b property controls the intensity of the blue color.



	g

	The g property controls the intensity of the green color.



	r

	The r property controls the intensity of the red color.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property b

	The b property controls the intensity of the blue color. You can set it to an
integer between 0 and 255 (both included).

When this property is set, the observers are notified with the
pygamelib.gfx.core.Color.b:changed event. The value of the
event is the new value of the property.

Example:

color = Color(128, 128, 0)
print(f"Value for b is {color.b}")
color.b = 255
print(f"New value for b is {color.b}")










	
blend(other_color, fraction=0.5)

	Blend the color with another one. Fraction controls the amount of other_color
that is included (0 means no inclusion at all).


	Parameters:

	
	other_color (Color) – The color to blend with.


	fraction (float) – The blending modulation factor between 0 and 1.






	Returns:

	A new Color object that contains the blended color.



	Return type:

	Color





Example:

a = Color(200, 200, 200)
b = Color(25, 25, 25)
# c is going to be Color(112, 112, 112)
c = a.blend(b, 0.5)










	
copy()

	Returns a (deep) copy of this color.

Example:

red = Color(255, 0, 0)
red2 = red.copy()










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
classmethod from_ansi(string)

	Create and return a Color object based on an ANSI color string.


Important


  
    
    

    ui
    

    

    
 
  

    
      
          
            
  
ui


Warning

The UI module is in alpha version. Some things might change over time.



The ui module contains the classes to easily build full screen Terminal User Interface
(TUI) for your games (or applications).


Important

It works exclusively with the screen buffer system (place, delete,
render, update, etc.).
It doesn’t work with Screen functions tagged “direct display” like display_at().





	Box
	Box
	Box.__init__()

	Box.config

	Box.height

	Box.render_to_buffer()

	Box.title

	Box.width









	BoxLayout
	BoxLayout
	BoxLayout.__init__()

	BoxLayout.add_widget()

	BoxLayout.attach()

	BoxLayout.count()

	BoxLayout.detach()

	BoxLayout.handle_notification()

	BoxLayout.height

	BoxLayout.notify()

	BoxLayout.orientation

	BoxLayout.parent

	BoxLayout.render_to_buffer()

	BoxLayout.screen_column

	BoxLayout.screen_row

	BoxLayout.size_constraint

	BoxLayout.spacing

	BoxLayout.store_screen_position()

	BoxLayout.widgets()

	BoxLayout.width









	ColorPickerDialog
	ColorPickerDialog
	ColorPickerDialog.__init__()

	ColorPickerDialog.config

	ColorPickerDialog.render_to_buffer()

	ColorPickerDialog.set_color()

	ColorPickerDialog.set_selection()

	ColorPickerDialog.show()

	ColorPickerDialog.title

	ColorPickerDialog.user_input









	ColorPicker
	ColorPicker
	ColorPicker.__init__()

	ColorPicker.blue

	ColorPicker.color

	ColorPicker.green

	ColorPicker.red

	ColorPicker.render_to_buffer()

	ColorPicker.selection









	Cursor
	Cursor
	Cursor.__init__()

	Cursor.attach()

	Cursor.detach()

	Cursor.handle_notification()

	Cursor.lock_position()

	Cursor.notify()

	Cursor.parent

	Cursor.relative_column

	Cursor.relative_row

	Cursor.render_to_buffer()

	Cursor.screen_column

	Cursor.screen_row

	Cursor.sprixel

	Cursor.store_screen_position()

	Cursor.unlock_position()









	Dialog
	Dialog
	Dialog.__init__()

	Dialog.config

	Dialog.show()

	Dialog.user_input









	FileDialog
	FileDialog
	FileDialog.__init__()

	FileDialog.config

	FileDialog.filter

	FileDialog.path

	FileDialog.render_to_buffer()

	FileDialog.show()

	FileDialog.show_hidden_files

	FileDialog.user_input









	FormLayout
	FormLayout
	FormLayout.__init__()

	FormLayout.add_row()

	FormLayout.add_widget()

	FormLayout.attach()

	FormLayout.column_minimum_width

	FormLayout.count()

	FormLayout.count_columns()

	FormLayout.count_rows()

	FormLayout.detach()

	FormLayout.handle_notification()

	FormLayout.height

	FormLayout.horizontal_spacing

	FormLayout.notify()

	FormLayout.parent

	FormLayout.remove_row()

	FormLayout.render_to_buffer()

	FormLayout.row_minimum_height

	FormLayout.screen_column

	FormLayout.screen_row

	FormLayout.spacing

	FormLayout.store_screen_position()

	FormLayout.vertical_spacing

	FormLayout.widgets()

	FormLayout.width









	GridLayout
	GridLayout
	GridLayout.__init__()

	GridLayout.add_widget()

	GridLayout.attach()

	GridLayout.column_minimum_width

	GridLayout.count()

	GridLayout.count_columns()

	GridLayout.count_rows()

	GridLayout.detach()

	GridLayout.handle_notification()

	GridLayout.height

	GridLayout.horizontal_spacing

	GridLayout.notify()

	GridLayout.parent

	GridLayout.render_to_buffer()

	GridLayout.row_minimum_height

	GridLayout.screen_column

	GridLayout.screen_row

	GridLayout.spacing

	GridLayout.store_screen_position()

	GridLayout.vertical_spacing

	GridLayout.widgets()

	GridLayout.width









	GridSelectorDialog
	GridSelectorDialog
	GridSelectorDialog.__init__()

	GridSelectorDialog.config

	GridSelectorDialog.grid_selector

	GridSelectorDialog.render_to_buffer()

	GridSelectorDialog.show()

	GridSelectorDialog.title

	GridSelectorDialog.user_input









	GridSelector
	GridSelector
	GridSelector.__init__()

	GridSelector.choices

	GridSelector.current_choice

	GridSelector.current_page

	GridSelector.current_sprixel()

	GridSelector.cursor_down()

	GridSelector.cursor_left()

	GridSelector.cursor_right()

	GridSelector.cursor_up()

	GridSelector.items_per_page()

	GridSelector.max_height

	GridSelector.max_width

	GridSelector.nb_pages()

	GridSelector.page_down()

	GridSelector.page_up()

	GridSelector.render_to_buffer()









	Layout
	Layout
	Layout.__init__()

	Layout.add_widget()

	Layout.attach()

	Layout.count()

	Layout.detach()

	Layout.handle_notification()

	Layout.height

	Layout.notify()

	Layout.parent

	Layout.render_to_buffer()

	Layout.screen_column

	Layout.screen_row

	Layout.spacing

	Layout.store_screen_position()

	Layout.widgets()

	Layout.width









	LineInput
	LineInput
	LineInput.__init__()

	LineInput.attach()

	LineInput.backspace()

	LineInput.bg_color

	LineInput.children

	LineInput.clear()

	LineInput.cursor

	LineInput.delete()

	LineInput.detach()

	LineInput.end()

	LineInput.filter

	LineInput.focus

	LineInput.handle_notification()

	LineInput.height

	LineInput.home()

	LineInput.insert_characters()

	LineInput.layout

	LineInput.length()

	LineInput.maximum_height

	LineInput.maximum_width

	LineInput.minimum_height

	LineInput.minimum_width

	LineInput.move_cursor()

	LineInput.notify()

	LineInput.parent

	LineInput.redo()

	LineInput.render_to_buffer()

	LineInput.screen_column

	LineInput.screen_row

	LineInput.size_constraint

	LineInput.store_screen_position()

	LineInput.text

	LineInput.undo()

	LineInput.width

	LineInput.x

	LineInput.y









	LineInputDialog
	LineInputDialog
	LineInputDialog.__init__()

	LineInputDialog.config

	LineInputDialog.label

	LineInputDialog.render_to_buffer()

	LineInputDialog.show()

	LineInputDialog.title

	LineInputDialog.user_input









	Menu
	Menu
	Menu.__init__()

	Menu.activate()

	Menu.add_entry()

	Menu.collapse()

	Menu.config

	Menu.current_entry()

	Menu.entries

	Menu.expand()

	Menu.menu_width()

	Menu.padding

	Menu.render_to_buffer()

	Menu.select_next()

	Menu.select_previous()

	Menu.selected

	Menu.title

	Menu.title_width()









	MenuAction
	MenuAction
	MenuAction.__init__()

	MenuAction.action

	MenuAction.activate()

	MenuAction.config

	MenuAction.padding

	MenuAction.render_to_buffer()

	MenuAction.selected

	MenuAction.title

	MenuAction.title_width()









	MenuBar
	MenuBar
	MenuBar.__init__()

	MenuBar.add_entry()

	MenuBar.close()

	MenuBar.config

	MenuBar.current_entry()

	MenuBar.current_index

	MenuBar.entries

	MenuBar.length()

	MenuBar.render_to_buffer()

	MenuBar.select_next()

	MenuBar.select_previous()

	MenuBar.spacing









	MessageDialog
	MessageDialog
	MessageDialog.__init__()

	MessageDialog.add_line()

	MessageDialog.config

	MessageDialog.height

	MessageDialog.render_to_buffer()

	MessageDialog.show()

	MessageDialog.title

	MessageDialog.user_input









	MultiLineInputDialog
	MultiLineInputDialog
	MultiLineInputDialog.__init__()

	MultiLineInputDialog.config

	MultiLineInputDialog.fields

	MultiLineInputDialog.render_to_buffer()

	MultiLineInputDialog.show()

	MultiLineInputDialog.title

	MultiLineInputDialog.user_input









	ProgressBar
	ProgressBar
	ProgressBar.__init__()

	ProgressBar.config

	ProgressBar.empty_marker

	ProgressBar.maximum

	ProgressBar.progress_marker

	ProgressBar.render_to_buffer()

	ProgressBar.value









	ProgressDialog
	ProgressDialog
	ProgressDialog.__init__()

	ProgressDialog.config

	ProgressDialog.label

	ProgressDialog.maximum

	ProgressDialog.render_to_buffer()

	ProgressDialog.show()

	ProgressDialog.user_input

	ProgressDialog.value









	UiConfig
	UiConfig
	UiConfig.__init__()

	UiConfig.instance()









	Widget
	Widget
	Widget.__init__()

	Widget.attach()

	Widget.bg_color

	Widget.children

	Widget.detach()

	Widget.focus

	Widget.handle_notification()

	Widget.height

	Widget.layout

	Widget.maximum_height

	Widget.maximum_width

	Widget.minimum_height

	Widget.minimum_width

	Widget.notify()

	Widget.parent

	Widget.render_to_buffer()

	Widget.screen_column

	Widget.screen_row

	Widget.size_constraint

	Widget.store_screen_position()

	Widget.width

	Widget.x

	Widget.y
















            

          

      

      

    

  

  
    
    

    Box
    

    

    
 
  

    
      
          
            
  
Box


	
class pygamelib.gfx.ui.Box(width: int, height: int, title: str = '', config: UiConfig = None, fill: bool = False, filling_sprixel: Sprixel = None, title_alignment: Alignment = Alignment.CENTER)

	Bases: object

A simple object to draw a box on screen.

The Box object’s looks and feel is highly configurable through the UiConfig
object.


	
__init__(width: int, height: int, title: str = '', config: UiConfig = None, fill: bool = False, filling_sprixel: Sprixel = None, title_alignment: Alignment = Alignment.CENTER)

	The box constructor takes the following parameters.


	Parameters:

	
	width (int) – The width of the box.


	height (int) – The height of the box.


	title (str | Text) – The title of the box (encased in the top border).


	config (UiConfig) – The configuration object.


	fill (bool) – A tag to tell the box object to fill its inside (or not).


	filling_sprixel (Sprixel) – If fill is True, the filling Sprixel is used to fill the
inside of the box.


	title_alignment (int) – The alignment of the title in the top bar. It is a
constant from the constant module and can be ALIGN_LEFT, ALIGN_RIGHT and
ALIGN_CENTER. THIS FEATURE IS NOT YET IMPLEMENTED.









Todo

Implement the title alignment.



Example:

config = UiConfig(bg_color=None)
box = Box(30, 10, 'This is a box')
screen.place(box, 20, 20)
screen.update()









Methods



	__init__(width, height[, title, config, ...])

	The box constructor takes the following parameters.



	render_to_buffer(buffer, row, column, ...)

	Render the box from the display buffer to the frame buffer.






Attributes



	config

	Get and set the config object (UiConfig).



	height

	Get and set the height of the box, only accept int.



	title

	Get and set the title, only accepts str or Text.



	width

	Get and set the width of the box, only accept int.







	
property config: UiConfig

	Get and set the config object (UiConfig).






	
property height: int

	Get and set the height of the box, only accept int.






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width) → None

	Render the box from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property title

	Get and set the title, only accepts str or Text.






	
property width: int

	Get and set the width of the box, only accept int.












            

          

      

      

    

  

  
    
    

    BoxLayout
    

    

    
 
  

    
      
          
            
  
BoxLayout


	
class pygamelib.gfx.ui.BoxLayout(orientation: Orientation | None = None, size_constraint: SizeConstraint | None = None, parent: Widget | None = None)

	Bases: Layout

The box layout lines up child widgets horizontally or vertically. The orientation of
the layout is controlled using the Orientation
constants.


	
__init__(orientation: Orientation | None = None, size_constraint: SizeConstraint | None = None, parent: Widget | None = None) → None

	
	Parameters:

	
	orientation (Orientation) – The orientation of the layout.


	size_constraint (SizeConstraint) – The size constraint policy for managed widgets.


	parent (Widget) – The parent object, ie: the one in which the GridLayout reside.








Example:

parent_widget = Widget(45, 30, config=config)
# Add a GridLayout to a widget
parent_widget.layout = BoxLayout(orientation=Orientation.VERTICAL)
parent_widget.layout.add_widget(LineInput())









Methods



	__init__([orientation, size_constraint, parent])

	
	param orientation:

	The orientation of the layout.









	add_widget(w)

	Add a widget to the BoxLayout.



	attach(observer)

	Attach an observer to this instance.



	count()

	Returns the amount (the count) of widgets in the BoxLayout.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	store_screen_position(row, column)

	Store the screen position of the object.



	widgets()

	Returns the list of widgets that are managed by the GridLayout as a set.






Attributes



	height

	Get the layout's height (including spacing).



	orientation

	Get and set the layout's orientation.



	parent

	This property get/set the parent of the Layout (if any).



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size_constraint

	Get and set the layout's size constraint policy.



	spacing

	This property get/set the inter-widgets spacing of the Layout.



	width

	Get the layout's width (including spacing).







	
add_widget(w: Widget) → bool

	Add a widget to the BoxLayout. If the widget is correctly added to the layout
this method returns True, otherwise it returns False.


	Parameters:

	widget (class:Widget) – The widget to add to the layout.





Example:

parent_widget = Widget(45, 30, config=config)
# Add a BoxLayout to a widget
parent_widget.layout = BoxLayout()
# Then add children widgets to the parent's layout
# Step 1: create a widget (here just a generic widget)
child_widget1 = Widget(config=UiConfig.instance())
# Step 2: add it to the layout.
parent_widget.layout.add_widget(child_widget1)
# That's it!










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
count() → int

	Returns the amount (the count) of widgets in the BoxLayout.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property height: int

	Get the layout’s height (including spacing).

Returns an int.






	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property orientation: Orientation

	Get and set the layout’s orientation.

The orientation of the BoxLayout can be changed dynamically and will take effect
immediately.

It has to be a Orientation.






	
property parent: Widget | None

	This property get/set the parent of the Layout (if any).






	
render_to_buffer(buffer: numpy.array, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
property size_constraint: SizeConstraint

	Get and set the layout’s size constraint policy.
It has to be a SizeConstraint.






	
property spacing: int

	This property get/set the inter-widgets spacing of the Layout.

When the spacing is changed the
pygamelib.gfx.ui.Layout.spacing:changed event is sent to the
observers.






	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
widgets() → Set[Widget]

	Returns the list of widgets that are managed by the GridLayout as a set. This
set is not guaranteed to be ordered!






	
property width: int

	Get the layout’s width (including spacing).

Returns an int.












            

          

      

      

    

  

  
    
    

    ColorPickerDialog
    

    

    
 
  

    
      
          
            
  
ColorPickerDialog


	
class pygamelib.gfx.ui.ColorPickerDialog(title: str = None, config: UiConfig = None)

	Bases: Dialog

The ColorPickerDialog is a dialog wrapper around the ColorPicker widget.

It serves the same purpose: present a way to easily select a custom color to the
user.

It does it as an immediately usable dialog.

The show() method returns the Color selected by the
user. If the user pressed the ESC key, it returns None.

Key mapping:



	ESC: Exit from the show() method and return None.


	ENTER: Exit from the show() method. Returns the currently selected color.


	UP / DOWN: Increase/decrease the currently selected channel by 1.


	PAGE_UP / PAGE_DOWN: Increase/decrease the currently selected channel by 10.


	LEFT / RIGHT: Navigate between color channels.







Like all dialogs, it is automatically destroyed on exit of the show()
method. It is also deleted from the screen buffer.


	
__init__(title: str = None, config: UiConfig = None) → None

	The constructor only take the configuration as parameter.


	Parameters:

	config (UiConfig) – The configuration object.





Example:

color_dialog = ColorPickerDialog(conf)
color_dialog.set_color( core.Color(128, 128, 128) )
screen.place(color_dialog, 10, 10)
new_color = color_dialog.show()









Methods



	__init__([title, config])

	The constructor only take the configuration as parameter.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	set_color(color)

	Set the color shown in the dialog.



	set_selection([selection])

	Set the channel selection.



	show()

	Show the dialog and execute the event loop.






Attributes



	config

	Get and set the config object (UiConfig).



	title

	Get / set the dialog title, it needs to be a str.



	user_input

	Facility to store and retrieve the user input.







	
property config

	Get and set the config object (UiConfig).






	
render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
set_color(color: Color) → None

	Set the color shown in the dialog.


	Parameters:

	color (Color) – The color to edit.





Example:

color_dialog.set_color( core.Color(128, 128, 128) )










	
set_selection(selection: int = 0)

	Set the channel selection.


	Parameters:

	selection (int) – The number of the channel to select (0 = red, 1 = green and 2
= blue).





Example:

color_dialog.set_selection(1)










	
show()

	Show the dialog and execute the event loop.
Until this method returns, all keyboards event are processed by the local event
loop. This is also true if called from the main event loop.

This event loop returns the edited Color or None
if the user pressed the ESC key.


	Returns:

	The editor color.



	Return type:

	Color





Example:

new_color = color_dialog.show()










	
property title

	Get / set the dialog title, it needs to be a str.






	
property user_input

	Facility to store and retrieve the user input.












            

          

      

      

    

  

  
    
    

    ColorPicker
    

    

    
 
  

    
      
          
            
  
ColorPicker


	
class pygamelib.gfx.ui.ColorPicker(orientation: int = None, config: UiConfig = None)

	Bases: object

The ColorPicker widget is a simple object to select the red, green and blue
components of a color.

It provides the API to set/get each color channel independently as well as the
mechanism to select and draw a selection box around one specific channel to give the
user a visual cue about what he is modifying.


	
__init__(orientation: int = None, config: UiConfig = None) → None

	The constructor is really simple and takes only 2 arguments.


	Parameters:

	
	orientation (Orientation) – One of the orientation constants.


	config (UiConfig) – The configuration object.








The default orientation is horizontal.


Warning

The orientation parameter is ignored for the moment.



Example:

color_picker = ColorPicker(constants.Orientation.HORIZONTAL, conf)
screen.place(color_picker, 10, 10)
screen.update()









Methods



	__init__([orientation, config])

	The constructor is really simple and takes only 2 arguments.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.






Attributes



	blue

	Get / set the blue component of the color, the value needs to be an int between 0 and 255.



	color

	Get / set the edited color.



	green

	Get / set the green component of the color, the value needs to be an int between 0 and 255.



	red

	Get / set the red component of the color, the value needs to be an int between 0 and 255.



	selection

	Get / set the selection, it needs to be an int between 0 and 2 included.







	
property blue

	Get / set the blue component of the color, the value needs to be an int between
0 and 255.






	
property color

	Get / set the edited color.

The setter automatically forward the individual red, green and blue values to
to the proper properties of that widget.


	Parameters:

	value (Color) – The color object.





Example:

current_color = color_picker.color
current_color.r += 10
color_picker.color = current_color










	
property green

	Get / set the green component of the color, the value needs to be an int between
0 and 255.






	
property red

	Get / set the red component of the color, the value needs to be an int between 0
and 255.






	
render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property selection

	Get / set the selection, it needs to be an int between 0 and 2 included.

0 correspond to the red channel, 1 to the green channel and 2 to the blue
channel.

When this widget is rendered a Box will be rendered
around the specified channel.












            

          

      

      

    

  

  
    
    

    Cursor
    

    

    
 
  

    
      
          
            
  
Cursor


	
class pygamelib.gfx.ui.Cursor(relative_row: int | None = 0, relative_column: int | None = 0, blink_time: float | None = 0.4, sprixel: Sprixel | None = None, parent: Widget | None = None)

	Bases: PglBaseObject


New in version 1.4.0.



The Cursor class represent a typing cursor on screen.


Warning

The Cursor need to be rendered last! For example, in a LineInput
widget, the cursor is rendered when the rest of the LineInput is already rendered
. The reason being that the Cursor need to know what is already on screen in case
it overlap something.




	
__init__(relative_row: int | None = 0, relative_column: int | None = 0, blink_time: float | None = 0.4, sprixel: Sprixel | None = None, parent: Widget | None = None) → None

	
	Parameters:

	
	relative_row (int) – The relative row position inside the parent widget.


	relative_column (int) – The relative column position inside the parent widget.


	blink_time (float) – The time interval between blinks. Default is 0.4 seconde. If
you want to keep the cursor solid (i.e: not blinking) set this parameter to
0.


	sprixel (Sprixel) – The cursor’s sprixel (or representation) as a Sprixel.


	parent (Widget) – The parent object, ie: the one in which the cursor reside. It’s
optional because you can share a cursor with multiple widgets.








Example:

# Create a cyan cursor rapidly blinking.
custom_cursor = Cursor(
    blink_time=0.1,
    sprixel=Sprixel(
        "|", bg_color=config.input_bg_color, fg_color=Color(0, 255, 255)
    ),
)
line_input = LineInput(
    "Test of the LineInput widget",
    config=UiConfig.instance(),
    minimum_width=6,
    maximum_width=200,
    cursor=custom_cursor,
)









Methods



	__init__([relative_row, relative_column, ...])

	
	param relative_row:

	The relative row position inside the parent widget.









	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	lock_position()

	Prevent the cursor's relative position to be changed.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	store_screen_position(row, column)

	Store the screen position of the object.



	unlock_position()

	Authorize the cursor's relative position to be changed.






Attributes



	sprixel

	Get and set the sprixel of the cursor, it has to be core.Sprixel.



	parent

	Get and set the parent widget of the cursor, it has to be a Widget or None.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	relative_column

	Get and set the relative_column of the cursor, it has to be an int.



	relative_row

	Get and set the relative_row of the cursor, it has to be an int.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
lock_position()

	Prevent the cursor’s relative position to be changed. It is useful for objects
that manipulate the cursor depending on their content.

Example:

my_cursor = Cursor()
my_lineedit = LineEdit(cursor=my_cursor)
my_cursor.lock_position()
my_lineedit.delete()
my_cursor.unlock_position()










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property parent: Widget | None

	Get and set the parent widget of the cursor, it has to be a Widget or
None.






	
property relative_column: int

	Get and set the relative_column of the cursor, it has to be an int.
This value cannot be negative (as it makes no sense in our coordinate
referential).






	
property relative_row: int

	Get and set the relative_row of the cursor, it has to be an int.
This value cannot be negative (as it makes no sense in our coordinate
referential).






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
property sprixel: Sprixel

	Get and set the sprixel of the cursor, it has to be core.Sprixel.






	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
unlock_position() → None

	Authorize the cursor’s relative position to be changed. It is useful for objects
that manipulate the cursor depending on their content.

Example:

my_cursor = Cursor()
my_lineedit = LineEdit(cursor=my_cursor)
my_cursor.lock_position()
my_lineedit.delete()
my_cursor.unlock_position()
















            

          

      

      

    

  

  
    
    

    Dialog
    

    

    
 
  

    
      
          
            
  
Dialog


	
class pygamelib.gfx.ui.Dialog(config=None)

	Bases: object

Dialog is a virtual class that can be subclassed to create actual dialogs.

All classes that inherits from Dialog have the following constraints:



	They need to implement a show() method.


	They are automatically rendered on the second pass by the
Screen object.







It stores the UiConfig object and provide a helper attribute for user
inputs.


	
__init__(config=None) → None

	This constructor takes only one parameter.


	Parameters:

	config (UiConfig.) – The config object.









Methods



	__init__([config])

	This constructor takes only one parameter.



	show()

	This is a virtual method, calling it directly will only raise a NotImplementedError.






Attributes



	config

	Get and set the config object (UiConfig).



	user_input

	Facility to store and retrieve the user input.







	
property config

	Get and set the config object (UiConfig).






	
show()

	This is a virtual method, calling it directly will only raise a
NotImplementedError. Each class that inheritate Dialog needs to implement
show().






	
property user_input

	Facility to store and retrieve the user input.












            

          

      

      

    

  

  
    
    

    FileDialog
    

    

    
 
  

    
      
          
            
  
FileDialog


	
class pygamelib.gfx.ui.FileDialog(path: Path = None, width: int = 20, height: int = 10, title: str = 'File dialog', show_hidden_files: bool = False, filter: str = '*', config: UiConfig = None)

	Bases: Dialog

The FileDialog is a file selection dialog: it allow the user to select a file on
disk in a relatively easy way. File can then be use for any purpose by the program,
like for “save as” or “open” features.

The show() method returns the path selected by the user.

Key mapping:



	ESC: set the path to None and exit from the show() method.


	ENTER: Exit from the show() method. Returns the currently selected path.


	BACKSPACE / DELETE: delete a character (both keys have the same result).


	UP / DOWN: Navigate between the files.


	LEFT / RIGHT: Navigate between the directories.


	All other keys input characters in the input field.







In all cases, when the dialog is closed, a path is returned. It can be a file name
entered by the user or an existing file. The returned value can also be None if the
user pressed ESC. There is no guarantee that the returned path is correct. Please,
check it before doing anything with it.

Like all dialogs, it is automatically destroyed on exit of the show()
method. It is also deleted from the screen buffer.


	
__init__(path: Path = None, width: int = 20, height: int = 10, title: str = 'File dialog', show_hidden_files: bool = False, filter: str = '*', config: UiConfig = None) → None

	
	Parameters:

	
	path (pathlib.Path) – The path to start in. This path is made absolute by the
constructor.


	width (int) – The width of the file dialog widget (in number of screen cells).


	height (int) – The height of the file dialog widget (in number of screen cells).


	title (str) – The title of the dialog (written in the upper border).


	show_hidden_files (bool) – Does the file dialog needs to show the hidden files or
not.


	filter (str) – A string that will be used to filter the files shown to the user.
For example “*.spr”.


	config (UiConfig) – The configuration object.








Example:

file_dialog = FileDialog( Path("."), 30, 10, "Open file", False, conf)
screen.place(file_dialog, 10, 10)
file = file_dialog.show()









Methods



	__init__([path, width, height, title, ...])

	
	param path:

	The path to start in. This path is made absolute by the









	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	show()

	Show the dialog and execute the event loop.






Attributes



	config

	Get and set the config object (UiConfig).



	filter

	Get/set the current file filter.



	path

	Get/set the current path.



	show_hidden_files

	Get/set the property, if True the file dialog is going to show hidden files, and , if False, it won't.



	user_input

	Facility to store and retrieve the user input.







	
property config

	Get and set the config object (UiConfig).






	
property filter

	Get/set the current file filter.


	Returns:

	The dialog’s current filter.



	Return type:

	str










	
property path

	Get/set the current path.


	Returns:

	The dialog’s current path.



	Return type:

	pathlib.Path










	
render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
show() → Path

	Show the dialog and execute the event loop.
Until this method returns, all keyboards event are processed by the local event
loop. This is also true if called from the main event loop.

This event loop returns a pathlib.Path object or None if the user
pressed the ESC key. The path can point to an existing file or not.

Example:

fields = multi_input.show()










	
property show_hidden_files

	Get/set the property, if True the file dialog is going to show hidden files, and
, if False, it won’t.


	Returns:

	The dialog’s current show_hidden_files value.



	Return type:

	bool










	
property user_input

	Facility to store and retrieve the user input.












            

          

      

      

    

  

  
    
    

    FormLayout
    

    

    
 
  

    
      
          
            
  
FormLayout


	
class pygamelib.gfx.ui.FormLayout(parent: Widget | None = None)

	Bases: GridLayout


	
__init__(parent: Widget | None = None) → None

	
	Parameters:

	parent (Widget) – The parent object, ie: the one in which the GridLayout reside.





Example:

parent_widget = Widget(45, 30, config=config)
# Add a GridLayout to a widget
parent_widget.layout = GridLayout()
# You could also do:
parent_widget.layout = GridLayout(parent_widget)
# But it is not necessary because the Widget.layout property is going to do
# it for you.









Methods



	__init__([parent])

	
	param parent:

	The parent object, ie: the one in which the GridLayout reside.









	add_row(label, widget)

	



	add_widget(widget[, row, column])

	Add a widget to the GridLayout.



	attach(observer)

	Attach an observer to this instance.



	count()

	Returns the amount (the count) of widgets in the GridLayout.



	count_columns()

	Returns the number of columns in the GridLayout.



	count_rows()

	Returns the number of rows in the GridLayout.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	This is an implementation of the notification handling system that is necessary for this class to handle correctly widget's resizing.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	remove_row([row])

	



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	store_screen_position(row, column)

	Store the screen position of the object.



	widgets()

	Returns the list of widgets that are managed by the GridLayout as a set.






Attributes



	column_minimum_width

	Get and set the column's minimum width of the layout.



	height

	Get the layout's height (including spacing).



	horizontal_spacing

	Get and set the horizontal spacing between the widgets in the layout.



	parent

	This property get/set the parent of the Layout (if any).



	row_minimum_height

	Get and set the row's minimum width of the layout.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	spacing

	Get and set the spacing between the widgets in the layout.



	vertical_spacing

	Get and set the vertical spacing between the widgets in the layout.



	width

	Get the layout's width (including spacing).







	
add_row(label: Text, widget: Widget) → int

	




	
add_widget(widget: Widget, row: int = None, column: int = None) → bool

	Add a widget to the GridLayout. If the widget is correctly added to the layout
this method returns True, otherwise it returns False.


	Parameters:

	
	widget (class:Widget) – The widget to add to the layout.


	row (int) – The row in the layout at which the widget should be added.


	column (int) – The column in the layout at which the widget should be added.








Example:

parent_widget = Widget(45, 30, config=config)
# Add a GridLayout to a widget
parent_widget.layout = GridLayout()
# Then add children widgets to the parent's layout
# Step 1: create a widget (here just a generic widget)
child_widget1 = Widget(config=UiConfig.instance())
# Step 2: add it to the layout.
parent_widget.layout.add_widget(child_widget1, 2, 3)
# That's it!





If either of the row or column (or both) are None, the method will find the
first unused cell to put the widget in.


Important

If there’s no space within the existing grid, a new line will be
added. For now, the expansion policy cannot be chosen and it is vertically.
In the future an expand policy could be added.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column_minimum_width: int

	Get and set the column’s minimum width of the layout. This will apply to all
columns.
It has to be an int.






	
count() → int

	Returns the amount (the count) of widgets in the GridLayout.






	
count_columns() → int

	Returns the number of columns in the GridLayout.






	
count_rows() → int

	Returns the number of rows in the GridLayout.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	This is an implementation of the notification handling system that is necessary
for this class to handle correctly widget’s resizing. If you subclass GridLayout
and you need to overload that method, please keep in mind that you need to let
GridLayout.handle_notification() do its job if you want to benefit from its
capabilities.

In other words, do not forget to call
super().handle_notification(subject, attribute, value)!






	
property height: int

	Get the layout’s height (including spacing).

Returns an int.

This is a read-only property.






	
property horizontal_spacing: int

	Get and set the horizontal spacing between the widgets in the layout. It has to
be an int.






	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property parent: Widget | None

	This property get/set the parent of the Layout (if any).






	
remove_row(row: int = None)

	




	
render_to_buffer(buffer: numpy.array, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property row_minimum_height: int

	Get and set the row’s minimum width of the layout. This will apply to all
row.
It has to be an int.






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
property spacing: int

	Get and set the spacing between the widgets in the layout. This property sets
both the horizontal and vertical spacing. It has to be an int.


Warning

if you try to retrieve the spacing and the horizontal and vertical
spacing are not identical this property returns -1.








	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property vertical_spacing: int

	Get and set the vertical spacing between the widgets in the layout. It has to be
an int.






	
widgets() → Set[Widget]

	Returns the list of widgets that are managed by the GridLayout as a set. This
set is not guaranteed to be ordered!






	
property width: int

	Get the layout’s width (including spacing).

Returns an int.

This is a read-only property.












            

          

      

      

    

  

  
    
    

    GridLayout
    

    

    
 
  

    
      
          
            
  
GridLayout


	
class pygamelib.gfx.ui.GridLayout(parent: Widget | None = None)

	Bases: Layout


New in version 1.4.0.



The GridLayout is a layout to organize the widgets in a grid (shocking right?). All
widgets are managed in a grid, one per cell. Layouts can be nested of course to
adapt to your need.


	
__init__(parent: Widget | None = None) → None

	
	Parameters:

	parent (Widget) – The parent object, ie: the one in which the GridLayout reside.





Example:

parent_widget = Widget(45, 30, config=config)
# Add a GridLayout to a widget
parent_widget.layout = GridLayout()
# You could also do:
parent_widget.layout = GridLayout(parent_widget)
# But it is not necessary because the Widget.layout property is going to do
# it for you.









Methods



	__init__([parent])

	
	param parent:

	The parent object, ie: the one in which the GridLayout reside.









	add_widget(widget[, row, column])

	Add a widget to the GridLayout.



	attach(observer)

	Attach an observer to this instance.



	count()

	Returns the amount (the count) of widgets in the GridLayout.



	count_columns()

	Returns the number of columns in the GridLayout.



	count_rows()

	Returns the number of rows in the GridLayout.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	This is an implementation of the notification handling system that is necessary for this class to handle correctly widget's resizing.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	store_screen_position(row, column)

	Store the screen position of the object.



	widgets()

	Returns the list of widgets that are managed by the GridLayout as a set.






Attributes



	column_minimum_width

	Get and set the column's minimum width of the layout.



	height

	Get the layout's height (including spacing).



	horizontal_spacing

	Get and set the horizontal spacing between the widgets in the layout.



	parent

	This property get/set the parent of the Layout (if any).



	row_minimum_height

	Get and set the row's minimum width of the layout.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	spacing

	Get and set the spacing between the widgets in the layout.



	vertical_spacing

	Get and set the vertical spacing between the widgets in the layout.



	width

	Get the layout's width (including spacing).







	
add_widget(widget: Widget, row: int = None, column: int = None) → bool

	Add a widget to the GridLayout. If the widget is correctly added to the layout
this method returns True, otherwise it returns False.


	Parameters:

	
	widget (class:Widget) – The widget to add to the layout.


	row (int) – The row in the layout at which the widget should be added.


	column (int) – The column in the layout at which the widget should be added.








Example:

parent_widget = Widget(45, 30, config=config)
# Add a GridLayout to a widget
parent_widget.layout = GridLayout()
# Then add children widgets to the parent's layout
# Step 1: create a widget (here just a generic widget)
child_widget1 = Widget(config=UiConfig.instance())
# Step 2: add it to the layout.
parent_widget.layout.add_widget(child_widget1, 2, 3)
# That's it!





If either of the row or column (or both) are None, the method will find the
first unused cell to put the widget in.


Important

If there’s no space within the existing grid, a new line will be
added. For now, the expansion policy cannot be chosen and it is vertically.
In the future an expand policy could be added.








	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column_minimum_width: int

	Get and set the column’s minimum width of the layout. This will apply to all
columns.
It has to be an int.






	
count() → int

	Returns the amount (the count) of widgets in the GridLayout.






	
count_columns() → int

	Returns the number of columns in the GridLayout.






	
count_rows() → int

	Returns the number of rows in the GridLayout.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	This is an implementation of the notification handling system that is necessary
for this class to handle correctly widget’s resizing. If you subclass GridLayout
and you need to overload that method, please keep in mind that you need to let
GridLayout.handle_notification() do its job if you want to benefit from its
capabilities.

In other words, do not forget to call
super().handle_notification(subject, attribute, value)!






	
property height: int

	Get the layout’s height (including spacing).

Returns an int.

This is a read-only property.






	
property horizontal_spacing: int

	Get and set the horizontal spacing between the widgets in the layout. It has to
be an int.






	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property parent: Widget | None

	This property get/set the parent of the Layout (if any).






	
render_to_buffer(buffer: numpy.array, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property row_minimum_height: int

	Get and set the row’s minimum width of the layout. This will apply to all
row.
It has to be an int.






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
property spacing: int

	Get and set the spacing between the widgets in the layout. This property sets
both the horizontal and vertical spacing. It has to be an int.


Warning

if you try to retrieve the spacing and the horizontal and vertical
spacing are not identical this property returns -1.








	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property vertical_spacing: int

	Get and set the vertical spacing between the widgets in the layout. It has to be
an int.






	
widgets() → Set[Widget]

	Returns the list of widgets that are managed by the GridLayout as a set. This
set is not guaranteed to be ordered!






	
property width: int

	Get the layout’s width (including spacing).

Returns an int.

This is a read-only property.












            

          

      

      

    

  

  
    
    

    GridSelectorDialog
    

    

    
 
  

    
      
          
            
  
GridSelectorDialog


	
class pygamelib.gfx.ui.GridSelectorDialog(choices: list = None, max_height: int = None, max_width: int = None, title: str = None, config: UiConfig = None)

	Bases: Dialog

The GridSelectorDialog is an easy wrapper around the GridSelector object.
It offers a simple interface for the programmer to present a GridSelector
to the user and retrieve its selection.

The show() method returns the path selected by the user.

Key mapping:



	ESC: set the selected item to an empty Sprixel and exit from the show() method.


	ENTER: Exit from the show() method. Returns the currently selected sprixel.


	UP / DOWN / LEFT / RIGHT: Navigate between the files.


	PAGE_UP / PAGE_DOWN: Go to previous / next page if there’s any.







In all cases, when the dialog is closed, a Sprixel is
returned.

Like all dialogs, it is automatically destroyed on exit of the show()
method. It is also deleted from the screen buffer.


	
__init__(choices: list = None, max_height: int = None, max_width: int = None, title: str = None, config: UiConfig = None) → None

	
	Parameters:

	
	choices (list) – A list of choices to present to the user. The elements of the
list needs to be str or Sprixel.


	max_height (int) – The maximum height of the grid selector.


	max_width (int) – The maximum width of the grid selector.


	config (UiConfig) – The configuration object.








Example:

choices = ["@","#","$","%","&","*","[","]"]
grid_dialog = GridSelector(choices, 10, 30, conf)
screen.place(grid_dialog, 10, 10)
grid_dialog.show()









Methods



	__init__([choices, max_height, max_width, ...])

	
	param choices:

	A list of choices to present to the user. The elements of the









	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	show()

	Show the dialog and execute the event loop.






Attributes



	config

	Get and set the config object (UiConfig).



	grid_selector

	Get / set the GridSelector object, it has to be a GridSelector object.



	title

	Get / set the title of the dialog, it needs to be a str.



	user_input

	Facility to store and retrieve the user input.







	
property config

	Get and set the config object (UiConfig).






	
property grid_selector

	Get / set the GridSelector object, it has to be a
GridSelector object.






	
render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
show()

	Show the dialog and execute the event loop.
Until this method returns, all keyboards event are processed by the local event
loop. This is also true if called from the main event loop.

This event loop returns the selected item as a
Sprixel or None if the user pressed the ESC key.


	Returns:

	The selected item.



	Return type:

	Sprixel





Example:

item = grid_dialog.show()










	
property title

	Get / set the title of the dialog, it needs to be a str.






	
property user_input

	Facility to store and retrieve the user input.












            

          

      

      

    

  

  
    
    

    GridSelector
    

    

    
 
  

    
      
          
            
  
GridSelector


	
class pygamelib.gfx.ui.GridSelector(choices: list = None, max_height: int = None, max_width: int = None, config: UiConfig = None)

	Bases: object

The GridSelector is a widget that present a list of elements as a grid to the user.

It also provides the API to draw and manage the cursor and to retrieve the selected
element.


Warning

In the first version of that widget, only the characters that have a
length of 1 are supported. This excludes some UTF8 characters and most of the
emojis.




	
__init__(choices: list = None, max_height: int = None, max_width: int = None, config: UiConfig = None) → None

	
	Parameters:

	
	choices (list) – A list of choices to present to the user. The elements of the
list needs to be str or Sprixel.


	max_height (int) – The maximum height of the grid selector.


	max_width (int) – The maximum width of the grid selector.


	config (UiConfig) – The configuration object.








Example:

choices = ["@","#","$","%","&","*","[","]"]
grid_selector = GridSelector(choices, 10, 30, conf)
screen.place(grid_selector, 10, 10)
screen.update()









Methods



	__init__([choices, max_height, max_width, ...])

	
	param choices:

	A list of choices to present to the user. The elements of the









	current_sprixel()

	Returns the currently selected sprixel.



	cursor_down()

	Move the selection cursor one row down.



	cursor_left()

	Move the selection cursor one column to the left.



	cursor_right()

	Move the selection cursor one column to the right.



	cursor_up()

	Move the selection cursor one row up.



	items_per_page()

	Returns the number of items per page.



	nb_pages()

	Returns the number of pages.



	page_down()

	Change the current page to the one immediately down (current_page + 1).



	page_up()

	Change the current page to the one immediately up (current_page - 1).



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.






Attributes



	choices

	Get and set the list of choices, it has to be a list of Sprixel or str.



	current_choice

	Get and set the currently selected item's index (the current choice), it needs to be an int.



	current_page

	Get and set the current page of the grid selector, it needs to be an int.



	max_height

	Get and set the maximum height of the grid selector, it needs to be an int.



	max_width

	Get and set the maximum width of the grid selector, it needs to be an int.







	
property choices: int

	Get and set the list of choices, it has to be a list of
Sprixel or str.






	
property current_choice: int

	Get and set the currently selected item’s index (the current choice), it needs
to be an int.
Use current_sprixel() to get the actual current item.






	
property current_page: int

	Get and set the current page of the grid selector, it needs to be an int.






	
current_sprixel() → Sprixel

	Returns the currently selected sprixel.






	
cursor_down() → None

	Move the selection cursor one row down.






	
cursor_left() → None

	Move the selection cursor one column to the left.






	
cursor_right() → None

	Move the selection cursor one column to the right.






	
cursor_up() → None

	Move the selection cursor one row up.






	
items_per_page() → int

	Returns the number of items per page.






	
property max_height: int

	Get and set the maximum height of the grid selector, it needs to be an int.






	
property max_width: int

	Get and set the maximum width of the grid selector, it needs to be an int.






	
nb_pages() → int

	Returns the number of pages.






	
page_down() → None

	Change the current page to the one immediately down (current_page + 1).






	
page_up() → None

	Change the current page to the one immediately up (current_page - 1).






	
render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.



















            

          

      

      

    

  

  
    
    

    Layout
    

    

    
 
  

    
      
          
            
  
Layout


	
class pygamelib.gfx.ui.Layout(parent: Widget | None = None)

	Bases: PglBaseObject


New in version 1.4.0.



The Layout class is mostly a virtual class. It implements a few properties but all
of the methods and properties marked with the virtual method tag need to
be implemented in the inheriting object.

By convention, a layout will always use the maximum space available in a rendering
buffer. That means that in render_to_buffer() it will try to use the entire
buffer_width and buffer_height while respecting the layout’s constraints.

It is therefore the responsibility of the widget or layout that triggers the
rendering loop to confine said layout inside its own rendering space. Most of the
time it involves passing a different set of argument to render_to_buffer()
(like the position or size of the buffer).


	
__init__(parent: Widget | None = None) → None

	The Layout constructor takes the following parameters.


	Parameters:

	parent – The parent widget. If set, it will set the parent’s layout.









Methods



	__init__([parent])

	The Layout constructor takes the following parameters.



	add_widget(w)

	virtual method



	attach(observer)

	Attach an observer to this instance.



	count()

	virtual method



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render_to_buffer(buffer, row, column, ...)

	virtual method



	store_screen_position(row, column)

	Store the screen position of the object.



	widgets()

	virtual method






Attributes



	height

	virtual attribute



	parent

	This property get/set the parent of the Layout (if any).



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	spacing

	This property get/set the inter-widgets spacing of the Layout.



	width

	virtual attribute







	
add_widget(w: Widget) → bool

	virtual method

This method is purely virtual and needs to be implemented in the inheriting
class.

It must allow adding a Widget to the layout. Adding can mean different
things depending on the type of layout. For example, a GridLayout
need a row and a column to place the widget. However, these parameters are
optional. All layouts should be able to add a Widget in the first
available space.






	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
count() → int

	virtual method

This method is purely virtual and needs to be implemented in the inheriting
class.

It must count and returns as an integer the number of widgets in the layout.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property height: int

	virtual attribute

This property is purely virtual and needs to be implemented in the inheriting
class.

It must return the total height of the Layout.






	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property parent: Widget | None

	This property get/set the parent of the Layout (if any).






	
render_to_buffer(buffer: numpy.array, row: int, column: int, buffer_height: int, buffer_width: int) → None

	virtual method

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.








This method is purely virtual and needs to be implemented in the inheriting
class.

It must render the object from the display buffer to the frame buffer.

By convention, a layout will always use the maximum space available in a
rendering buffer. That means that in render_to_buffer() it will try to
use the entire buffer_width and buffer_height while respecting the layout’s
constraints.

It is therefore the responsibility of the widget or layout that triggers the
rendering loop to confine said layout inside its own rendering space. Most of
the time it involves passing a different set of argument to
render_to_buffer() (like the position or size of the buffer).






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
property spacing: int

	This property get/set the inter-widgets spacing of the Layout.

When the spacing is changed the
pygamelib.gfx.ui.Layout.spacing:changed event is sent to the
observers.






	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
widgets() → List[Widget]

	virtual method


	Returns:

	A list of widgets



	Return type:

	List[Widget]





This method is purely virtual and needs to be implemented in the inheriting
class.

It must returns a list of widgets that are contained in the layout.






	
property width: int

	virtual attribute

This property is purely virtual and needs to be implemented in the inheriting
class.

It must return the total width of the Layout.












            

          

      

      

    

  

  
    
    

    LineInput
    

    

    
 
  

    
      
          
            
  
LineInput


	
class pygamelib.gfx.ui.LineInput(default: str = '', filter: InputValidator = InputValidator.PRINTABLE_FILTER, width: int = 0, height: int = 0, minimum_width: int = 0, minimum_height: int = 1, maximum_width: int = 20, maximum_height: int = 1, config: UiConfig | None = None, history: History | None = None, cursor: Cursor | None = None)

	Bases: Widget


New in version 1.4.0.



The LineInput widget allows the user to enter and edit a single line of text.

This widget can be configured to accept either anything printable or only digits.

Contrary to its dialog version that widget does not have any key binding. It
provides all the tools to manipulate it but it is the user’s (developer)
responsibility to bind keys to specific actions.


	
__init__(default: str = '', filter: InputValidator = InputValidator.PRINTABLE_FILTER, width: int = 0, height: int = 0, minimum_width: int = 0, minimum_height: int = 1, maximum_width: int = 20, maximum_height: int = 1, config: UiConfig | None = None, history: History | None = None, cursor: Cursor | None = None) → None

	
	Parameters:

	
	default (str) – The default value in the input field.


	filter (InputValidator) – Sets the type of accepted input. It comes from the
constants module.


	width (int) – The width of the LineInput.


	height (int) – The height of the LineInput.


	minimum_width (int) – The minimum width of the LineInput.


	minimum_height (int) – The minimum height of the LineInput.


	maximum_width (int) – The maximum width of the LineInput.


	maximum_height (int) – The maximum height of the LineInput.


	config (UiConfig) – The configuration object.


	history (History) – The history object. If none is provided, the LineInput will use
the global instance of History.








Example:

line_input = LineInput(
    "Test of the LineInput widget",
    config=UiConfig.instance(),
    minimum_width=6,
    maximum_width=200,
)
screen.place(line_input, 10, 10)

# Somewhere else in your code you can access the content with LineInput.text
pet_name = line_input.text









Methods



	__init__([default, filter, width, height, ...])

	
	param default:

	The default value in the input field.









	attach(observer)

	Attach an observer to this instance.



	backspace()

	Erase the character immediately before the Cursor.



	clear()

	Clear everything from the LineInput.



	cursor

	A read-only property that gives access to the cursor.



	delete()

	Delete the character immediately under the Cursor.



	detach(observer)

	Detach an observer from this instance.



	end()

	Set the Cursor's relative column to the length of the content (i.e: put the cursor at the end of the LineEdit).



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	home()

	Set the Cursor's relative column to 0 (i.e: put the cursor at the beginning of the LineEdit).



	insert_characters([character, position])

	Insert one or more characters at a given position.



	length()

	Return the length of the content of the LineInput widget.



	move_cursor(direction)

	Move the Cursor in the specified direction.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	redo()

	If a History is available, redo previously undone changes.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	store_screen_position(row, column)

	Store the screen position of the object.



	undo()

	If a History is available, undo the last changes.






Attributes



	bg_color

	This property get/set the background color of the widget.



	children

	This read only property property returns the list of children widgets.



	cursor

	A read-only property that gives access to the cursor.



	filter

	Get and set the filter of the line input, it has to be an InputValidator.



	focus

	This property get/set the focus property.



	height

	This property get/set the height of the widget.



	layout

	This property get/set the layout of the widget.



	maximum_height

	This property get/set the maximum height of the widget.



	maximum_width

	This property get/set the maximum width of the widget.



	minimum_height

	This property get/set the minimum height of the widget.



	minimum_width

	This property get/set the minimum width of the widget.



	parent

	This property get/set the parent widget of the widget.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size_constraint

	This property get/set the size constraints of the widget.



	text

	Get and set the text of the line input, it has to be a str.



	width

	This property get/set the width of the widget.



	x

	This property get/set the x position of the widget on screen.



	y

	This property get/set the y position of the widget on screen.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
backspace() → None

	Erase the character immediately before the Cursor.

The modification is reported to the history (i.e: can be undone)

Example:

# If the LineInput contains "Hello"
line_input.backspace()
# Will modify it to "Hell" if the cursor is at the end of the line.










	
property bg_color: Color

	This property get/set the background color of the widget.

When the color is changed the
pygamelib.gfx.ui.Widget.bg_color:changed event is sent to the
observers.






	
property children: Set[Widget]

	This read only property property returns the list of children widgets.






	
clear() → None

	Clear everything from the LineInput. If a History is
available, it will also clear the history.






	
property cursor: Cursor

	A read-only property that gives access to the cursor.






	
delete() → None

	Delete the character immediately under the Cursor.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
end() → None

	Set the Cursor’s relative column to the length of the content (i.e: put
the cursor at the end of the LineEdit).






	
property filter: InputValidator

	Get and set the filter of the line input, it has to be an
InputValidator.






	
property focus: bool

	This property get/set the focus property. It is a boolean.

At the moment it is mostly an informational property, to tell the programmer and
potentially the Widget user (i.e: the class inheriting from Widget) about its
own state.






	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property height: int

	This property get/set the height of the widget. This property respects the
boundaries set by the maximum_height and minimum_height properties.

When the height is changed the
pygamelib.gfx.ui.Widget.resizeEvent:height event is sent to the
observers.






	
home() → None

	Set the Cursor’s relative column to 0 (i.e: put the cursor at the
beginning of the LineEdit).






	
insert_characters(character: str = None, position: int | None = None) → None

	Insert one or more characters at a given position.

If no position is given, the characters are inserted at the cursor’s position.


	Parameters:

	
	character (str) – The character to insert.


	position (int) – The position at which a character must be inserted.








Example:

# Insert a character at position 3 of the LineInput widget (if it exists,
# otherwise insert at the end)
line_input.insert_character("a", 3)

# Insert a character at the cursor's position
line_input.insert_character("a")










	
property layout: Layout

	This property get/set the layout of the widget. You can then add sub widgets to
the layout.

This must be a Layout or a class that inherits from it.

When the layout is changed the
pygamelib.gfx.ui.Widget.layout:changed event is sent to the
observers.






	
length() → int

	Return the length of the content of the LineInput widget.






	
property maximum_height: int

	This property get/set the maximum height of the widget. This property is used
when changing the size constraints and the height property.






	
property maximum_width: int

	This property get/set the maximum width of the widget. This property is used
when changing the size constraints and the width property.






	
property minimum_height: int

	This property get/set the minimum height of the widget. This property is used
when changing the size constraints and the height property.






	
property minimum_width: int

	This property get/set the minimum width of the widget. This property is used
when changing the size constraints and the width property.






	
move_cursor(direction: Direction) → None

	Move the Cursor in the specified direction.


	Parameters:

	direction (Direction) – The direction to move the cursor to.





Example:

line_edit.move_cursor(constants.Direction.LEFT)










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property parent: Widget | None

	This property get/set the parent widget of the widget.






	
redo() → None

	If a History is available, redo previously undone
changes.






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
property size_constraint: SizeConstraint

	This property get/set the size constraints of the widget. Changing the size
constraints immediately resize the widget.






	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property text: str

	Get and set the text of the line input, it has to be a str.
When setting this property tries to set the LineInput.width to the size of the
content if the content’s length is greater than the width.

Obviously the width is constrained by the maximum_width property.






	
undo() → None

	If a History is available, undo the last changes.






	
property width: int

	This property get/set the width of the widget. This property respects the
boundaries set by the maximum_width and minimum_width properties.

When the width is changed the
pygamelib.gfx.ui.Widget.resizeEvent:width event is sent to the
observers.






	
property x: int

	This property get/set the x position of the widget on screen. Since a Widget is
a PglBaseObject this is an alias for the
screen_column property.






	
property y: int

	This property get/set the y position of the widget on screen. Since a Widget is
a PglBaseObject this is an alias for the
screen_row property.












            

          

      

      

    

  

  
    
    

    LineInputDialog
    

    

    
 
  

    
      
          
            
  
LineInputDialog


	
class pygamelib.gfx.ui.LineInputDialog(title=None, label='Input a value:', default='', filter=InputValidator.PRINTABLE_FILTER, config=None)

	Bases: Dialog

The LineInputDialog allows the user to enter and edit a single line of text.

This dialog can be configured to accept either anything printable or only digits.

The show() method returns the user input.

Key mapping:



	ESC: set the user input to “” and exit from the show() method.


	ENTER: Exit from the show() method. Returns the user input.


	BACKSPACE / DELETE: delete a character (both keys have the same result)


	All other keys input characters in the input field.







In all cases, when the dialog is closed, the user input is returned.

Like all dialogs, it is automatically destroyed on exit of the show()
method. It is also deleted from the screen buffer.


	
__init__(title=None, label='Input a value:', default='', filter=InputValidator.PRINTABLE_FILTER, config=None) → None

	
	Parameters:

	
	title (str) – The short title of the dialog. Only used when the dialog is not
borderless.


	label (str | base.Text) – The label of the dialog (usually a one line instruction).


	default (str) – The default value in the input field.


	filter (InputValidator) – Sets the type of accepted input. It comes from the
constants module.


	config (UiConfig) – The configuration object.








Example:

line_input = LineInputDialog(
    "Name the pet",
    "Enter the name of your pet:",
    "Stupido",
)
screen.place(line_input, 10, 10)
pet_name = line_input.show()









Methods



	__init__([title, label, default, filter, config])

	
	param title:

	The short title of the dialog. Only used when the dialog is not









	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	show()

	Show the dialog and execute the event loop.






Attributes



	config

	Get and set the config object (UiConfig).



	label

	Get and set the label of the dialog, it has to be a str or base.Text.



	title

	Get and set the title of the dialog, it has to be a str.



	user_input

	Facility to store and retrieve the user input.







	
property config

	Get and set the config object (UiConfig).






	
property label: Text

	Get and set the label of the dialog, it has to be a str or base.Text.






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
show()

	Show the dialog and execute the event loop.
Until this method returns, all keyboards event are processed by the local event
loop. This is also true if called from the main event loop.

This event loop returns the either “” or what is displayed in the input field.

Example:

value = line_input.show()










	
property title: str

	Get and set the title of the dialog, it has to be a str.






	
property user_input

	Facility to store and retrieve the user input.












            

          

      

      

    

  

  
    
    

    Menu
    

    

    
 
  

    
      
          
            
  
Menu


	
class pygamelib.gfx.ui.Menu(title: Text = None, entries: list = None, padding: int = 1, config: UiConfig = None)

	Bases: object

The Menu object consists of a list of other Menu objects and/or MenuAction
objects.

It has a title that is used in a MenuBar and the list of its entries is
displayed when the menu is expanded.

A Menu object can contains an arbitrary number of entries with an arbitrary depth of
submenus.


	
__init__(title: Text = None, entries: list = None, padding: int = 1, config: UiConfig = None) → None

	The constructor takes the following parameters.


	Parameters:

	
	title (str | Text) – The title of the action (i.e: its label)


	entries (list) – A list of MenuAction or other Menu objects.


	padding (int) – The horizontal padding, i.e the number of space characters added
to the left and right of the title.


	config (UiConfig) – The configuration object.








Example

menubar = MenuBar(config=UiConfig.instance(game=Game.instance()))
file_menu = Menu(
    "File",
    [
        MenuAction("Open", open_file),
        MenuAction("Save", save_file),
        MenuAction("Save as", save_file_as),
        MenuAction("Quit", exit_application),
    ]
)
menubar.add_entry( file_menu )
menubar.add_entry( MenuAction("Help", display_help) )
screen.place(menubar, 0, 0)
screen.update()









Methods



	__init__([title, entries, padding, config])

	The constructor takes the following parameters.



	activate()

	Activates the menu.



	add_entry(entry)

	Add an entry to the menu.



	collapse()

	Collapse the menu.



	current_entry()

	Return the currently selected menu entry.



	expand()

	Expand the menu.



	menu_width()

	Calculate and return the maximum width of the menu based on the widest element.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	select_next()

	Select the next entry in the menu.



	select_previous()

	Select the previous entry in the menu.



	title_width()

	Return the actual width of the menu title.






Attributes



	config

	Get / set the config of the Menu, it needs to be a UiConfig.



	entries

	Get / set the entries of the Menu, it needs to be a list of MenuAction objects.



	padding

	Get / set the padding before and after the menu, it needs to be an int.



	selected

	Get / set the selected status of the Menu, it needs to be a boolean.



	title

	Get / set the title of the Menu, it needs to be a Text object or a python str.







	
activate()

	Activates the menu. This method contains its own event loop a bit like the
show() methods of Dialogs. It expands the menu if it wasn’t already the case and
listen to keyboard key strokes.



	SPACE or ENTER activates (i.e execute) menu actions.


	DOWN select the next entry.


	UP select the previous entry.


	ESC or LEFT close the menu.


	RIGHT activate (i.e expand) a submenu.







Example:

menu.activate()










	
add_entry(entry)

	Add an entry to the menu. An entry can be a MenuAction or a
Menu.
Entries are displayed in the order of there additions from left to right.


Important

The config of the entry is overwritten by the config of the
Menu. That is why it’s not mandatory for Menu and
MenuAction.




	Parameters:

	entry (MenuAction | Menu) – The entry to add.





Example:

menu.add_entry( Menu('File') )
menu.add_entry( MenuAction('Exit', quit_application) )










	
collapse()

	Collapse the menu. A menu is automatically collapsed after activation.

Example:

file_menu.collapse()










	
property config

	Get / set the config of the Menu, it needs to be a UiConfig.






	
current_entry()

	Return the currently selected menu entry.

It can be either a Menu object or a MenuAction object.






	
property entries: list

	Get / set the entries of the Menu, it needs to be a list of MenuAction
objects.






	
expand()

	Expand the menu. A menu is automatically expanded when activated.

Example:

file_menu.expand()










	
menu_width() → int

	Calculate and return the maximum width of the menu based on the widest element.
This includes the padding.


	Returns:

	the menu width.



	Return type:

	int










	
property padding

	Get / set the padding before and after the menu, it needs to be an int.

The padding is only used when the menu is nested into another menu.






	
render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
select_next()

	Select the next entry in the menu.

The selected entry is rendered differently to give a visual feedback to the
user. Please see the UiConfig class for the styling option available to
the Menu object.

Example:

menu.select_next()










	
select_previous()

	Select the previous entry in the menu.

The selected entry is rendered differently to give a visual feedback to the
user. Please see the UiConfig class for the styling option available to
the Menu object.

Example:

menu.select_previous()










	
property selected: bool

	Get / set the selected status of the Menu, it needs to be a boolean.

This changes the representation (way it’s drawn) of the menu entry.






	
property title: Text

	Get / set the title of the Menu, it needs to be a Text
object or a python str.

The title is used in the MenuBar. In the following image, the title of
the expanded menu is “File”.

[image: menu]





	
title_width() → int

	Return the actual width of the menu title. This takes into account the padding.

Example:

menu.title_width()
















            

          

      

      

    

  

  
    
    

    MenuAction
    

    

    
 
  

    
      
          
            
  
MenuAction


	
class pygamelib.gfx.ui.MenuAction(title: Text = None, action=None, parameter=None, padding: int = 1, config: UiConfig = None)

	Bases: object

A menu action is a menu entry that executes a callback when activated. Usually a
Menuaction represents an action from the user interface like open file, save, quit,
etc.

Therefor a MenuAction is fairly simple, at its simplest it has a title and a
callable reference to a function.

An action cannot be used by itself but can be added to a MenuBar or a
Menu.

Like everything in the UI module, MenuAction are styled through a UiConfig
object. Unlike the other classes of that module however, the configuration object is
not mandatory when instanciating this class. The reason is that the MenuBar
object impose the configuration to its managed MenuAction and
Menu.


	
__init__(title: Text = None, action=None, parameter=None, padding: int = 1, config: UiConfig = None) → None

	The constructor takes the following parameters.


	Parameters:

	
	title (str | Text) – The title of the action (i.e: its label)


	action (callable) – A reference to a callable function that is going to be executed
when the action is activated. If set to None, nothing will happen when the
action is activated.


	parameter (Any) – A parameter that is passed to the callback action if not None.


	padding (int) – The horizontal padding, i.e the number of space characters added
to the left and right of the action.


	config (UiConfig) – The configuration object.








Example

menubar = MenuBar(config=UiConfig.instance())
file_menu = Menu(
    "File",
    [
        MenuAction("Open", open_file),
        MenuAction("Save", save_file),
        MenuAction("Save as", save_file_as),
        MenuAction("Quit", exit_application),
    ]
)
menubar.add_entry( file_menu )
menubar.add_entry( MenuAction("Help", display_help) )
screen.place(menubar, 0, 0)
screen.update()









Methods



	__init__([title, action, parameter, ...])

	The constructor takes the following parameters.



	activate()

	Execute and return the result of the callback.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	title_width()

	Return the actual width of the action's title.






Attributes



	action

	Get / set the action's callback, it needs to be a callable.



	config

	Get / set the config of the MenuAction, it needs to be a UiConfig.



	padding

	Get / set the padding before and after the menu action, it needs to be an int.



	selected

	Get / set the selected of the MenuAction, it needs to be a boolean.



	title

	Get / set the title of the action, it needs to be a str or a Text object.







	
property action

	Get / set the action’s callback, it needs to be a callable.






	
activate()

	Execute and return the result of the callback.

Example:

file_save_action.activate()










	
property config

	Get / set the config of the MenuAction, it needs to be a UiConfig.






	
property padding

	Get / set the padding before and after the menu action, it needs to be an int.






	
render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property selected: bool

	Get / set the selected of the MenuAction, it needs to be a boolean.

This changes the representation (way it’s drawn) of the menu entry.






	
property title: Text

	Get / set the title of the action, it needs to be a str or a
Text object.

The title is used in the Menu. In the following image, the title of
the first action in the expanded menu is “Open”, followed by “Save”.

[image: menu]





	
title_width()

	Return the actual width of the action’s title. This takes into account the
padding.

Example:

menu_action.title_width()
















            

          

      

      

    

  

  
    
    

    MenuBar
    

    

    
 
  

    
      
          
            
  
MenuBar


	
class pygamelib.gfx.ui.MenuBar(entries: list = None, spacing: int = 2, config: UiConfig = None)

	Bases: object

The MenuBar widget is exactly that: an horizontal bar that can hold Menu or
MenuAction objects.

Contrary to these 2 classes, MenuBar does not have an activate() method. The
reason is that the menubar cannot block rendering with its own event loop as it is
supposed to be showned at all times. So the management of interactions are left to
the programmer to implement.

A typical implementation would look like this:

Example:

# First create a menubar
menubar = MenuBar(config=UiConfig.instance(game=Game.instance()))

# Then create a Menu
file_menu = Menu(
    "File",
    [
        MenuAction("Open", open_file),
        MenuAction("Save", save_file),
        MenuAction("Save as", save_file_as),
        MenuAction("Quit", exit_application),
    ]
)
menubar.add_entry( file_menu )
menubar.add_entry( MenuAction("Help", display_help) )

# Place the menubar on screen
screen.place(menubar, 0, 0)
screen.update()

# Then, somewhere in an event loop, manage the inputs for example in the user
# update function
def user_update(game, inkey, elapsed_time):
    if inkey == engine.key.DOWN:
        if menubar.current_entry() is not None:
            menubar.current_entry().activate()
    elif inkey == engine.key.LEFT:
        menubar.select_previous()
    elif inkey == engine.key.RIGHT:
        menubar.select_next()
    elif inkey.name == "KEY_ENTER":
        if menubar.current_entry() is not None:
            menubar.current_entry().activate()
    elif inkey.name == "KEY_ESCAPE":
        menubar.close()






	
__init__(entries: list = None, spacing: int = 2, config: UiConfig = None) → None

	The constructor takes the following parameters.


	Parameters:

	
	entries (list) – A list of MenuAction or Menu objects.


	spacing – The horizontal spacing between entries.


	config (UiConfig) – The configuration object.












Methods



	__init__([entries, spacing, config])

	The constructor takes the following parameters.



	add_entry(entry)

	Add an entry to the menu bar.



	close()

	Close and unselect menu entries/submenu.



	current_entry()

	Return the currently selected menu entry.



	length()

	Returns the total length of the menubar.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	select_next()

	Select the next element in the menubar.



	select_previous()

	Select the previous element in the menubar.






Attributes



	config

	Get / set the config of the MenuBar, it needs to be a UiConfig.



	current_index

	Get / set the currently selected menu entry, it needs to be an int.



	entries

	Get / set the entries of the MenuBar, it needs to be a list of MenuAction or Menu objects.



	spacing

	Get / set the spacing between menu entries, it needs to be an int.







	
add_entry(entry)

	Add an entry to the menu bar. An entry can be a MenuAction or a
Menu.
Entries are displayed in the order of there additions from left to right.


Important

The config of the entry is overwritten by the config of the
MenuBar. That is why it’s not mandatory for Menu and
MenuAction.




	Parameters:

	entry (MenuAction | Menu) – The entry to add.





Example:

menubar.add_entry( Menu('File') )
menubar.add_entry( MenuAction('Exit', quit_application) )










	
close()

	Close and unselect menu entries/submenu.

Please call that method when the menu bar loses focus.






	
property config

	Get / set the config of the MenuBar, it needs to be a UiConfig.


Important

The MenuBar’s config is imposed on the managed items (Menu and            MenuAction).








	
current_entry()

	Return the currently selected menu entry.

It can be either a Menu object or a MenuAction object.






	
property current_index

	Get / set the currently selected menu entry, it needs to be an int.
When setting the current_index, if the previous index was corresponding to a
selected entry, said entry is first unselected.






	
property entries: list

	Get / set the entries of the MenuBar, it needs to be a list of
MenuAction or Menu objects.






	
length() → int

	Returns the total length of the menubar. This is computed everytime the method
is called and it includes the spacing.






	
render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
select_next()

	Select the next element in the menubar.

Example

if user_input.name == 'KEY_RIGHT':
    menubar.select_next()










	
select_previous()

	Select the previous element in the menubar.

Example

if user_input.name == 'KEY_RIGHT':
    menubar.select_previous()










	
property spacing

	Get / set the spacing between menu entries, it needs to be an int.












            

          

      

      

    

  

  
    
    

    MessageDialog
    

    

    
 
  

    
      
          
            
  
MessageDialog


	
class pygamelib.gfx.ui.MessageDialog(data: list = None, width: int = 20, height: int = None, adaptive_height: bool = True, alignment: Alignment = None, title: str = None, config: UiConfig = None)

	Bases: Dialog

The message dialog is a popup that can display multiple lines of text.

It supports formatted text (base.Text), python strings,
pygamelib.gfx.core.Sprixel, core.Sprite and more generally
anything that can be rendered on screen (i.e: posess a render_to_buffer(self, buffer
, row, column, buffer_height, buffer_width) method).

Each line can be aligned separately using one of the
Alignment constants. Please see add_line().

It also implements the show() virtual method of Dialog.
This method is blocking and has its own event loop. It does not return anything.

ESC or ENTER close the dialog.

For the moment, the full message dialog needs to be displayed on screen. There is no
pagination, but it is going to be implemented in a future release.

As all dialogs it also has a user_input property that reflects the user input. It
is not used here however.

Like all dialogs, it is automatically destroyed on exit of the show()
method. It is also deleted from the screen buffer.


Todo

Implements pagination.




	
__init__(data: list = None, width: int = 20, height: int = None, adaptive_height: bool = True, alignment: Alignment = None, title: str = None, config: UiConfig = None) → None

	
	Parameters:

	
	data (list) – A list of data to display inside the MessageDialog. Elements in
the list can contain various data types like base.Text, python
strings, pygamelib.gfx.core.Sprixel, core.Sprite


	width (int) – The width of the message dialog widget (in number of screen
cells).


	height (int) – The height of the message dialog widget (in number of screen
cells).


	adaptive_height (bool) – If True, the dialog height will be automatically adapted
to match the content size.


	alignment (Alignment) – The alignment to apply to the data parameter. Please use the
Alignment constants. The default value is
pygamelib.constants.Alignment.LEFT


	title (str) – The short title of the dialog. Only used when the dialog is not
borderless.


	config (UiConfig) – The configuration object.








Example:

msg = MessageDialog(
    [
        base.Text('HELP', core.Color(0,125,255), style=TextStyle.BOLD),
        base.Text('----', core.Color(0,125,255), style=TextStyle.BOLD),
        '',
    ],
    20,
    5,
    True,
    Alignment.CENTER,
)
msg.add_line('This is aligned on the right', Alignment.RIGHT)
msg.add_line('This is aligned on the left')
screen.place(msg, 10, 10)
msg.show()









Methods



	__init__([data, width, height, ...])

	
	param data:

	A list of data to display inside the MessageDialog. Elements in









	add_line(data[, alignment])

	Add a line to the message dialog.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	show()

	Show the dialog and execute the event loop.






Attributes



	config

	Get and set the config object (UiConfig).



	height

	Get and set the height of the message dialog, it has to be an int.



	title

	Get and set the title of the dialog, it has to be a str.



	user_input

	Facility to store and retrieve the user input.







	
add_line(data, alignment: Alignment = Alignment.LEFT) → None

	Add a line to the message dialog.

The line can be any type of data that can be rendered on screen. This means that
any object that expose a render_to_buffer(self, buffer, row, column,
buffer_height, buffer_width) method can be added as a “line”.
Python strings are also obviously accepted.

Here is a non-exhaustive list of supported types:



	Text,


	python strings (str),


	Sprixel,


	Sprite,


	most board items,


	etc.








	Parameters:

	
	data (various) – The data to add to the message dialog.


	alignment (Alignment) – The alignment of the line to add.








Example:

msg.add_line(
    base.Text(
        'This is centered and very red',
        core.Color(255,0,0),
    ),
    constants.Alignment.CENTER,
)










	
property config

	Get and set the config object (UiConfig).






	
property height: int

	Get and set the height of the message dialog, it has to be an int.






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
show() → None

	Show the dialog and execute the event loop.
Until this method returns, all keyboards event are processed by the local event
loop. This is also true if called from the main event loop.

This event loop returns the key pressed .

Example:

key_pressed = msg.show()
if key_pressed.name = 'KEY_ENTER':
    // do something
else:
    print('Good bye')










	
property title: str

	Get and set the title of the dialog, it has to be a str.






	
property user_input

	Facility to store and retrieve the user input.












            

          

      

      

    

  

  
    
    

    MultiLineInputDialog
    

    

    
 
  

    
      
          
            
  
MultiLineInputDialog


	
class pygamelib.gfx.ui.MultiLineInputDialog(fields=[{'default': '', 'filter': InputValidator.PRINTABLE_FILTER, 'label': 'Input a value:'}], title: str = None, config=None)

	Bases: Dialog

The MultiLineInputDialog behave essentially like the LineInputDialog but is
more configurable to allow the user to enter and edit a multiple lines of text.

Each field of this dialog can be individually configured to accept either anything
printable or only digits.

The show() method returns the user input.

Key mapping:



	ESC: set the user input to “” and exit from the show() method.


	ENTER: Exit from the show() method. Returns the user input.


	BACKSPACE / DELETE: delete a character (both keys have the same result).


	TAB: cycle through the fields.


	All other keys input characters in the input field.







In all cases, when the dialog is closed, the user input is returned.

Like all dialogs, it is automatically destroyed on exit of the show()
method. It is also deleted from the screen buffer.


	
__init__(fields=[{'default': '', 'filter': InputValidator.PRINTABLE_FILTER, 'label': 'Input a value:'}], title: str = None, config=None) → None

	
	Parameters:

	
	fields (list) – A list of dictionnary that represent the fields to present to the
user. Please see bellow for a description of the dictionnary.


	title (str) – The short title of the dialog. Only used when the dialog is not
borderless.


	config (UiConfig) – The configuration object.








The fields needs to be a list that contains dictionaries. Each of the
dictionaries needs to contain 3 fields:



	“label”: A one line instruction displayed over the field. This is a string.


	“default”: A string that is going to pre-fill the input field.


	“filter”: A filter to configure the acceptable inputs.







The filters needs to be a InputValidator.

Example:

fields = [
    {
        "label": "Enter the height of the new sprite:",
        "default": "",
        "filter": constants.InputValidator.INTEGER_FILTER,
    },
    {
        "label": "Enter the width of the new sprite:",
        "default": "",
        "filter": constants.InputValidator.INTEGER_FILTER,
    },
    {
        "label": "Enter the name of the new sprite:",
        "default": f"Sprite {len(sprite_list)}",
        "filter": constants.InputValidator.PRINTABLE_FILTER,
    },
]
multi_input = MultiLineInput(fields, conf)
screen.place(multi_input, 10, 10)
completed_fields = multi_input.show()









Methods



	__init__([fields, title, config])

	
	param fields:

	A list of dictionnary that represent the fields to present to the









	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	show()

	Show the dialog and execute the event loop.






Attributes



	config

	Get and set the config object (UiConfig).



	fields

	Get and set the fields of the dialog, see the constructor for the format or this list.



	title

	Get and set the title of the dialog, it has to be a str.



	user_input

	Facility to store and retrieve the user input.







	
property config

	Get and set the config object (UiConfig).






	
property fields

	Get and set the fields of the dialog, see the constructor for the format or this
list.






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
show()

	Show the dialog and execute the event loop.
Until this method returns, all keyboards event are processed by the local event
loop. This is also true if called from the main event loop.

This event loop returns a list of dictionaries with the content of each
fields. The list of dictionaries is the same than the fields constructor
parameter but each key has an additional ‘user_input’ field that contains the
user input.

If the fields parameter was:

[
    {
        "label": "Input a value:",
        "default": "",
        "filter": constants.InputValidator.PRINTABLE_FILTER,
    }
]





The returned value would be:

[
    {
        "label": "Input a value:",
        "default": "",
        "filter": constants.InputValidator.PRINTABLE_FILTER,
        "user_input": "some input",
    }
]





Example:

fields = multi_input.show()










	
property title: str

	Get and set the title of the dialog, it has to be a str.






	
property user_input

	Facility to store and retrieve the user input.












            

          

      

      

    

  

  
    
    

    ProgressBar
    

    

    
 
  

    
      
          
            
  
ProgressBar


	
class pygamelib.gfx.ui.ProgressBar(value=0, maximum=100, width=20, progress_marker='▬', empty_marker=' ', config=None)

	Bases: object

A simple horizontal progress bar widget.


	
__init__(value=0, maximum=100, width=20, progress_marker='▬', empty_marker=' ', config=None)

	
	Parameters:

	
	value (int) – The initial value parameter. It represents the progression.


	maximum (int) – The maximum value held by the progress bar. Any value over the
maximum is ignored.


	width (int) – The width of the progress bar widget (in number of screen cells).


	progress_marker (pygamelib.gfx.core.Sprixel) – The progress marker is displayed on progression. It is
the sprixel that fills the bar. Please see below.


	empty_marker (pygamelib.gfx.core.Sprixel) – The empty marker is displayed instead of the progress
marker when the bar should be empty (when the value is too low to fill the
bar for example). Please see below.


	config (UiConfig) – The configuration object.








Here is a representation of were the progress and empty markers are used.

Progress marker
   |
[=====--------------]
           |
        Empty marker





Example:

# Create a default progress bar with the default configuration
progress_bar = ProgressBar(config=UiConfig.instance())
# Place the progress bar in the middle of the screen
screen.place(
    progress_bar, screen.vcenter, screen.hcenter - int(progress_bar.width)
)
for progress in range(progress_bar.maximum + 1):
    # Do something useful
    progress_bar.value = progress
    screen.update()









Methods



	__init__([value, maximum, width, ...])

	
	param value:

	The initial value parameter. It represents the progression.









	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.






Attributes



	config

	Get and set the config object (UiConfig).



	empty_marker

	Get and set the empty marker, preferrably a Sprixel but could be a str.



	maximum

	Get and set the maximum possible progress, it has to be an int.



	progress_marker

	Get and set the progress marker, preferrably a Sprixel but could be a str.



	value

	Get and set the current progress value, it has to be an int.







	
property config

	Get and set the config object (UiConfig).






	
property empty_marker

	Get and set the empty marker, preferrably a Sprixel but could
be a str.






	
property maximum

	Get and set the maximum possible progress, it has to be an int.






	
property progress_marker

	Get and set the progress marker, preferrably a Sprixel but could
be a str.






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width)

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property value

	Get and set the current progress value, it has to be an int.












            

          

      

      

    

  

  
    
    

    ProgressDialog
    

    

    
 
  

    
      
          
            
  
ProgressDialog


	
class pygamelib.gfx.ui.ProgressDialog(label=Progress 
  
    
    

    UiConfig
    

    

    
 
  

    
      
          
            
  
UiConfig


	
class pygamelib.gfx.ui.UiConfig(game=None, box_vertical_border='│', box_horizontal_border='─', box_top_left_corner='╭', box_top_right_corner='╮', box_bottom_left_corner='╰', box_bottom_right_corner='╯', box_vertical_and_right='├', box_vertical_and_left='┤', fg_color: Color = Color(255, 255, 255), bg_color: Color = Color(0, 128, 128), fg_color_inactive: Color = Color(128, 128, 128), bg_color_selected: Color = Color(128, 128, 128), bg_color_not_selected=None, fg_color_selected: Color = Color(0, 255, 0), fg_color_not_selected: Color = Color(255, 255, 255), bg_color_menu_not_selected: Color = Color(128, 128, 128), border_fg_color: Color = Color(255, 255, 255), border_bg_color: Color = None, borderless_dialog: bool = True, widget_bg_color: Color = Color(0, 128, 128), input_fg_color: Color = Color(255, 255, 255), input_bg_color: Color = Color(163, 163, 163))

	Bases: object

A configuration object for the UI module. TEST

This object’s purpose is to configure the look and feel of the UI widgets.
It does nothing by itself.


	Parameters:

	
	game (Game) – The game object.


	box_vertical_border (str) – The vertical border of a box.


	box_horizontal_border (str) – The horizontal border of a box.


	box_top_left_corner (str) – The top left corner of a box.


	box_top_right_corner (str) – The top right corner of a box.


	box_bottom_left_corner (str) – The bottom left corner of a box.


	box_bottom_right_corner (str) – The bottom right corner of a box.


	box_vertical_and_right (str) – The left junction between two boxes.


	box_vertical_and_left (str) – The right junction between two boxes.


	fg_color (Color) – The foreground color (for text and content).


	bg_color (Color) – The background color (for text and content).


	fg_color_inactive (Color) – The foreground color for inactive items like menu entries.


	bg_color_selected (Color) – The background color (for selected text and content).


	bg_color_not_selected (Color) – The background color (for non selected text and
content).


	fg_color_selected (Color) – The foreground color (for selected text and content).


	fg_color_not_selected (Color) – The foreground color (for non selected text and
content).


	bg_color_menu_not_selected (Color) – The menu background color (for expanded menu
items).


	border_fg_color (Color) – The foreground color (for borders).


	border_bg_color (Color) – The background color (for borders).


	borderless_dialog (bool) – Is the dialog borderless or not.


	widget_bg_color (Color) – The background color of a widget.


	input_fg_color (Color) – The foreground color (i.e the text color) of a LineInput
widget.


	input_bg_color (Color) – The background color of a LineInput widget.








Example:

config_ui_red = UiConfig(
    fg_color=Color(255,0,0),
    border_fg_color=Color(255,0,0)
)






	
__init__(game=None, box_vertical_border='│', box_horizontal_border='─', box_top_left_corner='╭', box_top_right_corner='╮', box_bottom_left_corner='╰', box_bottom_right_corner='╯', box_vertical_and_right='├', box_vertical_and_left='┤', fg_color: Color = Color(255, 255, 255), bg_color: Color = Color(0, 128, 128), fg_color_inactive: Color = Color(128, 128, 128), bg_color_selected: Color = Color(128, 128, 128), bg_color_not_selected=None, fg_color_selected: Color = Color(0, 255, 0), fg_color_not_selected: Color = Color(255, 255, 255), bg_color_menu_not_selected: Color = Color(128, 128, 128), border_fg_color: Color = Color(255, 255, 255), border_bg_color: Color = None, borderless_dialog: bool = True, widget_bg_color: Color = Color(0, 128, 128), input_fg_color: Color = Color(255, 255, 255), input_bg_color: Color = Color(163, 163, 163))

	



Methods



	__init__([game, box_vertical_border, ...])

	



	instance(*args, **kwargs)

	Returns the instance of the UiConfig object







	
classmethod instance(*args, **kwargs)

	Returns the instance of the UiConfig object

Creates an UiConfig object on first call an then returns the same instance
on further calls.
Useful for a default configuration. It accepts all the parameters from the
constructor.


	Returns:

	Instance of UiConfig object
















            

          

      

      

    

  

  
    
    

    Widget
    

    

    
 
  

    
      
          
            
  
Widget


	
class pygamelib.gfx.ui.Widget(width: int = 0, height: int = 0, minimum_width: int = 0, minimum_height: int = 0, maximum_width: int = 20, maximum_height: int = 10, layout: Layout | None = None, bg_color: Color | None = None, config: UiConfig | None = None)

	Bases: PglBaseObject


New in version 1.4.0.



The Widget object is the base for all UI elements (or should be). By itself it does
not do anything functionally useful. What it does however, is taking care of the
geometry logic.

It enforces the geometry constraints and takes care of sending resize events
messages.


	
__init__(width: int = 0, height: int = 0, minimum_width: int = 0, minimum_height: int = 0, maximum_width: int = 20, maximum_height: int = 10, layout: Layout | None = None, bg_color: Color | None = None, config: UiConfig | None = None) → None

	
	Parameters:

	
	width (int) – The width of the widget.


	height (int) – The height of the widget.


	minimum_width (int) – The minimum_width of the widget.


	minimum_height (int) – The minimum_height of the widget.


	maximum_width (int) – The maximum_width of the widget.


	maximum_height (int) – The maximum_height of the widget.


	layout (Layout) – The layout of the widget.


	bg_color (Color) – The default background color of the widget. This property
overrides the widget_bg_color from the UiConfig class (in case
you want to create a specific widget with a different background color than
the default one).


	config (UiConfig) – The configuration object.








Example:

my_widget = Widget(6, 3, minimum_width=6, minimum_height=3)
my_widget.bg_color = Color(255, 255, 255)
screen.place(my_widget, 5, 2)









Methods



	__init__([width, height, minimum_width, ...])

	
	param width:

	The width of the widget.









	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render_to_buffer(buffer, row, column, ...)

	Render the object from the display buffer to the frame buffer.



	store_screen_position(row, column)

	Store the screen position of the object.






Attributes



	bg_color

	This property get/set the background color of the widget.



	children

	This read only property property returns the list of children widgets.



	focus

	This property get/set the focus property.



	height

	This property get/set the height of the widget.



	layout

	This property get/set the layout of the widget.



	maximum_height

	This property get/set the maximum height of the widget.



	maximum_width

	This property get/set the maximum width of the widget.



	minimum_height

	This property get/set the minimum height of the widget.



	minimum_width

	This property get/set the minimum width of the widget.



	parent

	This property get/set the parent widget of the widget.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	size_constraint

	This property get/set the size constraints of the widget.



	width

	This property get/set the width of the widget.



	x

	This property get/set the x position of the widget on screen.



	y

	This property get/set the y position of the widget on screen.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property bg_color: Color

	This property get/set the background color of the widget.

When the color is changed the
pygamelib.gfx.ui.Widget.bg_color:changed event is sent to the
observers.






	
property children: Set[Widget]

	This read only property property returns the list of children widgets.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
property focus: bool

	This property get/set the focus property. It is a boolean.

At the moment it is mostly an informational property, to tell the programmer and
potentially the Widget user (i.e: the class inheriting from Widget) about its
own state.






	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property height: int

	This property get/set the height of the widget. This property respects the
boundaries set by the maximum_height and minimum_height properties.

When the height is changed the
pygamelib.gfx.ui.Widget.resizeEvent:height event is sent to the
observers.






	
property layout: Layout

	This property get/set the layout of the widget. You can then add sub widgets to
the layout.

This must be a Layout or a class that inherits from it.

When the layout is changed the
pygamelib.gfx.ui.Widget.layout:changed event is sent to the
observers.






	
property maximum_height: int

	This property get/set the maximum height of the widget. This property is used
when changing the size constraints and the height property.






	
property maximum_width: int

	This property get/set the maximum width of the widget. This property is used
when changing the size constraints and the width property.






	
property minimum_height: int

	This property get/set the minimum height of the widget. This property is used
when changing the size constraints and the height property.






	
property minimum_width: int

	This property get/set the minimum width of the widget. This property is used
when changing the size constraints and the width property.






	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property parent: Widget | None

	This property get/set the parent widget of the widget.






	
render_to_buffer(buffer: numpy.array, row: int, column: int, buffer_height: int, buffer_width: int) → None

	Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
property size_constraint: SizeConstraint

	This property get/set the size constraints of the widget. Changing the size
constraints immediately resize the widget.






	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
property width: int

	This property get/set the width of the widget. This property respects the
boundaries set by the maximum_width and minimum_width properties.

When the width is changed the
pygamelib.gfx.ui.Widget.resizeEvent:width event is sent to the
observers.






	
property x: int

	This property get/set the x position of the widget on screen. Since a Widget is
a PglBaseObject this is an alias for the
screen_column property.






	
property y: int

	This property get/set the y position of the widget on screen. Since a Widget is
a PglBaseObject this is an alias for the
screen_row property.












            

          

      

      

    

  

  
    
    

    particles
    

    

    
 
  

    
      
          
            
  
particles


New in version 1.3.0.



Starting with version 1.3.0, the pygamelib now provides a particle system. It is for now
a first limited version and it has a number of limitations.

First, the particles are “non interactive” objects. They are not affected by board items
or anything drawn on screen nor can they affect them. All particles are drawn on top of
an already rendered screen.

This means no fancy particle physics out of the box. It doesn’t means that it is not
doable. It just means that it is not existing out of the box.

Second, although I did my best to make the particle system as efficient as possible,
drawing a lot of moving elements in the terminal is very slow. So be mindful of
the performances when using it.

Now despite the limitations, the particle system still allow to do some very cool stuff.
Here is a video example:


  
    
    

    CircleEmitter
    

    

    
 
  

    
      
          
            
  
CircleEmitter


	
class pygamelib.gfx.particles.CircleEmitter(emitter_properties: EmitterProperties = None)

	Bases: ParticleEmitter

The CircleEmitter differs from the ParticleEmitter in only one thing: it
emits its particle in a circular shape, like this:

[image: menu]
Aside from that specificity it’s exactly the same as a regular particle emitter.


	
__init__(emitter_properties: EmitterProperties = None) → None

	The CircleEmitter takes the same parameters than the ParticleEmitter
and make use of EmitterProperties.radius.

The radius is used as the initial distance from the center of the circle (i.e
the emitter’s position).





Methods



	__init__([emitter_properties])

	The CircleEmitter takes the same parameters than the ParticleEmitter and make use of EmitterProperties.radius.



	apply_force(force)

	Apply a force to all alive particles.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	emit([amount])

	Emit a certain amount of particles.



	finished()

	Returns True if the emitter is finished.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load a particle emitter from serialized data.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render_to_buffer(buffer, row, column, ...)

	Render all the particles of that emitter in the frame buffer.



	resize_pool([new_size])

	In substance, this method is an alias for ParticleEmitter.particle_pool.resize().



	serialize()

	Serialize the particle emitter.



	store_screen_position(row, column)

	Store the screen position of the object.



	toggle_active()

	Toggle the emitter's state between active and inactive.



	update()

	Update all the particles in the pool.






Attributes



	active

	Access and set the active property.



	column

	Access and set the column property (i.e: x).



	particle_pool

	This property holds this emitter's instance of a ParticlePool.



	row

	Access and set the row property (i.e: y).



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	x

	Access and set the x property (i.e: column).



	y

	Access and set the y property (i.e: row).







	
property active

	Access and set the active property.

An emitter only emits particles if he is active. Emitted particles keeps being
updated even if the emitter is not active anymore, for obvious reasons.






	
apply_force(force: Vector2D)

	Apply a force to all alive particles.

The force needs to be a Vector2D.


	Parameters:

	force (Vector2D) – The force to apply to the particles.





Example:

my_emitter.apply_force(base.Vector2D(0,0.3)) # slight wind.










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column

	Access and set the column property (i.e: x).






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
emit(amount: int = None)

	Emit a certain amount of particles.

The emitter will request particles from the particle pool. This in turn will
trigger the recycling of dead particles if needed.

Calling this method faster than the configured emit_rate is not going to emit
more particles. An emitter cannot emit particles faster than its emit_rate.

If amount is None, the emitter emits emit_number particles.


	Parameters:

	amount (int) – The amount (number) of particles to be emitted.





Example:

my_emitter.emit(50)










	
finished()

	Returns True if the emitter is finished.

A finished emitter has both:



	Reach the end of its lifespan (i.e lifespan == 0)


	And all particles are finished too.







This means that an emitter will, in most cases, not be finished as soon as its
lifespan reaches 0 but a bit after. When all of its managed particles are dead.

This is on purpose for both aesthetic reasons (avoiding particles sudden
removal) and for optimization (counting active particles is a O(n) operation
and can be very long when there’s a lot of particles so we want to do it only
when necessary).

Example:

if my_emitter.finished():
        screen.delete(my_emitter.row, my_emitter.column)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data)

	Load a particle emitter from serialized data.


	Parameters:

	data (dict) – The serialized data.



	Returns:

	The loaded particle emitter.



	Return type:

	ParticleEmitter










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property particle_pool

	This property holds this emitter’s instance of a ParticlePool.






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width)

	Render all the particles of that emitter in the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
resize_pool(new_size: int = None)

	In substance, this method is an alias for
ParticleEmitter.particle_pool.resize(). However, called without
parameter, it will try to resize the particle pool to emit_number *
particle_lifespan. It will do so only if the resulting number is greater than
the current particle pool size.


	Parameters:

	new_size (int) – The desired new size of the pool.





Example:

my_emitter.resize_pool(3000)










	
property row

	Access and set the row property (i.e: y).






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize the particle emitter.


	Returns:

	A dictionary containing all the emitter’s properties.



	Return type:

	dict










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
toggle_active()

	Toggle the emitter’s state between active and inactive.

An inactive emitter does not emit new particles but keeps processing particles
that have already been emitted.

Example:

if not my_emitter.active:
    my_emitter.toggle_active()










	
update()

	Update all the particles in the pool.

Updating a particle means applying particle_acceleration to every particle and
then call Particle.update().

Example:

my_emitter.update()










	
property x

	Access and set the x property (i.e: column).






	
property y

	Access and set the y property (i.e: row).












            

          

      

      

    

  

  
    
    

    ColorParticle
    

    

    
 
  

    
      
          
            
  
ColorParticle


	
class pygamelib.gfx.particles.ColorParticle(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, sprixel: ParticleSprixel = None, start_color: Color = None, stop_color: Color = None)

	Bases: Particle

This class is an extension of Particle. It adds
the possibility to gradually go from a starting color to an end color over time.
It is linked with the lifespan of the particle.


	
__init__(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, sprixel: ParticleSprixel = None, start_color: Color = None, stop_color: Color = None) → None

	The constructor takes the following parameters.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.


	sprixel (Sprixel) – The sprixel that represent the particle when drawn on screen.


	start_color (Color) – The color of the particle at the beginning of its lifespan.


	stop_color (Color) – The color of the particle at the end of its lifespan.








Example:

single_particle = ColorParticle(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
    start_color=core.Color(255, 0, 0),
    stop_color=core.Color(0, 255, 0),
)









Methods



	__init__([row, column, velocity, lifespan, ...])

	The constructor takes the following parameters.



	apply_force(force)

	Apply a force to the particle's acceleration vector.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	finished()

	Return True if the particle is done living (i.e its lifespan is lesser or equal to 0).



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load a ColorParticle from a dictionary.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render([sprixel])

	Render the particle as a Sprixel.



	reset([row, column, velocity, lifespan])

	Reset a particle in its initial state.



	reset_lifespan([lifespan])

	Reset the particle lifespan (including the initial lifespan).



	serialize()

	Serialize a ColorParticle into a dictionary.



	store_screen_position(row, column)

	Store the screen position of the object.



	terminate()

	Terminate a particle, i.e sets its lifespan to -1.



	update()

	The update method perform the calculations required to process the new particle position.






Attributes



	column

	Access and set the column property.



	row

	Access and set the row property.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	x

	Access and set the x property.



	y

	Access and set the y property.







	
apply_force(force: Vector2D) → None

	Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the
apply_force() method of the emitter
class.


	Parameters:

	force (Vector2D) – The force to apply.





Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column

	Access and set the column property. Equivalent to the x property.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
finished() → bool

	Return True if the particle is done living (i.e its lifespan is lesser or equal
to 0). It returns False otherwise.


	Return type:

	bool





Example:

if not my_particle.finished():
    my_particle.update()










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data)

	Load a ColorParticle from a dictionary.


	Parameters:

	data (dict) – The dictionary to load from



	Returns:

	The loaded ColorParticle



	Return type:

	ColorParticle





Example:

particle = ColorParticle.load( json.load( open("particle.json") ) )










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
render(sprixel: Sprixel = None)

	Render the particle as a Sprixel. This method is
called by the ParticleEmitter render_to_buffer
method.

It takes a Sprixel as a parameter. This Sprixel is
given by the ParticleEmitter.render_to_buffer() method and if it is not None,
the particle will render itself into that Sprixel
and return it.


Important

This method must be called after everything else as rendered or
else there will be Sprixel that will be
overwritten during their rendering cycle. Other elements could also have
their Sprixel corrupted and replaced by the
particle’s one.




	Parameters:

	sprixel (Sprixel) – A sprixel already rendered in the screen buffer.





Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])










	
reset(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None)

	Reset a particle in its initial state. This is particularly useful for the reuse
of particles.

This method takes almost the same parameters than the constructor.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.








Example:

single_particle.reset(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
)










	
reset_lifespan(lifespan: int = 20) → None

	Reset the particle lifespan (including the initial lifespan).


	Parameters:

	lifespan (int) – The particle lifespan in number of movements/turns.





Example:

my_particle.reset_lifespan(10)










	
property row

	Access and set the row property. Equivalent to the y property.






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize a ColorParticle into a dictionary.


	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( particle.serialize() )










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
terminate() → None

	Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF
you are managing the particle through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:
    p.terminate()










	
update()

	The update method perform the calculations required to process the new particle
position.
It mainly adds the acceleration to the velocity vector and update the position
accordingly.

After calling update() the acceleration is “consumed” in the velocity and
therefor reset.

The update() method takes no parameters and returns nothing.

Example:

my_particle.update()










	
property x

	Access and set the x property. Equivalent to the column property.






	
property y

	Access and set the y property. Equivalent to the row property.












            

          

      

      

    

  

  
    
    

    ColorPartitionParticle
    

    

    
 
  

    
      
          
            
  
ColorPartitionParticle


	
class pygamelib.gfx.particles.ColorPartitionParticle(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, partition: list = None, partition_blending_table: list = None, start_color: Color = None, stop_color: Color = None)

	Bases: PartitionParticle

This class is basically the same as
ColorParticle but its base class is
PartitionParticle instead of
Particle. Everything else is the same.

It serves the same purpose as the ColorParticle
with the added partition particle capabilities.


	
__init__(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, partition: list = None, partition_blending_table: list = None, start_color: Color = None, stop_color: Color = None) → None

	The constructor takes the following parameters.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.


	partition (list) – The partition of the particle.


	partition_blending_table (list) – The blending table of the particle.


	start_color (Color) – The color of the particle at the beginning of its lifespan.


	stop_color (Color) – The color of the particle at the end of its lifespan.








Example:

single_particle = RandomColorPartitionParticle(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
)









Methods



	__init__([row, column, velocity, lifespan, ...])

	The constructor takes the following parameters.



	apply_force(force)

	Apply a force to the particle's acceleration vector.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	finished()

	Return True if the particle is done living (i.e its lifespan is lesser or equal to 0).



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load a ColorPartitionParticle from a dictionary.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render([sprixel])

	This method first calls the Particle.render() method.



	reset([row, column, velocity, lifespan])

	Reset a particle in its initial state.



	reset_lifespan([lifespan])

	Reset the particle lifespan (including the initial lifespan).



	serialize()

	Serialize a ColorPartitionParticle into a dictionary.



	store_screen_position(row, column)

	Store the screen position of the object.



	terminate()

	Terminate a particle, i.e sets its lifespan to -1.



	update()

	This method first calls the Particle.update() method, then calculates the quadrant position, i.e: the actual position of the particle within a console character.






Attributes



	column

	Access and set the column property.



	row

	Access and set the row property.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	x

	Access and set the x property.



	y

	Access and set the y property.







	
apply_force(force: Vector2D) → None

	Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the
apply_force() method of the emitter
class.


	Parameters:

	force (Vector2D) – The force to apply.





Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column

	Access and set the column property. Equivalent to the x property.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
finished() → bool

	Return True if the particle is done living (i.e its lifespan is lesser or equal
to 0). It returns False otherwise.


	Return type:

	bool





Example:

if not my_particle.finished():
    my_particle.update()










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data)

	Load a ColorPartitionParticle from a dictionary.


	Parameters:

	data (dict) – The dictionary to load from



	Returns:

	The loaded ColorPartitionParticle



	Return type:

	ColorPartitionParticle





Example:

particle = ColorPartitionParticle.load( json.load( open("particle.json") ) )










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
render(sprixel: Sprixel = None)

	This method first calls the Particle.render() method. Then it updates the
rendered particle’s model based on the blending table.


	Parameters:

	sprixel (Sprixel) – A sprixel already rendered in the screen buffer.





Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])










	
reset(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None)

	Reset a particle in its initial state. This is particularly useful for the reuse
of particles.

This method takes almost the same parameters than the constructor.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.








Example:

single_particle.reset(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
)










	
reset_lifespan(lifespan: int = 20) → None

	Reset the particle lifespan (including the initial lifespan).


	Parameters:

	lifespan (int) – The particle lifespan in number of movements/turns.





Example:

my_particle.reset_lifespan(10)










	
property row

	Access and set the row property. Equivalent to the y property.






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize a ColorPartitionParticle into a dictionary.


	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( particle.serialize() )










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
terminate() → None

	Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF
you are managing the particle through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:
    p.terminate()










	
update()

	This method first calls the Particle.update() method, then calculates the
quadrant position, i.e: the actual position of the particle within a console
character. It then updates the particle’s model based on this internal position.

Example:

my_particle.update()










	
property x

	Access and set the x property. Equivalent to the column property.






	
property y

	Access and set the y property. Equivalent to the row property.












            

          

      

      

    

  

  
    
    

    EmitterProperties
    

    

    
 
  

    
      
          
            
  
EmitterProperties


	
class pygamelib.gfx.particles.EmitterProperties(row: int = 0, column: int = 0, variance: float = 2.0, emit_number: int = 1, emit_rate: float = 0.1, lifespan: int = 200, parent=None, particle_velocity=None, particle_acceleration=None, particle_lifespan: float = 5.0, radius: float = 1.0, particle: Particle = None)

	Bases: object

EmitterProperties is a class that hold configuration variables for a particle
emitter. The idea is that it’s easier to carry around for multiple emitters with the
same configuration than multiple values in the emitter’s constructor.

It holds all possible parmeters for all types of emitters. Emitters uses only the
ones that they really need.


Important

In most cases these values are copied by the emitter’s constructor.
So changing the values during an emitter’s alive cycle is not going to do
anything.




Note

This class should be a @dataclass. However, support for keyword only
data classes is specific to python 3.10+. So for now, it is a regular class.




	
__init__(row: int = 0, column: int = 0, variance: float = 2.0, emit_number: int = 1, emit_rate: float = 0.1, lifespan: int = 200, parent=None, particle_velocity=None, particle_acceleration=None, particle_lifespan: float = 5.0, radius: float = 1.0, particle: Particle = None) → None

	
	Parameters:

	
	row (int) – The row where the emitter is. It is only important for the first
rendering cycle. After that, the emitter will know its position on screen.


	column (int) – The row where the emitter is. It is only important for the first
rendering cycle. After that, the emitter will know its position on screen.


	variance (float) – The variance is the amount of randomness that is allowed when
emitting a particle. The exact use of this parameter is specific to each
emitter.


	emit_number (int) – The number of particle emitted at each timer tick.


	emit_rate (float) – The rate of emission in seconds. This value needs to be
understood as “the emitter will emit emit_number particles every
emit_rate seconds”.


	lifespan (int) – The lifespan of the emitter in number of emission cycle. If
lifespan is set to 1 for example, the emitter will only emit one burst of
particles.


	parent (BoardItem) – A parent board item. If you do that manually, you will probably
want to set it specifically for each emitter.


	particle_velocity (Vector2D) – The initial particle velocity. Please read the
documentation of each emitter for the specific use of particle velocity.


	particle_acceleration (Vector2D) – The initial particle acceleration. Please read the
documentation of each emitter for the specific use of particle acceleration.


	particle_lifespan (int) – The lifespan of the particle in number of cycles.


	radius (float) – For emitter that supports it (like the CircleEmitter), sets the
radius of emission (which translate into a velocity vector for each
particle).


	particle (Particle) – The particle that the emitter will emit. This can be a class
reference or a fully instantiated particle. Emitters will copy it in the
particle pool.








Example:

props = EmitterProperties(emit_number=10, emit_rate=0.1, lifespan=10)









Methods



	__init__([row, column, variance, ...])

	
	param row:

	The row where the emitter is. It is only important for the first









	load(data)

	Load an EmitterProperties from a dictionary.



	serialize()

	Serialize an EmitterProperties into a dictionary.







	
classmethod load(data)

	Load an EmitterProperties from a dictionary.


	Parameters:

	data (dict) – The dictionary to load from.



	Returns:

	The EmitterProperties object



	Return type:

	EmitterProperties





Example:

emitter_properties = EmitterProperties.load(
                        json.load( open("emitter_properties.json") )
                    )










	
serialize()

	Serialize an EmitterProperties into a dictionary.


	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( emitter_properties.serialize() )
















            

          

      

      

    

  

  
    
    

    ParticleEmitter
    

    

    
 
  

    
      
          
            
  
ParticleEmitter


	
class pygamelib.gfx.particles.ParticleEmitter(emitter_properties=None)

	Bases: PglBaseObject

The particle emitter is a key piece of the pygamelib’s particle system: it’s the
part that actually do something!

The emitter takes care of managing the particles’ life cycle. It emits, move, apply
forces, update and draw particles on screen. It also provide convenient methods to
manage the particle pool or apply forces to all active particles in the pool.

Particle emitters are configured with EmitterProperties. This is a
convenient way to place multiple emitters with the same configuration. For example,
if you create a “torch fire” emitter, you can use the same properties to create
multiple emitters. It’s less cumbersome than having the parameters tied to an
instance of the emitter.

Here is an example of that taken from examples/benchmark-particle-system:

Example:

# The torch fire properties
emt_props = particles.EmitterProperties(
    screen.vcenter, # Position is not important as it will be updated by the
    screen.hcenter, # ParticleEmitter.render_to_buffer method.
    lifespan=150,
    variance=0.3,
    emit_number=10,
    emit_rate=0.1,
    particle=particles.ColorPartitionParticle(
        start_color=core.Color(45, 151, 227),
        stop_color=core.Color(7, 2, 40),
    ),
    particle_lifespan=5,
    radius=0.4,
)
# Now create multiple emitters at different position with the same properties.
for c in [[20, 24], [20, 35], [20, 122], [20, 133]]:
    bench_state.particle_emitters.append(particles.CircleEmitter(emt_props))
    screen.place(
        bench_state.particle_emitters[-1],
        screen.vcenter - int(bench_state.altar_sprite.height / 2) + c[0],
        c[1],
        2, # Always set your emitters to be rendered on the second pass.
    )






Important

The entire particle system is build around the Screen Buffer
system and is completely incompatible with the direct display system. If you
want to use the particle system you have to use Screen.place() and the other
methods of the Screen Buffer system.



An emitter should always be placed on screen and set to render on the second
rendering pass.

It is important if you want to avoid artifacts (like particles being rendered only
under the position of the emitter).

The particles by themselves are not able to render on screen, the emitter is doing
that job for them.

It also means that the particles are rendered and displayed over a screen that is
already rendered. Therefor, by default and for the moment, they cannot interact with
elements on screen or items in a board. It also means that there is no built in
particle physics (for the moment).


	
__init__(emitter_properties=None) → None

	The constructor takes the following parameter:


	Parameters:

	emitter_properties (EmitterProperties) – The properties of that particle emitter.









Methods



	__init__([emitter_properties])

	The constructor takes the following parameter:



	apply_force(force)

	Apply a force to all alive particles.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	emit([amount])

	Emit a certain amount of particles.



	finished()

	Returns True if the emitter is finished.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load a particle emitter from serialized data.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render_to_buffer(buffer, row, column, ...)

	Render all the particles of that emitter in the frame buffer.



	resize_pool([new_size])

	In substance, this method is an alias for ParticleEmitter.particle_pool.resize().



	serialize()

	Serialize the particle emitter.



	store_screen_position(row, column)

	Store the screen position of the object.



	toggle_active()

	Toggle the emitter's state between active and inactive.



	update()

	Update all the particles in the pool.






Attributes



	active

	Access and set the active property.



	column

	Access and set the column property (i.e: x).



	particle_pool

	This property holds this emitter's instance of a ParticlePool.



	row

	Access and set the row property (i.e: y).



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	x

	Access and set the x property (i.e: column).



	y

	Access and set the y property (i.e: row).







	
property active

	Access and set the active property.

An emitter only emits particles if he is active. Emitted particles keeps being
updated even if the emitter is not active anymore, for obvious reasons.






	
apply_force(force: Vector2D)

	Apply a force to all alive particles.

The force needs to be a Vector2D.


	Parameters:

	force (Vector2D) – The force to apply to the particles.





Example:

my_emitter.apply_force(base.Vector2D(0,0.3)) # slight wind.










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column

	Access and set the column property (i.e: x).






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
emit(amount: int = None) → None

	Emit a certain amount of particles.

The emitter will request particles from the particle pool. This in turn will
trigger the recycling of dead particles if needed.

Calling this method faster than the configured emit_rate is not going to emit
more particles. An emitter cannot emit particles faster than its emit_rate.

If amount is None, the emitter emits emit_number particles.


	Parameters:

	amount (int) – The amount (number) of particles to be emitted.





Example:

my_emitter.emit(50)










	
finished()

	Returns True if the emitter is finished.

A finished emitter has both:



	Reach the end of its lifespan (i.e lifespan == 0)


	And all particles are finished too.







This means that an emitter will, in most cases, not be finished as soon as its
lifespan reaches 0 but a bit after. When all of its managed particles are dead.

This is on purpose for both aesthetic reasons (avoiding particles sudden
removal) and for optimization (counting active particles is a O(n) operation
and can be very long when there’s a lot of particles so we want to do it only
when necessary).

Example:

if my_emitter.finished():
        screen.delete(my_emitter.row, my_emitter.column)










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data)

	Load a particle emitter from serialized data.


	Parameters:

	data (dict) – The serialized data.



	Returns:

	The loaded particle emitter.



	Return type:

	ParticleEmitter










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
property particle_pool

	This property holds this emitter’s instance of a ParticlePool.






	
render_to_buffer(buffer, row, column, buffer_height, buffer_width)

	Render all the particles of that emitter in the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
resize_pool(new_size: int = None)

	In substance, this method is an alias for
ParticleEmitter.particle_pool.resize(). However, called without
parameter, it will try to resize the particle pool to emit_number *
particle_lifespan. It will do so only if the resulting number is greater than
the current particle pool size.


	Parameters:

	new_size (int) – The desired new size of the pool.





Example:

my_emitter.resize_pool(3000)










	
property row

	Access and set the row property (i.e: y).






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize the particle emitter.


	Returns:

	A dictionary containing all the emitter’s properties.



	Return type:

	dict










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
toggle_active()

	Toggle the emitter’s state between active and inactive.

An inactive emitter does not emit new particles but keeps processing particles
that have already been emitted.

Example:

if not my_emitter.active:
    my_emitter.toggle_active()










	
update()

	Update all the particles in the pool.

Updating a particle means applying particle_acceleration to every particle and
then call Particle.update().

Example:

my_emitter.update()










	
property x

	Access and set the x property (i.e: column).






	
property y

	Access and set the y property (i.e: row).












            

          

      

      

    

  

  
    
    

    ParticlePool
    

    

    
 
  

    
      
          
            
  
ParticlePool


	
class pygamelib.gfx.particles.ParticlePool(size: int = None, emitter_properties: EmitterProperties = None)

	Bases: object

The particle pool is a structure that holds a large number of particles and make
them available to the emitters.

Its main role is to optimize the performances (both speed and memory usage). It
works by pre-instantiating a desired number of particles according to the
EmitterProperties that is given to the constructor.

The particle pool is optimized to avoid searching for available particles. It sets
its own size to avoid relying on anything but its last known particle made available
to the emitter. So unless for specific behavior, it is probably a good idea to let
it sets its own size.

It also recycle particles that are finished() to avoid a constant
cycle of creation/destruction of a large amount of particle objects.


	
__init__(size: int = None, emitter_properties: EmitterProperties = None) → None

	The constructor takes the following parameters:


	Parameters:

	
	size (int) – The size of the pool in number of particles. For this to be
efficient, be sure to have enough particles to cover for enough cycles before
your first emitted particles are finished. The ParticleEmitter uses
the following rule to size the pool: emit_rate * particle_lifespan. It is the
default value if size is not specified.


	emitter_properties (EmitterProperties) – The properties of the particles that needs to be
pre-instantiated.








Example:

my_particle_pool = ParticlePool(500, my_properties)









Methods



	__init__([size, emitter_properties])

	The constructor takes the following parameters:



	count_active_particles()

	Returns the number of active particle (i.e not finished) in the pool.



	get_particles([amount])

	Returns the requested amount of particles.



	resize(new_size)

	Resize the particle pool to a new size.






Attributes



	pool

	A read-only property that returns the particle pool tuple.







	
count_active_particles() → int

	Returns the number of active particle (i.e not finished) in the pool.


Important

The only way to know the amount of alive particles is to go
through the entire pool. Be aware of the performance impact on large particle
pools.




	Returns:

	the number of active particles.



	Return type:

	int





Example:

if emitter.particles.count_active_particles() > 0:
    emitter.apply_force(gravity)










	
get_particles(amount: int = None) → tuple

	Returns the requested amount of particles.

It is important to know that no particle is created during that call. This
method returns available particles in the pool. Particles are recycled after
they “died”.

If amount is not specified the pool returns EmitterProperties.emit_number
particles.


	Parameters:

	amount (int) – The amount of particles to return.



	Returns:

	A tuple containing the desired amount of particles.



	Return type:

	tuple





Example:

fresh_particles = my_particle_pool.get_particles(30)










	
property pool: tuple

	A read-only property that returns the particle pool tuple.






	
resize(new_size: int)

	Resize the particle pool to a new size.

If the new size is greater than the old one, the pool will be filled by
pre-instanciated particles.
If it’s shorter however, the extra particles will be destroyed.


	Parameters:

	new_size (int) – The new size of the pool.





Example:

# Resize the particle pool to hold 100 particles.
my_particle_pool.resize(100)
















            

          

      

      

    

  

  
    
    

    Particle
    

    

    
 
  

    
      
          
            
  
Particle


	
class pygamelib.gfx.particles.Particle(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, sprixel: ParticleSprixel = None)

	Bases: PglBaseObject


New in version 1.3.0.



The Particle class is the base class that is inherited from by all other particles.
It is mostly a “data class” in the sense that it is a class used for calculations
but is not able to render on screen by itself. All operations are pure data
operations until the emitter draw the particles.

Altought the Particle class can be used on its own, it is most likely to be used as
a template for a particle emitter.


	
__init__(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, sprixel: ParticleSprixel = None) → None

	The constructor takes the following parameters.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.


	sprixel (Sprixel) – The sprixel that represent the particle when drawn on screen.








Example:

single_particle = Particle(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
    sprixel=core.Sprixel(graphics.GeometricShapes.BLACK_CIRCLE)
)









Methods



	__init__([row, column, velocity, lifespan, ...])

	The constructor takes the following parameters.



	apply_force(force)

	Apply a force to the particle's acceleration vector.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	finished()

	Return True if the particle is done living (i.e its lifespan is lesser or equal to 0).



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load a Particle from a dictionary.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render([sprixel])

	Render the particle as a Sprixel.



	reset([row, column, velocity, lifespan])

	Reset a particle in its initial state.



	reset_lifespan([lifespan])

	Reset the particle lifespan (including the initial lifespan).



	serialize()

	Serialize a Particle into a dictionary.



	store_screen_position(row, column)

	Store the screen position of the object.



	terminate()

	Terminate a particle, i.e sets its lifespan to -1.



	update()

	The update method perform the calculations required to process the new particle position.






Attributes



	column

	Access and set the column property.



	row

	Access and set the row property.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	x

	Access and set the x property.



	y

	Access and set the y property.







	
apply_force(force: Vector2D) → None

	Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the
apply_force() method of the emitter
class.


	Parameters:

	force (Vector2D) – The force to apply.





Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column

	Access and set the column property. Equivalent to the x property.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
finished() → bool

	Return True if the particle is done living (i.e its lifespan is lesser or equal
to 0). It returns False otherwise.


	Return type:

	bool





Example:

if not my_particle.finished():
    my_particle.update()










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data)

	Load a Particle from a dictionary.


	Parameters:

	data (dict) – The dictionary to load from



	Returns:

	The loaded Particle



	Return type:

	Particle





Example:

particle = Particle.load( json.load( open("particle.json") ) )










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
render(sprixel: Sprixel = None)

	Render the particle as a Sprixel. This method is
called by the ParticleEmitter render_to_buffer
method.

It takes a Sprixel as a parameter. This Sprixel is
given by the ParticleEmitter.render_to_buffer() method and if it is not None,
the particle will render itself into that Sprixel
and return it.


Important

This method must be called after everything else as rendered or
else there will be Sprixel that will be
overwritten during their rendering cycle. Other elements could also have
their Sprixel corrupted and replaced by the
particle’s one.




	Parameters:

	sprixel (Sprixel) – A sprixel already rendered in the screen buffer.





Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])










	
reset(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None)

	Reset a particle in its initial state. This is particularly useful for the reuse
of particles.

This method takes almost the same parameters than the constructor.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.








Example:

single_particle.reset(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
)










	
reset_lifespan(lifespan: int = 20) → None

	Reset the particle lifespan (including the initial lifespan).


	Parameters:

	lifespan (int) – The particle lifespan in number of movements/turns.





Example:

my_particle.reset_lifespan(10)










	
property row

	Access and set the row property. Equivalent to the y property.






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize a Particle into a dictionary.


	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( particle.serialize() )










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
terminate() → None

	Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF
you are managing the particle through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:
    p.terminate()










	
update() → None

	The update method perform the calculations required to process the new particle
position.
It mainly adds the acceleration to the velocity vector and update the position
accordingly.

After calling update() the acceleration is “consumed” in the velocity and
therefor reset.

The update() method takes no parameters and returns nothing.

Example:

my_particle.update()










	
property x

	Access and set the x property. Equivalent to the column property.






	
property y

	Access and set the y property. Equivalent to the row property.












            

          

      

      

    

  

  
    
    

    ParticleSprixel
    

    

    
 
  

    
      
          
            
  
ParticleSprixel


	
class pygamelib.gfx.particles.ParticleSprixel(model='', bg_color=None, fg_color=None, is_bg_transparent=None)

	Bases: Sprixel


New in version 1.3.0.



The ParticleSprixel is nothing more than a Sprixel.
Its only role is to help differentiate rendered sprixels for Partition Particles.


	
__init__(model='', bg_color=None, fg_color=None, is_bg_transparent=None)

	
	Parameters:

	
	model (str) – The model, it can be any string. Preferrably a single character.


	bg_color (Color) – A Color object to configure the background color.


	fg_color (Color) – A Color object to configure the foreground color.


	is_bg_transparent (bool) – Set the background of the Sprixel to be transparent.
It tells the engine to replace the background of the Sprixel by the
background color of the overlapped sprixel.












Methods



	__init__([model, bg_color, fg_color, ...])

	
	param model:

	The model, it can be any string. Preferrably a single character.









	attach(observer)

	Attach an observer to this instance.



	black_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLACK_RECT.



	black_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLACK_SQUARE.



	blue_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLUE_RECT.



	blue_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLUE_SQUARE.



	copy()

	Returns a (deep) copy of the sprixel.



	cyan_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.CYAN_RECT.



	cyan_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.CYAN_SQUARE.



	detach(observer)

	Detach an observer from this instance.



	from_ansi(string[, model])

	Takes an ANSI string, parse it and return a Sprixel.



	green_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.GREEN_RECT.



	green_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.GREEN_SQUARE.



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Create a new Sprixel object based on serialized data.



	magenta_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.MAGENTA_RECT.



	magenta_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.MAGENTA_SQUARE.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	red_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.RED_RECT.



	red_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.RED_SQUARE.



	render_to_buffer(buffer, row, column, ...)

	Render the sprixel from the display buffer to the frame buffer.



	serialize()

	Serialize a Sprixel into a dictionary.



	store_screen_position(row, column)

	Store the screen position of the object.



	white_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.WHITE_RECT.



	white_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.WHITE_SQUARE.



	yellow_rect()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.YELLOW_RECT.



	yellow_square()

	This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.YELLOW_SQUARE.






Attributes



	bg_color

	A property to get/set the background color of the Sprixel.



	fg_color

	A property to get/set the foreground color of the Sprixel.



	length

	Return the true length of the model.



	model

	A property to get/set the model of the Sprixel.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.







	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property bg_color

	A property to get/set the background color of the Sprixel.


	Parameters:

	value (Color) – The new color





When the bg_color is changed, the observers are notified of the change
with the pygamelib.gfx.core.Sprixel.bg_color:changed event. The new
bg_color is passed as the value parameter.

Example:

# Access the sprixel's color
sprix.bg_color
# Set the sprixel's background color to some blue
sprix.bg_color = Color(0,128,255)










	
classmethod black_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.BLACK_RECT.
The difference is that BLACK_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.black_rect()










	
classmethod black_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.BLACK_SQUARE.
The difference is that BLACK_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.black_square()










	
classmethod blue_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.BLUE_RECT.
The difference is that BLUE_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.blue_rect()










	
classmethod blue_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.BLUE_SQUARE.
The difference is that BLUE_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.blue_square()










	
copy()

	Returns a (deep) copy of the sprixel.


New in version 1.3.0.








	
classmethod cyan_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.CYAN_RECT.
The difference is that CYAN_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.cyan_rect()










	
classmethod cyan_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.CYAN_SQUARE.
The difference is that CYAN_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.cyan_square()










	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
property fg_color

	A property to get/set the foreground color of the Sprixel.


	Parameters:

	value (Color) – The new color





When the fg_color is changed, the observers are notified of the change
with the pygamelib.gfx.core.Sprixel.fg_color:changed event. The new
fg_color is passed as the value parameter.

Example:

# Access the sprixel's color
sprix.fg_color
# Set the sprixel's foreground color to some green
sprix.fg_color = Color(0,255,128)










	
static from_ansi(string, model='▄')

	Takes an ANSI string, parse it and return a Sprixel.


	Parameters:

	
	string (str) – The ANSI string to parse.


	model (str) – The character used to represent the sprixel in the ANSI sequence.
Default is “▄”








Example:

new_sprixel = Sprixel.from_ansi(
    "\x1b[48;2;139;22;19m\x1b[38;2;160;26;23m▄\x1b[0m"
)






Warning

This has mainly be tested with ANSI string generated by climage.
If you find any issue, please
report it [https://github.com/pygamelib/pygamelib/issues]








	
classmethod green_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.GREEN_RECT.
The difference is that GREEN_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.green_rect()










	
classmethod green_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.GREEN_SQUARE.
The difference is that GREEN_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.green_square()










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
property length

	Return the true length of the model.


New in version 1.3.0.



With UTF8 and emojis the length of a string as returned by python’s
len() function is often very wrong.
For example, the len(”x1b[48;2;139;22;19mx1b[38;2;160;26;23m▄x1b[0m”)
returns 39 when it should return 1.

This method returns the actual printing/display size of the sprixel’s model.


Note

This is a read only value. It is automatically updated when the model
is changed.



Example:

if sprix.length > 2:
    print(
        f"Warning: that sprixel {sprix} will break the rest of the "
        "board's alignement"
        )










	
classmethod load(data)

	Create a new Sprixel object based on serialized data.


New in version 1.3.0.




	Parameters:

	data (dict) – Data loaded from JSON data (deserialized).



	Return type:

	Sprixel





Example:

new_sprite = Sprixel.load(json_parsed_data['default_sprixel'])










	
classmethod magenta_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.MAGENTA_RECT.
The difference is that MAGENTA_RECT is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.magenta_rect()










	
classmethod magenta_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.MAGENTA_SQUARE.
The difference is that MAGENTA_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.magenta_square()










	
property model

	A property to get/set the model of the Sprixel.


	Parameters:

	value (str) – The new model





When the model is changed, the observers are notified of the change
with the pygamelib.gfx.core.Sprixel.model:changed event. The new
model is passed as the value parameter.

Example:

# Get the sprixel's model
sprix.model
# Set the sprixel's model to "@"
sprix.model = "@"










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
classmethod red_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.RED_RECT.
The difference is that RED_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.red_rect()










	
classmethod red_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.RED_SQUARE.
The difference is that RED_SQUARE is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.red_square()










	
render_to_buffer(buffer, row, column, buffer_height, buffer_width)

	Render the sprixel from the display buffer to the frame buffer.


New in version 1.3.0.



This method is automatically called by pygamelib.engine.Screen.render().


	Parameters:

	
	buffer (numpy.array) – A screen buffer to render the item into.


	row (int) – The row to render in.


	column (int) – The column to render in.


	height (int) – The total height of the display buffer.


	width (int) – The total width of the display buffer.













	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize a Sprixel into a dictionary.


New in version 1.3.0.




	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( sprixel.serialize() )










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
classmethod white_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.WHITE_RECT.
The difference is that WHITE_RECT is a string and this one is a Sprixel that can
be manipulated more easily.

Example:

sprixel = Sprixel.white_rect()










	
classmethod white_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.WHITE_SQUARE.
The difference is that WHITE_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.

Example:

sprixel = Sprixel.white_square()










	
classmethod yellow_rect()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.YELLOW_RECT.
The difference is that YELLOW_RECT is a string and this one is a Sprixel that
can be manipulated more easily.


Note

Yellow is often rendered as brown.



Example:

sprixel = Sprixel.yellow_rect()










	
classmethod yellow_square()

	This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.YELLOW_SQUARE.
The difference is that YELLOW_SQUARE is a string and this one is a Sprixel that
can be manipulated more easily.


Note

Yellow is often rendered as brown.



Example:

sprixel = Sprixel.yellow_square()
















            

          

      

      

    

  

  
    
    

    PartitionParticle
    

    

    
 
  

    
      
          
            
  
PartitionParticle


	
class pygamelib.gfx.particles.PartitionParticle(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, partition: list = None, partition_blending_table: list = None)

	Bases: Particle


New in version 1.3.0.



The PartitionParticle is a more precise Particle.
Its main difference is that it is additive. This means that the PartitionParticle
posess the ability to complement a sprixel that is already drawn. Or to add to a
sprixel that is already drawn.

As a matter of facts, the primary goal of the PartitionParticle is to modify an
already drawn sprixel to improve the visuals/graphical effects.

For example, if two particles occupy the same space on screen, with a regular
Particle the last to render is the one that will
be displayed. If one particle is represented by ‘▘’ and the other by ‘▗’, only the
second will be displayed.

In the case of PartitionParticles, an addition of the 2 sprixels will be displayed!
So in the previous example the addition of the 2 particles would result in ‘▚’
because ‘▘’ + ‘▗’ = ‘▚’.

It comes at a cost though as the PartitionParticle is slower to render than the
Particle class.

The partition particle achieve that by using a partition and a blending table. The
blending table is crucial for the performances to be not too catastrophic. The size
of the blending table is directly linked to the performances of the
PartitionParticle (the bigger the blending table the slower the rendering).

The blending table is a dictionnary of strings that covers all possible operations.

Example:

partition_blending_table = {
     gb.QUADRANT_UPPER_LEFT
     + gb.QUADRANT_UPPER_RIGHT: gb.UPPER_HALF_BLOCK,
     gb.QUADRANT_UPPER_LEFT + gb.QUADRANT_LOWER_LEFT: gb.LEFT_HALF_BLOCK,
     gb.QUADRANT_UPPER_LEFT
     + gb.QUADRANT_LOWER_RIGHT: gb.QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT,
     # it goes on for many lines...
 }





By default, the PartitionParticle has a blending table that is using the UTF8
Blocks.QUADRANT_* characters. If you want to use a different one, you need to define
a new blending table and pass it as parameter to the constructor.

The partition itself is a 2x2 array that contains the 4 quadrants of a character
displayed in the terminal.

As an example, if a full character were a block: ‘█’ the partition would be:
[[’▘’, ‘▝’], [’▖’, ‘▗’]].

You can conceive the partition as the exploded version of the character/sprixel and
the blending table as the rules to blend them together.

The PartitionParticle can also be used to create reinforcement effects. For example,
if the partition is composed solely of ‘■’ and the partition table only define one
rule: ‘■’ + ‘■’ = ‘⬛’.
It is a powerful particle that can be used to create a lot of different effects.


Important

A limit of the current implementation is that the partition table
must be a 2x2 array. It cannot be otherwise. Even if all the quadrants are the
same.




	
__init__(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, partition: list = None, partition_blending_table: list = None) → None

	The constructor takes the following parameters.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.


	partition (list) – The 2x2 array that defines the partition of the sprixel.


	partition_blending_table (list) – The blending table that defines the rules to
blend the 2 sprixels.








Example:

# Here we'll use the default blending table
single_particle = PartitionParticle(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
    self.partition = [
        [
            graphics.Blocks.QUADRANT_UPPER_LEFT,
            graphics.Blocks.QUADRANT_UPPER_RIGHT,
        ],
        [
            graphics.Blocks.QUADRANT_LOWER_LEFT,
            graphics.Blocks.QUADRANT_LOWER_RIGHT,
        ],
    ]
)









Methods



	__init__([row, column, velocity, lifespan, ...])

	The constructor takes the following parameters.



	apply_force(force)

	Apply a force to the particle's acceleration vector.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	finished()

	Return True if the particle is done living (i.e its lifespan is lesser or equal to 0).



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load a PartitionParticle from a dictionary.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render([sprixel])

	This method first calls the Particle.render() method.



	reset([row, column, velocity, lifespan])

	Reset a particle in its initial state.



	reset_lifespan([lifespan])

	Reset the particle lifespan (including the initial lifespan).



	serialize()

	Serialize a PartitionParticle into a dictionary.



	store_screen_position(row, column)

	Store the screen position of the object.



	terminate()

	Terminate a particle, i.e sets its lifespan to -1.



	update()

	This method first calls the Particle.update() method, then calculates the quadrant position, i.e: the actual position of the particle within a console character.






Attributes



	column

	Access and set the column property.



	row

	Access and set the row property.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	x

	Access and set the x property.



	y

	Access and set the y property.







	
apply_force(force: Vector2D) → None

	Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the
apply_force() method of the emitter
class.


	Parameters:

	force (Vector2D) – The force to apply.





Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column

	Access and set the column property. Equivalent to the x property.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
finished() → bool

	Return True if the particle is done living (i.e its lifespan is lesser or equal
to 0). It returns False otherwise.


	Return type:

	bool





Example:

if not my_particle.finished():
    my_particle.update()










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data)

	Load a PartitionParticle from a dictionary.


	Parameters:

	data (dict) – The dictionary to load from



	Returns:

	The loaded PartitionParticle



	Return type:

	PartitionParticle





Example:

particle = PartitionParticle.load( json.load( open("particle.json") ) )










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
render(sprixel: Sprixel = None)

	This method first calls the Particle.render() method. Then it updates the
rendered particle’s model based on the blending table.


	Parameters:

	sprixel (Sprixel) – A sprixel already rendered in the screen buffer.





Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])










	
reset(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None)

	Reset a particle in its initial state. This is particularly useful for the reuse
of particles.

This method takes almost the same parameters than the constructor.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.








Example:

single_particle.reset(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
)










	
reset_lifespan(lifespan: int = 20) → None

	Reset the particle lifespan (including the initial lifespan).


	Parameters:

	lifespan (int) – The particle lifespan in number of movements/turns.





Example:

my_particle.reset_lifespan(10)










	
property row

	Access and set the row property. Equivalent to the y property.






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize a PartitionParticle into a dictionary.


	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( particle.serialize() )










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
terminate() → None

	Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF
you are managing the particle through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:
    p.terminate()










	
update()

	This method first calls the Particle.update() method, then calculates the
quadrant position, i.e: the actual position of the particle within a console
character. It then updates the particle’s model based on this internal position.

Example:

my_particle.update()










	
property x

	Access and set the x property. Equivalent to the column property.






	
property y

	Access and set the y property. Equivalent to the row property.












            

          

      

      

    

  

  
    
    

    RandomColorParticle
    

    

    
 
  

    
      
          
            
  
RandomColorParticle


	
class pygamelib.gfx.particles.RandomColorParticle(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, sprixel: ParticleSprixel = None, color: Color = None)

	Bases: Particle

This class is a Particle that has a random
foreground color.

By default, if both the sprixel and color parameters are not specified, the model
of the Sprixel is going to be ‘•’ and the color will be
randomly chosen.

You can also specify a color and a model.


	
__init__(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, sprixel: ParticleSprixel = None, color: Color = None) → None

	The constructor takes the following parameters.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.


	sprixel (Sprixel) – The sprixel that represent the particle when drawn on screen.


	color (Color) – The color of the particle (if you want a specific color instead of
a random one).








Example:

single_particle = RandomColorParticle(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
)









Methods



	__init__([row, column, velocity, lifespan, ...])

	The constructor takes the following parameters.



	apply_force(force)

	Apply a force to the particle's acceleration vector.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	finished()

	Return True if the particle is done living (i.e its lifespan is lesser or equal to 0).



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load a PartitionParticle from a dictionary.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render([sprixel])

	Render the particle as a Sprixel.



	reset([row, column, velocity, lifespan])

	Reset a particle in its initial state.



	reset_lifespan([lifespan])

	Reset the particle lifespan (including the initial lifespan).



	serialize()

	Serialize a RandomColorParticle into a dictionary.



	store_screen_position(row, column)

	Store the screen position of the object.



	terminate()

	Terminate a particle, i.e sets its lifespan to -1.



	update()

	The update method perform the calculations required to process the new particle position.






Attributes



	column

	Access and set the column property.



	row

	Access and set the row property.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	x

	Access and set the x property.



	y

	Access and set the y property.







	
apply_force(force: Vector2D) → None

	Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the
apply_force() method of the emitter
class.


	Parameters:

	force (Vector2D) – The force to apply.





Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column

	Access and set the column property. Equivalent to the x property.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
finished() → bool

	Return True if the particle is done living (i.e its lifespan is lesser or equal
to 0). It returns False otherwise.


	Return type:

	bool





Example:

if not my_particle.finished():
    my_particle.update()










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data)

	Load a PartitionParticle from a dictionary.


	Parameters:

	data (dict) – The dictionary to load from



	Returns:

	The loaded PartitionParticle



	Return type:

	PartitionParticle





Example:

particle = RandomColorParticle.load( json.load( open("particle.json") ) )










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
render(sprixel: Sprixel = None)

	Render the particle as a Sprixel. This method is
called by the ParticleEmitter render_to_buffer
method.

It takes a Sprixel as a parameter. This Sprixel is
given by the ParticleEmitter.render_to_buffer() method and if it is not None,
the particle will render itself into that Sprixel
and return it.


Important

This method must be called after everything else as rendered or
else there will be Sprixel that will be
overwritten during their rendering cycle. Other elements could also have
their Sprixel corrupted and replaced by the
particle’s one.




	Parameters:

	sprixel (Sprixel) – A sprixel already rendered in the screen buffer.





Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])










	
reset(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None)

	Reset a particle in its initial state. This is particularly useful for the reuse
of particles.

This method takes almost the same parameters than the constructor.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.








Example:

single_particle.reset(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
)










	
reset_lifespan(lifespan: int = 20) → None

	Reset the particle lifespan (including the initial lifespan).


	Parameters:

	lifespan (int) – The particle lifespan in number of movements/turns.





Example:

my_particle.reset_lifespan(10)










	
property row

	Access and set the row property. Equivalent to the y property.






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize a RandomColorParticle into a dictionary.


	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( particle.serialize() )










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
terminate() → None

	Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF
you are managing the particle through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:
    p.terminate()










	
update() → None

	The update method perform the calculations required to process the new particle
position.
It mainly adds the acceleration to the velocity vector and update the position
accordingly.

After calling update() the acceleration is “consumed” in the velocity and
therefor reset.

The update() method takes no parameters and returns nothing.

Example:

my_particle.update()










	
property x

	Access and set the x property. Equivalent to the column property.






	
property y

	Access and set the y property. Equivalent to the row property.












            

          

      

      

    

  

  
    
    

    RandomColorPartitionParticle
    

    

    
 
  

    
      
          
            
  
RandomColorPartitionParticle


	
class pygamelib.gfx.particles.RandomColorPartitionParticle(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, partition: list = None, partition_blending_table: list = None, color: Color = None)

	Bases: PartitionParticle

This class is basically the same as
RandomColorParticle but its base class is
PartitionParticle instead of
Particle. Everything else is the same.


	
__init__(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None, partition: list = None, partition_blending_table: list = None, color: Color = None) → None

	The constructor takes the following parameters.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.


	partition (list) – The partition of the particle.


	partition_blending_table (list) – The blending table of the particle.


	color (Color) – The color of the particle (if you want a specific color instead of
a random one).








Example:

single_particle = RandomColorPartitionParticle(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
)









Methods



	__init__([row, column, velocity, lifespan, ...])

	The constructor takes the following parameters.



	apply_force(force)

	Apply a force to the particle's acceleration vector.



	attach(observer)

	Attach an observer to this instance.



	detach(observer)

	Detach an observer from this instance.



	finished()

	Return True if the particle is done living (i.e its lifespan is lesser or equal to 0).



	handle_notification(subject[, attribute, value])

	A virtual method that needs to be implemented by the observer.



	load(data)

	Load a RandomColorPartitionParticle from a dictionary.



	notify([modifier, attribute, value])

	Notify all the observers that a change occurred.



	render([sprixel])

	This method first calls the Particle.render() method.



	reset([row, column, velocity, lifespan])

	Reset a particle in its initial state.



	reset_lifespan([lifespan])

	Reset the particle lifespan (including the initial lifespan).



	serialize()

	Serialize a RandomColorPartitionParticle into a dictionary.



	store_screen_position(row, column)

	Store the screen position of the object.



	terminate()

	Terminate a particle, i.e sets its lifespan to -1.



	update()

	This method first calls the Particle.update() method, then calculates the quadrant position, i.e: the actual position of the particle within a console character.






Attributes



	column

	Access and set the column property.



	row

	Access and set the row property.



	screen_column

	A property to get/set the screen column.



	screen_row

	A property to get/set the screen row.



	x

	Access and set the x property.



	y

	Access and set the y property.







	
apply_force(force: Vector2D) → None

	Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the
apply_force() method of the emitter
class.


	Parameters:

	force (Vector2D) – The force to apply.





Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)










	
attach(observer)

	Attach an observer to this instance. It means that until it is detached, it will
be notified every time that a notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite
recursions).


	Parameters:

	observer (PglBaseObject) – An observer to attach to this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

myboard = Board()
screen = Game.instance().screen
# screen will be notified of all changes in myboard
myboard.attach(screen)










	
property column

	Access and set the column property. Equivalent to the x property.






	
detach(observer)

	Detach an observer from this instance.
If observer is not in the list this returns False.


	Parameters:

	observer (PglBaseObject) – An observer to detach from this object.



	Returns:

	True or False depending on the success of the operation.



	Return type:

	bool





Example:

# screen will no longer be notified of the changes in myboard.
myboard.detach(screen)










	
finished() → bool

	Return True if the particle is done living (i.e its lifespan is lesser or equal
to 0). It returns False otherwise.


	Return type:

	bool





Example:

if not my_particle.finished():
    my_particle.update()










	
handle_notification(subject, attribute=None, value=None)

	A virtual method that needs to be implemented by the observer.
By default it does nothing but each observer needs to implement it if something
needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other
parameters are optional and can be None.

You can use the attribute and value as you see fit. You are free to consider
attribute as an event and value as the event’s value.


	Parameters:

	
	subject (PglBaseObject) – The object that has changed.


	attribute (str) – The attribute that has changed, it is usually a “FQDN style”
string. This can be None.


	value (Any) – The new value of the attribute. This can be None.













	
classmethod load(data)

	Load a RandomColorPartitionParticle from a dictionary.


	Parameters:

	data (dict) – The dictionary to load from



	Returns:

	The loaded RandomColorPartitionParticle



	Return type:

	RandomColorPartitionParticle





Example:

particle = RandomColorPartitionParticle.load(
                json.load( open("particle.json") )
            )










	
notify(modifier=None, attribute: str = None, value: Any = None) → None

	Notify all the observers that a change occurred.


	Parameters:

	
	modifier (PglBaseObject) – An optional parameter that identify the modifier object to
exclude it from the notified objects.


	attribute (str) – An optional parameter that identify the attribute that has
changed.


	value (Any) – An optional parameter that identify the new value of the
attribute.








Example:

# This example is silly, you would usually notify other objects from inside
# an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()










	
render(sprixel: Sprixel = None)

	This method first calls the Particle.render() method. Then it updates the
rendered particle’s model based on the blending table.


	Parameters:

	sprixel (Sprixel) – A sprixel already rendered in the screen buffer.





Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])










	
reset(row: int = 0, column: int = 0, velocity: Vector2D = None, lifespan: int = None)

	Reset a particle in its initial state. This is particularly useful for the reuse
of particles.

This method takes almost the same parameters than the constructor.


	Parameters:

	
	row (int) – The initial row position of the particle on the screen.


	column (int) – The initial column position of the particle on the screen.


	velocity (Vector2D) – The initial velocity of the particle.


	lifespan (int) – The particle lifespan in number of movements/turns. A particle
with a lifespan of 3 will move for 3 turns before being finished.








Example:

single_particle.reset(
    row=5,
    column=5,
    velocity=base.Vector2D(-0.5, 0.0),
    lifespan=10,
)










	
reset_lifespan(lifespan: int = 20) → None

	Reset the particle lifespan (including the initial lifespan).


	Parameters:

	lifespan (int) – The particle lifespan in number of movements/turns.





Example:

my_particle.reset_lifespan(10)










	
property row

	Access and set the row property. Equivalent to the y property.






	
property screen_column: int

	A property to get/set the screen column.


	Parameters:

	value (int) – the screen column



	Return type:

	int










	
property screen_row: int

	A property to get/set the screen row.


	Parameters:

	value (int) – the screen row



	Return type:

	int










	
serialize()

	Serialize a RandomColorPartitionParticle into a dictionary.


	Returns:

	The class as a  dictionary



	Return type:

	dict





Example:

json.dump( particle.serialize() )










	
store_screen_position(row: int, column: int) → bool

	Store the screen position of the object.

This method is automatically called by Screen.place().


	Parameters:

	
	row (int) – The row (or y) coordinate.


	column (int) – The column (or x) coordinate.








Example:

an_object.store_screen_coordinate(3,8)










	
terminate() → None

	Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF
you are managing the particle through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:
    p.terminate()










	
update()

	This method first calls the Particle.update() method, then calculates the
quadrant position, i.e: the actual position of the particle within a console
character. It then updates the particle’s model based on this internal position.

Example:

my_particle.update()










	
property x

	Access and set the x property. Equivalent to the column property.






	
property y

	Access and set the y property. Equivalent to the row property.












            

          

      

      

    

  

  
    
    

    Credits
    

    

    
 
  

    
      
          
            
  
Credits


Development Lead


	Arnaud Dupuis (@arnauddupuis [https://github.com/arnauddupuis])






Contributors


	Kalil de Lima (@kaozdl [https://github.com/kaozdl])


	Muhammad Syuqri (@Dansyuqri [https://github.com/Dansyuqri])


	Ryan Brown (@grimmjow8 [https://github.com/grimmjow8])


	Chase Miller (@Arekenaten [https://github.com/Arekenaten])


	Gunjan Rawal (@gunjanraval [https://github.com/gunjanraval])


	Anshul Choudhary (@achoudh5 [https://github.com/achoudh5])


	Raymond Beaudoin (@synackray [https://github.com/synackray])


	Felipe Rodrigues (@fbidu [https://github.com/fbidu])


	Bastien Wirtz (@bwirtz [https://github.com/bwirtz])


	Franz Osorio (@f-osorio [https://github.com/f-osorio])


	Guillermo Eijo (@guilleijo [https://github.com/guilleijo])


	Diego Cáceres (@diego-caceres [https://github.com/diego-caceres])


	Spassarop (@spassarop [https://github.com/spassarop])


	Javier Hernán Caballero García (@caballerojavier13 [https://github.com/caballerojavier13])


	Olle Lögdahl (@ollelogdahl [https://github.com/ollelogdahl])


	MaryEtta Morris (@morrme [https://github.com/morrme])


	Peter Szabo (@szabopeter [https://github.com/szabopeter])


	Frans Ramirez (@Frans06 [https://github.com/Frans06])


	Krunal Rank (@KRHero03 [https://github.com/KRHero03])


	Juan Picca (@jumapico [https://github.com/jumapico])


	Harshini (@harshiniwho [https://github.com/harshiniwho])


	Tammysalmon (@tammysalmon [https://github.com/tammysalmon])


	JayC (@jayc13 [https://github.com/jayc13])


	Rikil Gajarla (@RikilG [https://github.com/RikilG])


	Melsaa (@melsaa [https://github.com/melsaa])








            

          

      

      

    

  

  
    
    

    Release notes
    

    

    
 
  

    
      
          
            
  
Release notes


1.3.0 (2022-10-07)

This release is massive. Please read the documentation for specific changes to classes. It is available at https://pygamelib.readthedocs.io/en/latest/index.html.

Important one: the whole pygamelib has been migrated to its own Github organization: https://github.com/pygamelib please update your links! The library’s repository is now available at https://github.com/pygamelib/pygamelib.


⬆️ Main updates



	New feature: A lot of new tools have been developed for the library and are all available on the organization’s Github: https://github.com/pygamelib.


	New feature: The pygamelib.engine.Screen class now has a new Improved Screen Management double buffered system. This set of methods allow for a simplified management of the console screen. It is also faster than the Legacy Direct Display system. Please read the documentation (https://pygamelib.readthedocs.io/en/latest/pygamelib.engine.Screen.html) and the wiki on the Github repository for more about the differences. You will probably want to switch to the new stack as soon as possible. Both systems are clearly identified in the documentation by visible tags. Most of the new features of this release are NOT compatible with the Legacy Direct Display system. It still received updates and new features but will probably be deprecated in future updates.


	New feature: Introducing the pygamelib.gfx.ui module! The beginning of a module for all your game/application user interface needs. The module is in alpha for the moment, feel free to voice your feedback. This module is only compatible with the Improved Screen Management.


	New feature: A new tool has been added to the library: pgl-sprite-editor. An editor to create or edit sprites and sprite based animations.


	New feature: pygamelib.engine.Game can now be created as a Singleton through the instance() method.


	New feature: Add a particle system to the library! It includes a number of new classes that are located in the pygamelib.gfx.particles submodule. This module is only compatible with the Improved Screen Management.


	New feature: introducing pygamelib.gfx.core.Font, a Sprite based font system. This release come with an “8bits” font and a couple of font imported from FIGlet!


	New feature: Add a Color class (pygamelib.gfx.core.Color) to entirely abstract the color system.


	New feature: All objects can now be properly serialized and loaded through a streamlined process. Look for the serialize() and load() methods.


	New feature: New base object pygamelib.base.PglBaseObject, all objects that inherits from python’s object are now inheriting from this new one. It implements a couple of base features but the most important is the modified Observer design pattern that is the base of a refactoring to event base communication within the library.


	New feature: Added a new board item: pygamelib.board_item.Camera. It is a specific item that is not shown on the board. It can be used for cinematic for example. Please read the documentation for more information.


	New feature/improvement: The Board object has been reworked to allow for a third dimension. It now has a new property called layer. Layers are automatically added and removed to fit the need of overlapping items. Board.place_item() also accept a new layer parameter to set the layer (if you want to put stuff over the player for example). An example is visible here: https://www.youtube.com/watch?v=9cOt63ZAJOk.


	Improvement: Most resources intensive array/list have been replaced by numpy arrays. This brings better performances for pygamelib.engine.Board and for pygamelib.engine.Screen.


	Improvement: Add a new algorithm to the PathFinder actuator: A*.


	Improvement: pygamelib.gfx.core.Sprite can now be tinted or modulated with a color. Both operation do the same thing: change the color of the sprite by applying a color at a given ratio. However, tint() returns a new sprite and does not modify the original sprite while modulate() returns nothing and modify the sprite directly.









⚠️ Breaking changes



	pygamelib.board_items.BoardItem constructor parameter changed: type is now item_type.


	pygamelib.board_items.BoardItem: there was a conflict with inventory_space. It was defined both as a property and a method. The method has been removed and BoardItem.inventory_space is now a proper python property. Concretely: you might have to remove parenthesis when using any_item.inventory_space (vs the old any_item.inventory_space()).


	The new pygamelib.gfx.core.Color replaces Terminal.on_color_rgb() and Terminal.color_rgb(). It is much easier to use (just use the Color object and the pygamelib will manage foreground and background differences) but it requires to change the initialization of every Sprixel and Text of your game (sorry…).


	When using the new Improved Screen Management stack and partial display at the same time, you now have to set Board.partial_display_focus. It is not breaking anything in existing code but it will not behave as you want is you just Screen.place() your board (that uses partial display) without setting the partial_display_focus to the player first.









🔧 Other changes



	Improvement: pgl-editor now uses Sprixels instead of regular characters allowing for more possible customization and features in the Board and Screen.


	Improvement: in pgl-editor it is now possible to generate a random color in the color editor.


	Improvement: All actuators now return pygamelib.constants.NO_DIR if there is no direction available to next_move(). This makes the actuators behavior more consistent particularly when they are overloaded.


	Improvement: The RandomActuator behavior has been reworked. It now choose a direction and follow it for a certain distance before choosing a new direction. It also detect when it is stuck an, in that case, pick a new direction.


	Improvement: Add display_sprite() and display_sprite_at() method to Screen. These methods can display a pygamelib.gfx.core.Sprite on screen.


	Improvement: Inventory has been improved to be more versatile and less limited. It now behaves like an enhanced list of objects. A rudimentary constraints system was added (for example to limit the number of certain types of items). The new inventory is also fully plugged into the observer/notifications system.


	Improvement: All BoardItem now have configurable properties for restorable, overlappable, pickable and can_move.


	Improvement: pygamelib.board_items.BoardComplexItem.sprite is now a @property instead of a class variable. That property automatically call update_sprite().


	Improvement: When Game.mode is set to pygamelib.constants.MODE_RT, all pygamelib.board_items.Movable now accumulate movement vectors (when using vectors). This means that non unit movement patterns are now possible.


	Improvement: The new pygamelib.base.Console implements a Singleton design pattern. You can now get a unique reference to the blessed.Terminal (the object wrapped in Console) object by calling Console.instance().


	Fixed a bug in pygamelib.engine.Screen.display_at(): it was not possible to display anything after (below a Board). It is now possible.


	Improvement: pygamelib.base.Text has improved a lot. It can now use the Font system, has new attributes and is now a PglBaseObject. Please read the documentation for more.


	Improvement: Sprixels and Sprites now have their own deepcopy operator: Sprixel.copy() and Sprite.copy().


	Improvement: It is now possible to set the transparency of all sprixels of a sprite by using Sprite.set_transparency().


	Fixed a bug with restorable items: now all board items can be set to be restorable.


	Fixed a bug in pgl-editor when editing large boards that require partial display. The viewport was not correctly restored.


	Fixed issues with the library’s inheritance graph.


	Fixed a bug in pygamelib.engine.Game where the partial display settings (when set at in the Game instance), were not correctly passed down to the Board.


	Fixed the sphinx dependencies (for building the doc).


	Fixed the mess in the sphinx files to generate the documentation.


	Fixed an issue with linting dependencies.


	Removed legacy files from older version of the library.







I would like to thank all the contributors (https://pygamelib.readthedocs.io/en/latest/authors.html) for their work on this massive update.

The new pygamelib logo was done by an awesome artist: Jack Tseng (https://hellojacktseng.carrd.co/ https://twitter.com/HelloJackTseng) please have a look at their amazing work!!




1.2.3 (2020-09-01)

Emergency release: fix a regression introduced by v1.2.2.



1.2.2 (2020-09-01)



	Fix issue with imports for Python 3.6


	Fix an issue with the way pygamelib.engine.Screen test the terminal on Windows.









1.2.0 (2020-08-29)



	Renamed the entire library from hac-game-lib to pygamelib.


	*Breaking change:* The library has been heavily refactored and this creates some issues. Please have a look at the migration notes [https://github.com/pygamelib/pygamelib/wiki/Migrating-from-hac%E2%80%90game%E2%80%90lib-1.1.x-to-pygamelib-1.2.0]


	New feature: Items that can be represented on more than one cell. We call them complex items. There’s a lot of new complex items: ComplexPlayer and ComplexNPC of course, but also ComplexWall, ComplexDoor, ComplexTreasure and the general purpose Tile object.


	New feature: Going, with complex item we now have a proper sprite system with the gfx.core.Sprite class.


	New feature: In addition to the regular model we now have a new concept: the Sprixel. A Sprite is made of many Sprixels.


	New feature: New JSON based file format to save, load and distribute sprites and/or sprixels.


	New feature: All these sprites can be grouped into a SpriteCollection that in turn can be saved in our new sprite file format.


	New feature: New Math library. This one starts small but will grow. It makes calculating the distance and intersections easier.


	New feature: New Vector2D class to represent forces and movement as a vector. It is now possible to give a vector to the move() method.


	New feature: Gave some love to text. There are now 2 objects dedicated to text: base.Text to manipulate text and board_items.TextItem to easily place text on a board.


	New feature: A Screen object has been added to make the screen manipulation simpler.


	New feature: The Game object now has a run() method that act as the main game loop. It calls a user defined update function and takes care of a lot of things. It runs until the Game.state is set to STOPPED.


	New feature: The Game object can now turn by turn or real time. All movables can be configured to have time based or turn based movement speed.


	Improvement: The Animation class now support both regular strings (models), Sprixel and Sprite.


	Improvement: All complex items obviously support (actually requires) sprites but all regular board items now supports sprixels.


	Improvement: Test coverage dramatically improved. It has jumped from 25% to 98%.


	Improvement: Lots of objects now have attributes to easily access and/or set properties like position (mostly read only), width, height, etc.


	Improvement: Converted the editor to pygamelib and renamed it pgl-editor.py. Also added a multi page selector and integrated the new graphic assets.


	Improvement: All movables can now have different vertical and horizontal “steps” parameters.


	Cleaned up the repository (it was becoming seriously messy).


	Change the prefix of all exceptions from HAc to Pgl.


	Added a NO_PLAYER constant to tell the game object that he should not expect a player object.


	Improve the generated documentation.


	Various improvements in exceptions raising across the library. Please see the documentation (that was also updated).


	Various bug fixing in the Suparex example.







I also need to give some kudos to the kids of the Hyrule Astronomy Club for thorough testing of Suparex. They found well hidden bug and exploitable bugs. Special thanks to Arthur who found many glitches.
Congratulations to Arthur and Hadrien that successfully exploited them to achieve extremely high scores (up to 12000!!!).



1.1.1 (2020-07-18)


	Fix a bug in hgl-editor: when using previously recorded parameters to create a board the editor was crashing.


	Improvement: Automatically enable partial display and map bigger than 40x40.


	Fix a bug a coordinates in Board.item()






1.1.0 (2020-06-12)


	Fix many issues with strings all across the library.


	Fix many issues with variables interpolation in exceptions.


	Fix a bug in Game.load_board() that was causing corruptions.


	Fix multiple typos in the documentation.


	Fix an issue with the user directory in hgl-editor


	Fix many issues with the PatrolActuator.


	New feature: partial display (dynamically display only a part of a board)


	New feature: new mono directional actuator.


	New feature: projectiles (can be sent and completely managed by the game object)


	New feature: new assets module to hold many non core submodules.


	New feature: Assets.Graphics that add thousands of glyphs (including emojis) to
the current capacities of the library.


	New feature: Add support for PatrolActuator in hgl-editor.


	New feature: Add support for PathFinder actuator in hgl-editor.


	New feature: Add an object parent system.


	New feature: Add a configuration system to hgl-editor.


	Improvement: Add full configuration features to the Game object.


	Improvement: Add a new example in the form of a full procedural generation platform
game (see examples/suparex).


	Improvement: Improved performances particularly around the features that relies on
Board.place_item(). Up to 70 times faster.


	Improvement: It is now possible to specify the first frame index in Animation.


	Improvement: Formatted all the code with black.


	Improvement: PathFinder.add_waypoint() now sets the destination if it wasn’t set
before.






1.0.1 (2020-05-17)


	Fix a huge default save directory issue (see complete announcement) in hgl-editor.


	Fix lots of strings in hgl-editor.


	Fix a type issue in the Inventory class for the not_enough_space exception.


	Improve Board.display() performances by 15% (average).






1.0.0 (2020-03-20)


	Add AdvancedActuators.PathFinder @arnauddupuis [https://github.com/arnauddupuis]


	Add test cases for BoardItem @grimmjow8 [https://github.com/grimmjow8] @Arekenaten [https://github.com/Arekenaten]


	Add test cases for Board @grimmjow8 [https://github.com/grimmjow8] @Arekenaten [https://github.com/Arekenaten]


	Add support to load files from the directories in directories.json @kaozdl [https://github.com/kaozdl]


	Add a new SimpleActuators.PatrolActuator @kaozdl [https://github.com/kaozdl]


	Add Animation capabilities @arnauddupuis [https://github.com/arnauddupuis]


	Improve navigation in hgl-editor by using arrow keys @bwirtz [https://github.com/bwirtz]


	Improve selection of maps in hgl-editor @gunjanraval [https://github.com/gunjanraval] @kaozdl [https://github.com/kaozdl]


	Improve documentation for SimpleActuators.PathActuator @achoudh5 [https://github.com/achoudh5]


	Improve documentation for launching the test suite @bwirtz [https://github.com/bwirtz]


	Migration from pip install to pipenv @kaozdl [https://github.com/kaozdl]


	Fix board saving bug in hgl-editor @gunjanraval [https://github.com/gunjanraval]


	Fix back menu issues in hgl-editor @synackray [https://github.com/synackray]


	Fix README and setup.py @fbidu [https://github.com/fbidu]


	Make the module compatible with Flake8: @bwirtz [https://github.com/bwirtz] @arnauddupuis [https://github.com/arnauddupuis] @kaozdl [https://github.com/kaozdl]
@f-osorio [https://github.com/f-osorio] @guilleijo [https://github.com/guilleijo] @diego-caceres [https://github.com/diego-caceres] @spassarop [https://github.com/spassarop]


	CircleCI integration @caballerojavier13 [https://github.com/caballerojavier13] @bwirtz [https://github.com/bwirtz]






2019.5


	Please see the official website [https://astro.hyrul.es/news/hac-game-lib-may-2019-update.html].






pre-2019.5


	Please see the Github [https://github.com/arnauddupuis/hac-game-lib/commits/master] for history.








            

          

      

      

    

  

  
    
    
    Python Module Index
    

    

    

 


  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pygamelib	
       

     
       	
       	   
       pygamelib.constants	
       

   



            

          

      

      

    

  

  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z
 


_


  	
      	__init__() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.assets.graphics.Blocks method)


        	(pygamelib.assets.graphics.BoxDrawings method)


        	(pygamelib.assets.graphics.GeometricShapes method)


        	(pygamelib.assets.graphics.Models method)


        	(pygamelib.base.History method)


        	(pygamelib.base.Math method)


        	(pygamelib.base.PglBaseObject method)


        	(pygamelib.base.Text method)


        	(pygamelib.base.Vector2D method)


        	(pygamelib.board_items.Actionable method)


        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


        	(pygamelib.engine.Board method)


        	(pygamelib.engine.Game method)


        	(pygamelib.engine.Inventory method)


        	(pygamelib.engine.Screen method)


        	(pygamelib.gfx.core.Animation method)


        	(pygamelib.gfx.core.Color method)


        	(pygamelib.gfx.core.Font method)


        	(pygamelib.gfx.core.Sprite method)


        	(pygamelib.gfx.core.SpriteCollection method)


        	(pygamelib.gfx.core.Sprixel method)


        	(pygamelib.gfx.particles.CircleEmitter method)


        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.EmitterProperties method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.ParticlePool method)


        	(pygamelib.gfx.particles.ParticleSprixel method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


        	(pygamelib.gfx.ui.Box method)


        	(pygamelib.gfx.ui.BoxLayout method)


        	(pygamelib.gfx.ui.ColorPicker method)


        	(pygamelib.gfx.ui.ColorPickerDialog method)


        	(pygamelib.gfx.ui.Cursor method)


        	(pygamelib.gfx.ui.Dialog method)


        	(pygamelib.gfx.ui.FileDialog method)


        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.GridSelector method)


        	(pygamelib.gfx.ui.GridSelectorDialog method)


        	(pygamelib.gfx.ui.Layout method)


        	(pygamelib.gfx.ui.LineInput method)


        	(pygamelib.gfx.ui.LineInputDialog method)


        	(pygamelib.gfx.ui.Menu method)


        	(pygamelib.gfx.ui.MenuAction method)


        	(pygamelib.gfx.ui.MenuBar method)


        	(pygamelib.gfx.ui.MessageDialog method)


        	(pygamelib.gfx.ui.MultiLineInputDialog method)


        	(pygamelib.gfx.ui.ProgressBar method)


        	(pygamelib.gfx.ui.ProgressDialog method)


        	(pygamelib.gfx.ui.UiConfig method)


        	(pygamelib.gfx.ui.Widget method)


      


  





A


  	
      	A_BUTTON_BLOOD_TYPE (pygamelib.assets.graphics.Models attribute)


      	AB_BUTTON_BLOOD_TYPE (pygamelib.assets.graphics.Models attribute)


      	ABACUS (pygamelib.assets.graphics.Models attribute)


      	AC_CURRENT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	ACCORDION (pygamelib.assets.graphics.Models attribute)


      	action (pygamelib.gfx.ui.MenuAction property)


      	Actionable (class in pygamelib.board_items)


      	ActionableTile (class in pygamelib.board_items)


      	activate() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.gfx.ui.Menu method)


        	(pygamelib.gfx.ui.MenuAction method)


      


      	active (pygamelib.gfx.particles.CircleEmitter property)

      
        	(pygamelib.gfx.particles.ParticleEmitter property)


      


      	actuate_npcs() (pygamelib.engine.Game method)


      	actuate_projectiles() (pygamelib.engine.Game method)


      	Actuator (class in pygamelib.actuators)


      	add() (pygamelib.base.History method)

      
        	(pygamelib.gfx.core.SpriteCollection method)


      


      	add_board() (pygamelib.engine.Game method)


      	add_constraint() (pygamelib.engine.Inventory method)


      	add_directional_animation() (pygamelib.board_items.Projectile method)


      	add_directional_model() (pygamelib.board_items.Projectile method)


      	add_entry() (pygamelib.gfx.ui.Menu method)

      
        	(pygamelib.gfx.ui.MenuBar method)


      


      	add_frame() (pygamelib.gfx.core.Animation method)


      	add_item() (pygamelib.engine.Inventory method)


      	add_line() (pygamelib.gfx.ui.MessageDialog method)


      	add_npc() (pygamelib.engine.Game method)


      	add_projectile() (pygamelib.engine.Game method)


      	add_row() (pygamelib.gfx.ui.FormLayout method)


      	add_waypoint() (pygamelib.actuators.PathFinder method)


      	add_widget() (pygamelib.gfx.ui.BoxLayout method)

      
        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.Layout method)


      


      	ADHESIVE_BANDAGE (pygamelib.assets.graphics.Models attribute)


      	ADMISSION_TICKETS (pygamelib.assets.graphics.Models attribute)


      	AERIAL_TRAMWAY (pygamelib.assets.graphics.Models attribute)


      	AIRPLANE (pygamelib.assets.graphics.Models attribute)


      	AIRPLANE_ARRIVAL (pygamelib.assets.graphics.Models attribute)


      	AIRPLANE_DEPARTURE (pygamelib.assets.graphics.Models attribute)


      	ALARM_CLOCK (pygamelib.assets.graphics.MiscTechnicals attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	ALEMBIC (pygamelib.assets.graphics.Models attribute)


      	ALIEN (pygamelib.assets.graphics.Models attribute)


      	ALIEN_MONSTER (pygamelib.assets.graphics.Models attribute)


      	ALL_AROUND_PROFILE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	ALL_CHARACTERS_AUTHORIZED (pygamelib.constants.Permission attribute)


      	ALL_MOVABLE_AUTHORIZED (pygamelib.constants.Permission attribute)


      	ALTERNATIVE_KEY_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	AMBULANCE (pygamelib.assets.graphics.Models attribute)


      	AMERICAN_FOOTBALL (pygamelib.assets.graphics.Models attribute)


      	AMPHORA (pygamelib.assets.graphics.Models attribute)


      	ANATOMICAL_HEART (pygamelib.assets.graphics.Models attribute)


      	ANCHOR (pygamelib.assets.graphics.Models attribute)


      	ANGER_SYMBOL (pygamelib.assets.graphics.Models attribute)


      	ANGRY_FACE (pygamelib.assets.graphics.Models attribute)


      	ANGRY_FACE_WITH_HORNS (pygamelib.assets.graphics.Models attribute)


      	ANGUISHED_FACE (pygamelib.assets.graphics.Models attribute)


      	animate_items() (pygamelib.engine.Game method)


      	Animation (class in pygamelib.gfx.core)


      	animation (pygamelib.board_items.Actionable property)

      
        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


      


      	ANT (pygamelib.assets.graphics.Models attribute)


      	ANTENNA_BARS (pygamelib.assets.graphics.Models attribute)


      	ANXIOUS_FACE_WITH_SWEAT (pygamelib.assets.graphics.Models attribute)


      	APL_FUNCTIONAL_SYMBOL_ALPHA (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_COMMA_BAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DEL_STILE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DEL_TILDE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DELTA_STILE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_I_BEAM (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_IOTA (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE (pygamelib.assets.graphics.MiscTechnicals attribute)


  

  	
      	APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_OMEGA (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_COLON (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_DEL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_DELTA (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_JOT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_SLASH (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_RHO (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_SLASH_BAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_STILE_TILDE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	APL_FUNCTIONAL_SYMBOL_ZILDE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	apply_force() (pygamelib.gfx.particles.CircleEmitter method)

      
        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


      


      	AQUARIUS (pygamelib.assets.graphics.Models attribute)


      	ARC (pygamelib.assets.graphics.MiscTechnicals attribute)


      	ARIES (pygamelib.assets.graphics.Models attribute)


      	ARTICULATED_LORRY (pygamelib.assets.graphics.Models attribute)


      	ARTIST_PALETTE (pygamelib.assets.graphics.Models attribute)


      	ASTAR (pygamelib.constants.Algorithm attribute)


      	ASTONISHED_FACE (pygamelib.assets.graphics.Models attribute)


      	ATM_SIGN (pygamelib.assets.graphics.Models attribute)


      	ATOM_SYMBOL (pygamelib.assets.graphics.Models attribute)


      	attach() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.base.PglBaseObject method)


        	(pygamelib.base.Text method)


        	(pygamelib.board_items.Actionable method)


        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


        	(pygamelib.engine.Board method)


        	(pygamelib.engine.Game method)


        	(pygamelib.engine.Inventory method)


        	(pygamelib.engine.Screen method)


        	(pygamelib.gfx.core.Color method)


        	(pygamelib.gfx.core.Sprite method)


        	(pygamelib.gfx.core.Sprixel method)


        	(pygamelib.gfx.particles.CircleEmitter method)


        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.ParticleSprixel method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


        	(pygamelib.gfx.ui.BoxLayout method)


        	(pygamelib.gfx.ui.Cursor method)


        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.Layout method)


        	(pygamelib.gfx.ui.LineInput method)


        	(pygamelib.gfx.ui.Widget method)


      


      	AUTO_RICKSHAW (pygamelib.assets.graphics.Models attribute)


      	AUTOMOBILE (pygamelib.assets.graphics.Models attribute)


      	available_space() (pygamelib.engine.Inventory method)


      	AVOCADO (pygamelib.assets.graphics.Models attribute)


      	AXE (pygamelib.assets.graphics.Models attribute)


  





B


  	
      	b (pygamelib.gfx.core.Color property)


      	B_BUTTON_BLOOD_TYPE (pygamelib.assets.graphics.Models attribute)


      	BABY (pygamelib.assets.graphics.Models attribute)


      	BABY_ANGEL (pygamelib.assets.graphics.Models attribute)


      	BABY_BOTTLE (pygamelib.assets.graphics.Models attribute)


      	BABY_CHICK (pygamelib.assets.graphics.Models attribute)


      	BABY_SYMBOL (pygamelib.assets.graphics.Models attribute)


      	BACK_ARROW (pygamelib.assets.graphics.Models attribute)


      	BACKHAND_INDEX_POINTING_DOWN (pygamelib.assets.graphics.Models attribute)


      	BACKHAND_INDEX_POINTING_LEFT (pygamelib.assets.graphics.Models attribute)


      	BACKHAND_INDEX_POINTING_RIGHT (pygamelib.assets.graphics.Models attribute)


      	BACKHAND_INDEX_POINTING_UP (pygamelib.assets.graphics.Models attribute)


      	BACKPACK (pygamelib.assets.graphics.Models attribute)


      	backspace() (pygamelib.gfx.ui.LineInput method)


      	BACON (pygamelib.assets.graphics.Models attribute)


      	BADGER (pygamelib.assets.graphics.Models attribute)


      	BADMINTON (pygamelib.assets.graphics.Models attribute)


      	BAGEL (pygamelib.assets.graphics.Models attribute)


      	BAGGAGE_CLAIM (pygamelib.assets.graphics.Models attribute)


      	BAGUETTE_BREAD (pygamelib.assets.graphics.Models attribute)


      	BALANCE_SCALE (pygamelib.assets.graphics.Models attribute)


      	BALD (pygamelib.assets.graphics.Models attribute)


      	BALL (pygamelib.assets.graphics.Models attribute)


      	BALLET_SHOES (pygamelib.assets.graphics.Models attribute)


      	BALLOON (pygamelib.assets.graphics.Models attribute)


      	BALLOT_BOX_WITH_BALLOT (pygamelib.assets.graphics.Models attribute)


      	BANANA (pygamelib.assets.graphics.Models attribute)


      	BANJO (pygamelib.assets.graphics.Models attribute)


      	BANK (pygamelib.assets.graphics.Models attribute)


      	BAR_CHART (pygamelib.assets.graphics.Models attribute)


      	BARBER_POLE (pygamelib.assets.graphics.Models attribute)


      	BASEBALL (pygamelib.assets.graphics.Models attribute)


      	BASKET (pygamelib.assets.graphics.Models attribute)


      	BASKETBALL (pygamelib.assets.graphics.Models attribute)


      	BAT (pygamelib.assets.graphics.Models attribute)


      	BATHTUB (pygamelib.assets.graphics.Models attribute)


      	BATTERY (pygamelib.assets.graphics.Models attribute)


      	BEACH_WITH_UMBRELLA (pygamelib.assets.graphics.Models attribute)


      	BEAMING_FACE_WITH_SMILING_EYES (pygamelib.assets.graphics.Models attribute)


      	BEAR (pygamelib.assets.graphics.Models attribute)


      	BEATING_HEART (pygamelib.assets.graphics.Models attribute)


      	BEAVER (pygamelib.assets.graphics.Models attribute)


      	BED (pygamelib.assets.graphics.Models attribute)


      	BEER_MUG (pygamelib.assets.graphics.Models attribute)


      	BEETLE (pygamelib.assets.graphics.Models attribute)


      	Behavioral (class in pygamelib.actuators)


      	BELL (pygamelib.assets.graphics.Models attribute)


      	BELL_PEPPER (pygamelib.assets.graphics.Models attribute)


      	BELL_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BELL_WITH_SLASH (pygamelib.assets.graphics.Models attribute)


      	BELLHOP_BELL (pygamelib.assets.graphics.Models attribute)


      	BENTO_BOX (pygamelib.assets.graphics.Models attribute)


      	BENZENE_RING (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BENZENE_RING_WITH_CIRCLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BEVERAGE_BOX (pygamelib.assets.graphics.Models attribute)


      	BFS (pygamelib.constants.Algorithm attribute)


      	bg_color (pygamelib.base.Text property)

      
        	(pygamelib.gfx.core.Sprixel property)


        	(pygamelib.gfx.particles.ParticleSprixel property)


        	(pygamelib.gfx.ui.LineInput property)


        	(pygamelib.gfx.ui.Widget property)


      


      	BICYCLE (pygamelib.assets.graphics.Models attribute)


      	BIKINI (pygamelib.assets.graphics.Models attribute)


      	BILLED_CAP (pygamelib.assets.graphics.Models attribute)


      	BIOHAZARD (pygamelib.assets.graphics.Models attribute)


      	BIRD (pygamelib.assets.graphics.Models attribute)


      	BIRTHDAY_CAKE (pygamelib.assets.graphics.Models attribute)


      	BISON (pygamelib.assets.graphics.Models attribute)


      	black() (pygamelib.base.Text static method)


      	black_bright() (pygamelib.base.Text static method)


      	BLACK_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	BLACK_CIRCLE_FOR_RECORD (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_DIAMOND (pygamelib.assets.graphics.GeometricShapes attribute)


      	black_dim() (pygamelib.base.Text static method)


      	BLACK_DOWN_POINTING_DOUBLE_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_DOWN_POINTING_SMALL_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_DOWN_POINTING_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_FLAG (pygamelib.assets.graphics.Models attribute)


      	BLACK_HEART (pygamelib.assets.graphics.Models attribute)


      	BLACK_LARGE_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	BLACK_LEFT_POINTING_DOUBLE_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_LEFT_POINTING_POINTER (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_LEFT_POINTING_SMALL_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_LEFT_POINTING_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_LOWER_LEFT_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_LOWER_RIGHT_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_MEDIUM_DOWN_POINTING_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_MEDIUM_LEFT_POINTING_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_MEDIUM_SMALL_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	BLACK_MEDIUM_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	BLACK_MEDIUM_UP_POINTING_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_NIB (pygamelib.assets.graphics.Models attribute)


      	BLACK_PARALLELOGRAM (pygamelib.assets.graphics.GeometricShapes attribute)


      	black_rect() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


  

  	
      	BLACK_RECTANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_RIGHT_POINTING_POINTER (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_RIGHT_POINTING_SMALL_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_RIGHT_POINTING_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_SMALL_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	BLACK_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)


      	black_square() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	BLACK_SQUARE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	BLACK_SQUARE_FOR_STOP (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_UP_POINTING_DOUBLE_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BLACK_UP_POINTING_SMALL_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_UP_POINTING_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_UPPER_LEFT_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_UPPER_RIGHT_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BLACK_VERTICAL_RECTANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	blend() (pygamelib.gfx.core.Color method)


      	Blocks (class in pygamelib.assets.graphics)


      	BLOSSOM (pygamelib.assets.graphics.Models attribute)


      	BLOWFISH (pygamelib.assets.graphics.Models attribute)


      	blue (pygamelib.gfx.ui.ColorPicker property)


      	blue() (pygamelib.base.Text static method)


      	BLUE_BOOK (pygamelib.assets.graphics.Models attribute)


      	blue_bright() (pygamelib.base.Text static method)


      	BLUE_CIRCLE (pygamelib.assets.graphics.Models attribute)


      	blue_dim() (pygamelib.base.Text static method)


      	BLUE_HEART (pygamelib.assets.graphics.Models attribute)


      	blue_rect() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	BLUE_SQUARE (pygamelib.assets.graphics.Models attribute)


      	blue_square() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	BLUEBERRIES (pygamelib.assets.graphics.Models attribute)


      	BOAR (pygamelib.assets.graphics.Models attribute)


      	Board (class in pygamelib.engine)


      	BoardComplexItem (class in pygamelib.board_items)


      	BoardItem (class in pygamelib.board_items)


      	BoardItemComplexComponent (class in pygamelib.board_items)


      	BoardItemVoid (class in pygamelib.board_items)


      	BOLD (pygamelib.constants.TextStyle attribute)


      	BOMB (pygamelib.assets.graphics.Models attribute)


      	BONE (pygamelib.assets.graphics.Models attribute)


      	BOOKMARK (pygamelib.assets.graphics.Models attribute)


      	BOOKMARK_TABS (pygamelib.assets.graphics.Models attribute)


      	BOOKS (pygamelib.assets.graphics.Models attribute)


      	BOOMERANG (pygamelib.assets.graphics.Models attribute)


      	BOTTLE_WITH_POPPING_CORK (pygamelib.assets.graphics.Models attribute)


      	BOTTOM (pygamelib.constants.Alignment attribute)


      	BOTTOM_CURLY_BRACKET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOTTOM_HALF_INTEGRAL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOTTOM_LEFT_CORNER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOTTOM_LEFT_CROP (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOTTOM_PARENTHESIS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOTTOM_RIGHT_CORNER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOTTOM_RIGHT_CROP (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOTTOM_SQUARE_BRACKET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOTTOM_TORTOISE_SHELL_BRACKET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BOUQUET (pygamelib.assets.graphics.Models attribute)


      	BOW_AND_ARROW (pygamelib.assets.graphics.Models attribute)


      	BOWL_WITH_SPOON (pygamelib.assets.graphics.Models attribute)


      	BOWLING (pygamelib.assets.graphics.Models attribute)


      	Box (class in pygamelib.gfx.ui)


      	BoxDrawings (class in pygamelib.assets.graphics)


      	BOXING_GLOVE (pygamelib.assets.graphics.Models attribute)


      	BoxLayout (class in pygamelib.gfx.ui)


      	BOY (pygamelib.assets.graphics.Models attribute)


      	BRAIN (pygamelib.assets.graphics.Models attribute)


      	BREAD (pygamelib.assets.graphics.Models attribute)


      	BREAST_FEEDING (pygamelib.assets.graphics.Models attribute)


      	BRICK (pygamelib.assets.graphics.Models attribute)


      	BRIDGE_AT_NIGHT (pygamelib.assets.graphics.Models attribute)


      	BRIEFCASE (pygamelib.assets.graphics.Models attribute)


      	BRIEFS (pygamelib.assets.graphics.Models attribute)


      	BRIGHT_BUTTON (pygamelib.assets.graphics.Models attribute)


      	BROCCOLI (pygamelib.assets.graphics.Models attribute)


      	BROKEN_CIRCLE_WITH_NORTHWEST_ARROW (pygamelib.assets.graphics.MiscTechnicals attribute)


      	BROKEN_HEART (pygamelib.assets.graphics.Models attribute)


      	BROOM (pygamelib.assets.graphics.Models attribute)


      	BROWN_CIRCLE (pygamelib.assets.graphics.Models attribute)


      	BROWN_HEART (pygamelib.assets.graphics.Models attribute)


      	BROWN_SQUARE (pygamelib.assets.graphics.Models attribute)


      	BUBBLE_TEA (pygamelib.assets.graphics.Models attribute)


      	BUCKET (pygamelib.assets.graphics.Models attribute)


      	buffer (pygamelib.engine.Screen property)


      	BUG (pygamelib.assets.graphics.Models attribute)


      	BUILDING_CONSTRUCTION (pygamelib.assets.graphics.Models attribute)


      	BULLET (pygamelib.assets.graphics.GeometricShapes attribute)


      	BULLET_TRAIN (pygamelib.assets.graphics.Models attribute)


      	BULLSEYE (pygamelib.assets.graphics.GeometricShapes attribute)


      	BURRITO (pygamelib.assets.graphics.Models attribute)


      	BUS (pygamelib.assets.graphics.Models attribute)


      	BUS_STOP (pygamelib.assets.graphics.Models attribute)


      	BUST_IN_SILHOUETTE (pygamelib.assets.graphics.Models attribute)


      	BUSTS_IN_SILHOUETTE (pygamelib.assets.graphics.Models attribute)


      	BUTTER (pygamelib.assets.graphics.Models attribute)


      	BUTTERFLY (pygamelib.assets.graphics.Models attribute)


  





C


  	
      	CACTUS (pygamelib.assets.graphics.Models attribute)


      	calculate_size() (pygamelib.gfx.core.Sprite method)


      	CALENDAR (pygamelib.assets.graphics.Models attribute)


      	CALL_ME_HAND (pygamelib.assets.graphics.Models attribute)


      	CAMEL (pygamelib.assets.graphics.Models attribute)


      	Camera (class in pygamelib.board_items)


      	CAMERA (pygamelib.assets.graphics.Models attribute)


      	CAMERA_WITH_FLASH (pygamelib.assets.graphics.Models attribute)


      	CAMPING (pygamelib.assets.graphics.Models attribute)


      	can_move() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	CANCER (pygamelib.assets.graphics.Models attribute)


      	CANDLE (pygamelib.assets.graphics.Models attribute)


      	CANDY (pygamelib.assets.graphics.Models attribute)


      	CANNED_FOOD (pygamelib.assets.graphics.Models attribute)


      	CANOE (pygamelib.assets.graphics.Models attribute)


      	CAPRICORN (pygamelib.assets.graphics.Models attribute)


      	CARD_FILE_BOX (pygamelib.assets.graphics.Models attribute)


      	CARD_INDEX (pygamelib.assets.graphics.Models attribute)


      	CARD_INDEX_DIVIDERS (pygamelib.assets.graphics.Models attribute)


      	CAROUSEL_HORSE (pygamelib.assets.graphics.Models attribute)


      	CARP_STREAMER (pygamelib.assets.graphics.Models attribute)


      	CARPENTRY_SAW (pygamelib.assets.graphics.Models attribute)


      	CARROT (pygamelib.assets.graphics.Models attribute)


      	CASTLE (pygamelib.assets.graphics.Models attribute)


      	CAT (pygamelib.assets.graphics.Models attribute)


      	CAT_FACE (pygamelib.assets.graphics.Models attribute)


      	CAT_WITH_TEARS_OF_JOY (pygamelib.assets.graphics.Models attribute)


      	CAT_WITH_WRY_SMILE (pygamelib.assets.graphics.Models attribute)


      	CENTER (pygamelib.constants.Alignment attribute)


      	CHAINS (pygamelib.assets.graphics.Models attribute)


      	CHAIR (pygamelib.assets.graphics.Models attribute)


      	change_level() (pygamelib.engine.Game method)


      	Character (class in pygamelib.board_items)


      	CHART_DECREASING (pygamelib.assets.graphics.Models attribute)


      	CHART_INCREASING (pygamelib.assets.graphics.Models attribute)


      	CHART_INCREASING_WITH_YEN (pygamelib.assets.graphics.Models attribute)


      	CHECK_BOX_WITH_CHECK (pygamelib.assets.graphics.Models attribute)


      	CHECK_MARK (pygamelib.assets.graphics.Models attribute)


      	CHECK_MARK_BUTTON (pygamelib.assets.graphics.Models attribute)


      	check_sanity() (pygamelib.engine.Board method)


      	CHEESE_WEDGE (pygamelib.assets.graphics.Models attribute)


      	CHEQUERED_FLAG (pygamelib.assets.graphics.Models attribute)


      	CHERRIES (pygamelib.assets.graphics.Models attribute)


      	CHERRY_BLOSSOM (pygamelib.assets.graphics.Models attribute)


      	CHESS_PAWN (pygamelib.assets.graphics.Models attribute)


      	CHESTNUT (pygamelib.assets.graphics.Models attribute)


      	CHICKEN (pygamelib.assets.graphics.Models attribute)


      	CHILD (pygamelib.assets.graphics.Models attribute)


      	children (pygamelib.gfx.ui.LineInput property)

      
        	(pygamelib.gfx.ui.Widget property)


      


      	CHILDREN_CROSSING (pygamelib.assets.graphics.Models attribute)


      	CHIPMUNK (pygamelib.assets.graphics.Models attribute)


      	CHOCOLATE_BAR (pygamelib.assets.graphics.Models attribute)


      	choices (pygamelib.gfx.ui.GridSelector property)


      	CHOPSTICKS (pygamelib.assets.graphics.Models attribute)


      	CHRISTMAS_TREE (pygamelib.assets.graphics.Models attribute)


      	CHURCH (pygamelib.assets.graphics.Models attribute)


      	CIGARETTE (pygamelib.assets.graphics.Models attribute)


      	CINEMA (pygamelib.assets.graphics.Models attribute)


      	CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	CIRCLE_WITH_LEFT_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	CIRCLE_WITH_LOWER_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	CIRCLE_WITH_RIGHT_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	CIRCLE_WITH_UPPER_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	CIRCLE_WITH_VERTICAL_FILL (pygamelib.assets.graphics.GeometricShapes attribute)


      	CIRCLED_HORIZONTAL_BAR_WITH_NOTCH (pygamelib.assets.graphics.MiscTechnicals attribute)


      	CIRCLED_M (pygamelib.assets.graphics.Models attribute)


      	CIRCLED_TRIANGLE_DOWN (pygamelib.assets.graphics.MiscTechnicals attribute)


      	CircleEmitter (class in pygamelib.gfx.particles)


      	CIRCUS_TENT (pygamelib.assets.graphics.Models attribute)


      	CITYSCAPE (pygamelib.assets.graphics.Models attribute)


      	CITYSCAPE_AT_DUSK (pygamelib.assets.graphics.Models attribute)


      	CL_BUTTON (pygamelib.assets.graphics.Models attribute)


      	CLAMP (pygamelib.assets.graphics.Models attribute)


      	CLAPPER_BOARD (pygamelib.assets.graphics.Models attribute)


      	CLAPPING_HANDS (pygamelib.assets.graphics.Models attribute)


      	CLASSICAL_BUILDING (pygamelib.assets.graphics.Models attribute)


      	clear() (pygamelib.engine.Screen method)

      
        	(pygamelib.gfx.core.SpriteCollection method)


        	(pygamelib.gfx.ui.LineInput method)


      


      	clear_buffers() (pygamelib.engine.Screen method)


      	clear_cell() (pygamelib.engine.Board method)


      	clear_constraints() (pygamelib.engine.Inventory method)


      	clear_frame_buffer() (pygamelib.engine.Screen method)


      	clear_screen() (pygamelib.engine.Game method)


      	CLEAR_SCREEN_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	clear_session_logs() (pygamelib.engine.Game method)


      	clear_waypoints() (pygamelib.actuators.PathFinder method)


      	CLINKING_BEER_MUGS (pygamelib.assets.graphics.Models attribute)


      	CLINKING_GLASSES (pygamelib.assets.graphics.Models attribute)


      	CLIPBOARD (pygamelib.assets.graphics.Models attribute)


      	CLOCKWISE_VERTICAL_ARROWS (pygamelib.assets.graphics.Models attribute)


      	close() (pygamelib.gfx.ui.MenuBar method)


      	CLOSED_BOOK (pygamelib.assets.graphics.Models attribute)


      	CLOSED_MAILBOX_WITH_LOWERED_FLAG (pygamelib.assets.graphics.Models attribute)


      	CLOSED_MAILBOX_WITH_RAISED_FLAG (pygamelib.assets.graphics.Models attribute)


      	CLOSED_UMBRELLA (pygamelib.assets.graphics.Models attribute)


      	CLOUD (pygamelib.assets.graphics.Models attribute)


      	CLOUD_WITH_LIGHTNING (pygamelib.assets.graphics.Models attribute)


      	CLOUD_WITH_LIGHTNING_AND_RAIN (pygamelib.assets.graphics.Models attribute)


      	CLOUD_WITH_RAIN (pygamelib.assets.graphics.Models attribute)


      	CLOUD_WITH_SNOW (pygamelib.assets.graphics.Models attribute)


      	CLOWN_FACE (pygamelib.assets.graphics.Models attribute)


      	CLUB_SUIT (pygamelib.assets.graphics.Models attribute)


      	CLUTCH_BAG (pygamelib.assets.graphics.Models attribute)


      	COAT (pygamelib.assets.graphics.Models attribute)


      	COCKROACH (pygamelib.assets.graphics.Models attribute)


      	COCKTAIL_GLASS (pygamelib.assets.graphics.Models attribute)


      	COCONUT (pygamelib.assets.graphics.Models attribute)


      	COFFIN (pygamelib.assets.graphics.Models attribute)


      	COIN (pygamelib.assets.graphics.Models attribute)


      	COLD_FACE (pygamelib.assets.graphics.Models attribute)


      	collapse() (pygamelib.gfx.ui.Menu method)


      	collides_with() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


  

  	
      	COLLISION (pygamelib.assets.graphics.Models attribute)


      	Color (class in pygamelib.gfx.core)


      	color (pygamelib.gfx.ui.ColorPicker property)


      	colorable (pygamelib.gfx.core.Font property)


      	ColorParticle (class in pygamelib.gfx.particles)


      	ColorPartitionParticle (class in pygamelib.gfx.particles)


      	ColorPicker (class in pygamelib.gfx.ui)


      	ColorPickerDialog (class in pygamelib.gfx.ui)


      	column (pygamelib.base.Vector2D property)

      
        	(pygamelib.board_items.Actionable property)


        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


        	(pygamelib.gfx.particles.CircleEmitter property)


        	(pygamelib.gfx.particles.ColorParticle property)


        	(pygamelib.gfx.particles.ColorPartitionParticle property)


        	(pygamelib.gfx.particles.Particle property)


        	(pygamelib.gfx.particles.ParticleEmitter property)


        	(pygamelib.gfx.particles.PartitionParticle property)


        	(pygamelib.gfx.particles.RandomColorParticle property)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle property)


      


      	column_minimum_width (pygamelib.gfx.ui.FormLayout property)

      
        	(pygamelib.gfx.ui.GridLayout property)


      


      	COMET (pygamelib.assets.graphics.Models attribute)


      	COMPASS (pygamelib.assets.graphics.Models attribute)


      	ComplexDoor (class in pygamelib.board_items)


      	ComplexNPC (class in pygamelib.board_items)


      	ComplexPlayer (class in pygamelib.board_items)


      	ComplexTreasure (class in pygamelib.board_items)


      	ComplexWall (class in pygamelib.board_items)


      	COMPOSITION_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	COMPUTER_DISK (pygamelib.assets.graphics.Models attribute)


      	COMPUTER_MOUSE (pygamelib.assets.graphics.Models attribute)


      	CONFETTI_BALL (pygamelib.assets.graphics.Models attribute)


      	config (pygamelib.gfx.ui.Box property)

      
        	(pygamelib.gfx.ui.ColorPickerDialog property)


        	(pygamelib.gfx.ui.Dialog property)


        	(pygamelib.gfx.ui.FileDialog property)


        	(pygamelib.gfx.ui.GridSelectorDialog property)


        	(pygamelib.gfx.ui.LineInputDialog property)


        	(pygamelib.gfx.ui.Menu property)


        	(pygamelib.gfx.ui.MenuAction property)


        	(pygamelib.gfx.ui.MenuBar property)


        	(pygamelib.gfx.ui.MessageDialog property)


        	(pygamelib.gfx.ui.MultiLineInputDialog property)


        	(pygamelib.gfx.ui.ProgressBar property)


        	(pygamelib.gfx.ui.ProgressDialog property)


      


      	config() (pygamelib.engine.Game method)


      	CONFOUNDED_FACE (pygamelib.assets.graphics.Models attribute)


      	CONFUSED_FACE (pygamelib.assets.graphics.Models attribute)


      	CONICAL_TAPER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	Console (class in pygamelib.base)


      	constraints (pygamelib.engine.Inventory property)


      	CONSTRUCTION (pygamelib.assets.graphics.Models attribute)


      	CONSTRUCTION_WORKER (pygamelib.assets.graphics.Models attribute)


      	CONTINUOUS_UNDERLINE_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	CONTROL_KNOBS (pygamelib.assets.graphics.Models attribute)


      	CONVENIENCE_STORE (pygamelib.assets.graphics.Models attribute)


      	COOKED_RICE (pygamelib.assets.graphics.Models attribute)


      	COOKIE (pygamelib.assets.graphics.Models attribute)


      	COOKING (pygamelib.assets.graphics.Models attribute)


      	COOL_BUTTON (pygamelib.assets.graphics.Models attribute)


      	copy() (pygamelib.gfx.core.Color method)

      
        	(pygamelib.gfx.core.Sprite method)


        	(pygamelib.gfx.core.SpriteCollection method)


        	(pygamelib.gfx.core.Sprixel method)


        	(pygamelib.gfx.particles.ParticleSprixel method)


      


      	COPYRIGHT (pygamelib.assets.graphics.Models attribute)


      	COUCH_AND_LAMP (pygamelib.assets.graphics.Models attribute)


      	count() (pygamelib.gfx.ui.BoxLayout method)

      
        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.Layout method)


      


      	count_active_particles() (pygamelib.gfx.particles.ParticlePool method)


      	count_columns() (pygamelib.gfx.ui.FormLayout method)

      
        	(pygamelib.gfx.ui.GridLayout method)


      


      	count_rows() (pygamelib.gfx.ui.FormLayout method)

      
        	(pygamelib.gfx.ui.GridLayout method)


      


      	COUNTERBORE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	COUNTERCLOCKWISE_ARROWS_BUTTON (pygamelib.assets.graphics.Models attribute)


      	COUNTERSINK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	COUPLE_WITH_HEART (pygamelib.assets.graphics.Models attribute)


      	COW (pygamelib.assets.graphics.Models attribute)


      	COW_FACE (pygamelib.assets.graphics.Models attribute)


      	COWBOY_HAT_FACE (pygamelib.assets.graphics.Models attribute)


      	CRAB (pygamelib.assets.graphics.Models attribute)


      	CRAYON (pygamelib.assets.graphics.Models attribute)


      	create_config() (pygamelib.engine.Game method)


      	CREDIT_CARD (pygamelib.assets.graphics.Models attribute)


      	CRESCENT_MOON (pygamelib.assets.graphics.Models attribute)


      	CRICKET (pygamelib.assets.graphics.Models attribute)


      	CRICKET_GAME (pygamelib.assets.graphics.Models attribute)


      	CROCODILE (pygamelib.assets.graphics.Models attribute)


      	CROISSANT (pygamelib.assets.graphics.Models attribute)


      	CROSS_MARK (pygamelib.assets.graphics.Models attribute)


      	CROSS_MARK_BUTTON (pygamelib.assets.graphics.Models attribute)


      	CROSSED_FINGERS (pygamelib.assets.graphics.Models attribute)


      	CROSSED_FLAGS (pygamelib.assets.graphics.Models attribute)


      	CROSSED_SWORDS (pygamelib.assets.graphics.Models attribute)


      	CROWN (pygamelib.assets.graphics.Models attribute)


      	CRYING_CAT (pygamelib.assets.graphics.Models attribute)


      	CRYING_FACE (pygamelib.assets.graphics.Models attribute)


      	CRYSTAL_BALL (pygamelib.assets.graphics.Models attribute)


      	CUCUMBER (pygamelib.assets.graphics.Models attribute)


      	CUP_WITH_STRAW (pygamelib.assets.graphics.Models attribute)


      	CUPCAKE (pygamelib.assets.graphics.Models attribute)


      	CURLING_STONE (pygamelib.assets.graphics.Models attribute)


      	CURLY_BRACKET_EXTENSION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	CURLY_HAIR (pygamelib.assets.graphics.Models attribute)


      	CURLY_LOOP (pygamelib.assets.graphics.Models attribute)


      	CURRENCY_EXCHANGE (pygamelib.assets.graphics.Models attribute)


      	current (pygamelib.base.History property)


      	current_board() (pygamelib.engine.Game method)


      	current_choice (pygamelib.gfx.ui.GridSelector property)


      	current_entry() (pygamelib.gfx.ui.Menu method)

      
        	(pygamelib.gfx.ui.MenuBar method)


      


      	current_frame() (pygamelib.gfx.core.Animation method)


      	current_index (pygamelib.gfx.ui.MenuBar property)


      	current_page (pygamelib.gfx.ui.GridSelector property)


      	current_path() (pygamelib.actuators.PathFinder method)


      	current_sprixel() (pygamelib.gfx.ui.GridSelector method)


      	current_waypoint() (pygamelib.actuators.PathFinder method)


      	CURRY_RICE (pygamelib.assets.graphics.Models attribute)


      	Cursor (class in pygamelib.gfx.ui)


      	cursor (pygamelib.gfx.ui.LineInput property)


      	cursor_down() (pygamelib.gfx.ui.GridSelector method)


      	cursor_left() (pygamelib.gfx.ui.GridSelector method)


      	cursor_right() (pygamelib.gfx.ui.GridSelector method)


      	cursor_up() (pygamelib.gfx.ui.GridSelector method)


      	CUSTARD (pygamelib.assets.graphics.Models attribute)


      	CUSTOMS (pygamelib.assets.graphics.Models attribute)


      	CUT_OF_MEAT (pygamelib.assets.graphics.Models attribute)


      	cyan() (pygamelib.base.Text static method)


      	cyan_bright() (pygamelib.base.Text static method)


      	cyan_dim() (pygamelib.base.Text static method)


      	cyan_rect() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	cyan_square() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	CYCLONE (pygamelib.assets.graphics.Models attribute)


      	CYLINDRICITY (pygamelib.assets.graphics.MiscTechnicals attribute)


  





D


  	
      	DAGGER (pygamelib.assets.graphics.Models attribute)


      	DANGO (pygamelib.assets.graphics.Models attribute)


      	DARK_SHADE (pygamelib.assets.graphics.Blocks attribute)


      	DARK_SKIN_TONE (pygamelib.assets.graphics.Models attribute)


      	DASHING_AWAY (pygamelib.assets.graphics.Models attribute)


      	DEAF_PERSON (pygamelib.assets.graphics.Models attribute)


      	debug() (pygamelib.base.Text static method)


      	debug_info() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	DECIDUOUS_TREE (pygamelib.assets.graphics.Models attribute)


      	DECIMAL_EXPONENT_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DECIMAL_SEPARATOR_KEY_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DEER (pygamelib.assets.graphics.Models attribute)


      	DEFAULT_SIZE (pygamelib.constants.SizeConstraint attribute)


      	delete() (pygamelib.engine.Screen method)

      
        	(pygamelib.gfx.ui.LineInput method)


      


      	delete_all_levels() (pygamelib.engine.Game method)


      	delete_item() (pygamelib.engine.Inventory method)


      	delete_items() (pygamelib.engine.Inventory method)


      	delete_level() (pygamelib.engine.Game method)


      	DELIVERY_TRUCK (pygamelib.assets.graphics.Models attribute)


      	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DEPARTMENT_STORE (pygamelib.assets.graphics.Models attribute)


      	DERELICT_HOUSE (pygamelib.assets.graphics.Models attribute)


      	DESERT (pygamelib.assets.graphics.Models attribute)


      	DESERT_ISLAND (pygamelib.assets.graphics.Models attribute)


      	DESKTOP_COMPUTER (pygamelib.assets.graphics.Models attribute)


      	detach() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.base.PglBaseObject method)


        	(pygamelib.base.Text method)


        	(pygamelib.board_items.Actionable method)


        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


        	(pygamelib.engine.Board method)


        	(pygamelib.engine.Game method)


        	(pygamelib.engine.Inventory method)


        	(pygamelib.engine.Screen method)


        	(pygamelib.gfx.core.Color method)


        	(pygamelib.gfx.core.Sprite method)


        	(pygamelib.gfx.core.Sprixel method)


        	(pygamelib.gfx.particles.CircleEmitter method)


        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.ParticleSprixel method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


        	(pygamelib.gfx.ui.BoxLayout method)


        	(pygamelib.gfx.ui.Cursor method)


        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.Layout method)


        	(pygamelib.gfx.ui.LineInput method)


        	(pygamelib.gfx.ui.Widget method)


      


      	DETECTIVE (pygamelib.assets.graphics.Models attribute)


      	Dialog (class in pygamelib.gfx.ui)


      	DIAMETER_SIGN (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DIAMOND_SUIT (pygamelib.assets.graphics.Models attribute)


      	DIAMOND_WITH_A_DOT (pygamelib.assets.graphics.Models attribute)


      	DIM_BUTTON (pygamelib.assets.graphics.Models attribute)


      	DIMENSION_ORIGIN (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DIRECT_CURRENT_SYMBOL_FORM_TWO (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DIRECT_HIT (pygamelib.assets.graphics.Models attribute)


      	direction (pygamelib.board_items.Projectile property)


      	directional_animation() (pygamelib.board_items.Projectile method)


      	directional_model() (pygamelib.board_items.Projectile method)


      	DISAPPOINTED_FACE (pygamelib.assets.graphics.Models attribute)


      	DISCONTINUOUS_UNDERLINE_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DISGUISED_FACE (pygamelib.assets.graphics.Models attribute)


      	display() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


        	(pygamelib.engine.Board method)


      


  

  	
      	display_around() (pygamelib.engine.Board method)


      	display_at() (pygamelib.engine.Screen method)


      	display_board() (pygamelib.engine.Game method)


      	display_line() (pygamelib.engine.Screen method)


      	display_player_stats() (pygamelib.engine.Game method)


      	display_sprite() (pygamelib.engine.Screen method)


      	display_sprite_at() (pygamelib.engine.Screen method)


      	distance() (pygamelib.base.Math static method)


      	distance_to() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	DIVIDE (pygamelib.assets.graphics.Models attribute)


      	DIVING_MASK (pygamelib.assets.graphics.Models attribute)


      	DIYA_LAMP (pygamelib.assets.graphics.Models attribute)


      	DIZZY (pygamelib.assets.graphics.Models attribute)


      	DIZZY_FACE (pygamelib.assets.graphics.Models attribute)


      	DLDOWN (pygamelib.constants.Direction attribute)


      	DLUP (pygamelib.constants.Direction attribute)


      	DNA (pygamelib.assets.graphics.Models attribute)


      	DODO (pygamelib.assets.graphics.Models attribute)


      	DOG (pygamelib.assets.graphics.Models attribute)


      	DOG_FACE (pygamelib.assets.graphics.Models attribute)


      	DOLLAR_BANKNOTE (pygamelib.assets.graphics.Models attribute)


      	DOLPHIN (pygamelib.assets.graphics.Models attribute)


      	Door (class in pygamelib.board_items)


      	DOOR (pygamelib.assets.graphics.Models attribute)


      	DOTTED_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	DOTTED_SIX_POINTED_STAR (pygamelib.assets.graphics.Models attribute)


      	DOUBLE_CURLY_LOOP (pygamelib.assets.graphics.Models attribute)


      	DOUBLE_DOWN_AND_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_DOWN_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_DOWN_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_EXCLAMATION_MARK (pygamelib.assets.graphics.Models attribute)


      	DOUBLE_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_UP_AND_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_UP_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_UP_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_VERTICAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_VERTICAL_AND_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_VERTICAL_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_VERTICAL_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOUBLE_VERTICAL_BAR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DOUGHNUT (pygamelib.assets.graphics.Models attribute)


      	DOVE (pygamelib.assets.graphics.Models attribute)


      	DOWN (pygamelib.constants.Direction attribute)


      	DOWN_ARROW (pygamelib.assets.graphics.Models attribute)


      	DOWN_ARROWHEAD (pygamelib.assets.graphics.MiscTechnicals attribute)


      	DOWN_DOUBLE_AND_HORIZONTAL_SINGLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_DOUBLE_AND_LEFT_SINGLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_DOUBLE_AND_RIGHT_SINGLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_HEAVY_AND_HORIZONTAL_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_HEAVY_AND_LEFT_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_HEAVY_AND_LEFT_UP_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_HEAVY_AND_RIGHT_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_HEAVY_AND_RIGHT_UP_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_LEFT_ARROW (pygamelib.assets.graphics.Models attribute)


      	DOWN_LIGHT_AND_HORIZONTAL_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_LIGHT_AND_LEFT_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_LIGHT_AND_LEFT_UP_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_LIGHT_AND_RIGHT_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_LIGHT_AND_RIGHT_UP_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_RIGHT_ARROW (pygamelib.assets.graphics.Models attribute)


      	DOWN_SINGLE_AND_HORIZONTAL_DOUBLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_SINGLE_AND_LEFT_DOUBLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWN_SINGLE_AND_RIGHT_DOUBLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	DOWNCAST_FACE_WITH_SWEAT (pygamelib.assets.graphics.Models attribute)


      	DOWNWARDS_BUTTON (pygamelib.assets.graphics.Models attribute)


      	DRAGON (pygamelib.assets.graphics.Models attribute)


      	DRAGON_FACE (pygamelib.assets.graphics.Models attribute)


      	DRDOWN (pygamelib.constants.Direction attribute)


      	DRESS (pygamelib.assets.graphics.Models attribute)


      	DROOLING_FACE (pygamelib.assets.graphics.Models attribute)


      	DROP_OF_BLOOD (pygamelib.assets.graphics.Models attribute)


      	DROPLET (pygamelib.assets.graphics.Models attribute)


      	DRUM (pygamelib.assets.graphics.Models attribute)


      	DRUP (pygamelib.constants.Direction attribute)


      	dtanimate (pygamelib.gfx.core.Animation property)


      	dtmove (pygamelib.board_items.Camera property)

      
        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


      


      	DUCK (pygamelib.assets.graphics.Models attribute)


      	DUMPLING (pygamelib.assets.graphics.Models attribute)


      	DVD (pygamelib.assets.graphics.Models attribute)


  





E


  	
      	E_MAIL (pygamelib.assets.graphics.Models attribute)


      	EAGLE (pygamelib.assets.graphics.Models attribute)


      	EAR (pygamelib.assets.graphics.Models attribute)


      	EAR_OF_CORN (pygamelib.assets.graphics.Models attribute)


      	EAR_WITH_HEARING_AID (pygamelib.assets.graphics.Models attribute)


      	EARTH_GROUND (pygamelib.assets.graphics.MiscTechnicals attribute)


      	EGG (pygamelib.assets.graphics.Models attribute)


      	EGGPLANT (pygamelib.assets.graphics.Models attribute)


      	EIGHT_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	EIGHT_POINTED_STAR (pygamelib.assets.graphics.Models attribute)


      	EIGHT_SPOKED_ASTERISK (pygamelib.assets.graphics.Models attribute)


      	EIGHT_THIRTY (pygamelib.assets.graphics.Models attribute)


      	EJECT_BUTTON (pygamelib.assets.graphics.Models attribute)


      	EJECT_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	ELECTRIC_ARROW (pygamelib.assets.graphics.MiscTechnicals attribute)


      	ELECTRIC_PLUG (pygamelib.assets.graphics.Models attribute)


      	ELECTRICAL_INTERSECTION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	ELEPHANT (pygamelib.assets.graphics.Models attribute)


      	ELEVATOR (pygamelib.assets.graphics.Models attribute)


      	ELEVEN_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	ELEVEN_THIRTY (pygamelib.assets.graphics.Models attribute)


      	ELF (pygamelib.assets.graphics.Models attribute)


      	emit() (pygamelib.gfx.particles.CircleEmitter method)

      
        	(pygamelib.gfx.particles.ParticleEmitter method)


      


  

  	
      	EmitterProperties (class in pygamelib.gfx.particles)


      	EMPHASIS_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	empty() (pygamelib.engine.Inventory method)

      
        	(pygamelib.gfx.core.Sprite method)


      


      	empty_marker (pygamelib.gfx.ui.ProgressBar property)


      	end() (pygamelib.gfx.ui.LineInput method)


      	END_ARROW (pygamelib.assets.graphics.Models attribute)


      	ENTER_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	entries (pygamelib.gfx.ui.Menu property)

      
        	(pygamelib.gfx.ui.MenuBar property)


      


      	ENVELOPE (pygamelib.assets.graphics.Models attribute)


      	ENVELOPE_WITH_ARROW (pygamelib.assets.graphics.Models attribute)


      	ERASE_TO_THE_LEFT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	ERASE_TO_THE_RIGHT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	EURO_BANKNOTE (pygamelib.assets.graphics.Models attribute)


      	EVERGREEN_TREE (pygamelib.assets.graphics.Models attribute)


      	EWE (pygamelib.assets.graphics.Models attribute)


      	EXCLAMATION_MARK (pygamelib.assets.graphics.Models attribute)


      	EXCLAMATION_QUESTION_MARK (pygamelib.assets.graphics.Models attribute)


      	EXPAND (pygamelib.constants.SizeConstraint attribute)


      	expand() (pygamelib.gfx.ui.Menu method)


      	EXPLODING_HEAD (pygamelib.assets.graphics.Models attribute)


      	EXPRESSIONLESS_FACE (pygamelib.assets.graphics.Models attribute)


      	EYE (pygamelib.assets.graphics.Models attribute)


      	EYES (pygamelib.assets.graphics.Models attribute)


  





F


  	
      	FACE_BLOWING_A_KISS (pygamelib.assets.graphics.Models attribute)


      	FACE_SAVORING_FOOD (pygamelib.assets.graphics.Models attribute)


      	FACE_SCREAMING_IN_FEAR (pygamelib.assets.graphics.Models attribute)


      	FACE_VOMITING (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_HAND_OVER_MOUTH (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_HEAD_BANDAGE (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_MEDICAL_MASK (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_MONOCLE (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_OPEN_MOUTH (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_RAISED_EYEBROW (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_ROLLING_EYES (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_STEAM_FROM_NOSE (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_SYMBOLS_ON_MOUTH (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_TEARS_OF_JOY (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_THERMOMETER (pygamelib.assets.graphics.Models attribute)


      	FACE_WITH_TONGUE (pygamelib.assets.graphics.Models attribute)


      	FACE_WITHOUT_MOUTH (pygamelib.assets.graphics.Models attribute)


      	FACTORY (pygamelib.assets.graphics.Models attribute)


      	FAIRY (pygamelib.assets.graphics.Models attribute)


      	FALAFEL (pygamelib.assets.graphics.Models attribute)


      	FALLEN_LEAF (pygamelib.assets.graphics.Models attribute)


      	FAMILY (pygamelib.assets.graphics.Models attribute)


      	FAST_DOWN_BUTTON (pygamelib.assets.graphics.Models attribute)


      	FAST_FORWARD_BUTTON (pygamelib.assets.graphics.Models attribute)


      	FAST_REVERSE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	FAST_UP_BUTTON (pygamelib.assets.graphics.Models attribute)


      	fatal() (pygamelib.base.Text static method)


      	FAX_MACHINE (pygamelib.assets.graphics.Models attribute)


      	FEARFUL_FACE (pygamelib.assets.graphics.Models attribute)


      	FEATHER (pygamelib.assets.graphics.Models attribute)


      	FEMALE_SIGN (pygamelib.assets.graphics.Models attribute)


      	FERRIS_WHEEL (pygamelib.assets.graphics.Models attribute)


      	FERRY (pygamelib.assets.graphics.Models attribute)


      	fg_color (pygamelib.base.Text property)

      
        	(pygamelib.gfx.core.Sprixel property)


        	(pygamelib.gfx.particles.ParticleSprixel property)


      


      	FIELD_HOCKEY (pygamelib.assets.graphics.Models attribute)


      	fields (pygamelib.gfx.ui.MultiLineInputDialog property)


      	FILE_CABINET (pygamelib.assets.graphics.Models attribute)


      	FILE_FOLDER (pygamelib.assets.graphics.Models attribute)


      	FileDialog (class in pygamelib.gfx.ui)


      	FILM_FRAMES (pygamelib.assets.graphics.Models attribute)


      	FILM_PROJECTOR (pygamelib.assets.graphics.Models attribute)


      	filter (pygamelib.gfx.ui.FileDialog property)

      
        	(pygamelib.gfx.ui.LineInput property)


      


      	find_path() (pygamelib.actuators.PathFinder method)


      	finished() (pygamelib.gfx.particles.CircleEmitter method)

      
        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


      


      	FIRE (pygamelib.assets.graphics.Models attribute)


      	FIRE_ENGINE (pygamelib.assets.graphics.Models attribute)


      	FIRE_EXTINGUISHER (pygamelib.assets.graphics.Models attribute)


      	FIRECRACKER (pygamelib.assets.graphics.Models attribute)


      	FIREWORKS (pygamelib.assets.graphics.Models attribute)


      	FIRST_PLACE_MEDAL (pygamelib.assets.graphics.Models attribute)


      	FIRST_QUARTER_MOON (pygamelib.assets.graphics.Models attribute)


      	FIRST_QUARTER_MOON_FACE (pygamelib.assets.graphics.Models attribute)


      	FISH (pygamelib.assets.graphics.Models attribute)


  

  	
      	FISH_CAKE_WITH_SWIRL (pygamelib.assets.graphics.Models attribute)


      	FISHEYE (pygamelib.assets.graphics.GeometricShapes attribute)


      	FISHING_POLE (pygamelib.assets.graphics.Models attribute)


      	FIVE_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	FIVE_THIRTY (pygamelib.assets.graphics.Models attribute)


      	FLAG_IN_HOLE (pygamelib.assets.graphics.Models attribute)


      	FLAMINGO (pygamelib.assets.graphics.Models attribute)


      	FLASHLIGHT (pygamelib.assets.graphics.Models attribute)


      	FLAT_SHOE (pygamelib.assets.graphics.Models attribute)


      	FLATBREAD (pygamelib.assets.graphics.Models attribute)


      	FLATNESS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	FLEUR_DE_LIS (pygamelib.assets.graphics.Models attribute)


      	FLEXED_BICEPS (pygamelib.assets.graphics.Models attribute)


      	flip_horizontally() (pygamelib.gfx.core.Sprite method)


      	flip_vertically() (pygamelib.gfx.core.Sprite method)


      	FLOPPY_DISK (pygamelib.assets.graphics.Models attribute)


      	FLOWER_PLAYING_CARDS (pygamelib.assets.graphics.Models attribute)


      	FLUSHED_FACE (pygamelib.assets.graphics.Models attribute)


      	FLY (pygamelib.assets.graphics.Models attribute)


      	FLYING_DISC (pygamelib.assets.graphics.Models attribute)


      	FLYING_SAUCER (pygamelib.assets.graphics.Models attribute)


      	focus (pygamelib.gfx.ui.LineInput property)

      
        	(pygamelib.gfx.ui.Widget property)


      


      	FOG (pygamelib.assets.graphics.Models attribute)


      	FOGGY (pygamelib.assets.graphics.Models attribute)


      	FOLDED_HANDS (pygamelib.assets.graphics.Models attribute)


      	FONDUE (pygamelib.assets.graphics.Models attribute)


      	Font (class in pygamelib.gfx.core)


      	FOOT (pygamelib.assets.graphics.Models attribute)


      	FOOTPRINTS (pygamelib.assets.graphics.Models attribute)


      	force_render() (pygamelib.engine.Screen method)


      	force_update() (pygamelib.engine.Screen method)


      	FORK_AND_KNIFE (pygamelib.assets.graphics.Models attribute)


      	FORK_AND_KNIFE_WITH_PLATE (pygamelib.assets.graphics.Models attribute)


      	FormLayout (class in pygamelib.gfx.ui)


      	FORTUNE_COOKIE (pygamelib.assets.graphics.Models attribute)


      	FOUNTAIN (pygamelib.assets.graphics.Models attribute)


      	FOUNTAIN_PEN (pygamelib.assets.graphics.Models attribute)


      	FOUR_LEAF_CLOVER (pygamelib.assets.graphics.Models attribute)


      	FOUR_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	FOUR_THIRTY (pygamelib.assets.graphics.Models attribute)


      	FOX (pygamelib.assets.graphics.Models attribute)


      	FRAMED_PICTURE (pygamelib.assets.graphics.Models attribute)


      	FREE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	FRENCH_FRIES (pygamelib.assets.graphics.Models attribute)


      	FRIED_SHRIMP (pygamelib.assets.graphics.Models attribute)


      	FROG (pygamelib.assets.graphics.Models attribute)


      	from_ansi() (pygamelib.gfx.core.Color class method)

      
        	(pygamelib.gfx.core.Sprixel static method)


        	(pygamelib.gfx.particles.ParticleSprixel static method)


      


      	from_direction() (pygamelib.base.Vector2D class method)


      	from_text() (pygamelib.gfx.core.Sprite class method)


      	fromkeys() (pygamelib.gfx.core.SpriteCollection class method)


      	FRONT_FACING_BABY_CHICK (pygamelib.assets.graphics.Models attribute)


      	FROWN (pygamelib.assets.graphics.MiscTechnicals attribute)


      	FROWNING_FACE (pygamelib.assets.graphics.Models attribute)


      	FROWNING_FACE_WITH_OPEN_MOUTH (pygamelib.assets.graphics.Models attribute)


      	FUEL_PUMP (pygamelib.assets.graphics.Models attribute)


      	FULL_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	FULL_MOON (pygamelib.assets.graphics.Models attribute)


      	FULL_MOON_FACE (pygamelib.assets.graphics.Models attribute)


      	FUNERAL_URN (pygamelib.assets.graphics.Models attribute)


      	FUSE (pygamelib.assets.graphics.MiscTechnicals attribute)


  





G


  	
      	g (pygamelib.gfx.core.Color property)


      	Game (class in pygamelib.engine)


      	GAME_DIE (pygamelib.assets.graphics.Models attribute)


      	GARLIC (pygamelib.assets.graphics.Models attribute)


      	GEAR (pygamelib.assets.graphics.Models attribute)


      	GEM_STONE (pygamelib.assets.graphics.Models attribute)


      	GEMINI (pygamelib.assets.graphics.Models attribute)


      	generate_void_cell() (pygamelib.engine.Board method)


      	GenericActionableStructure (class in pygamelib.board_items)


      	GenericStructure (class in pygamelib.board_items)


      	GenericStructureComplexComponent (class in pygamelib.board_items)


      	GENIE (pygamelib.assets.graphics.Models attribute)


      	GeometricShapes (class in pygamelib.assets.graphics)


      	get() (pygamelib.engine.Screen method)

      
        	(pygamelib.gfx.core.SpriteCollection method)


      


      	get_board() (pygamelib.engine.Game method)


      	get_immovables() (pygamelib.engine.Board method)


      	get_item() (pygamelib.engine.Inventory method)


      	get_items() (pygamelib.engine.Inventory method)


      	get_key() (pygamelib.engine.Game static method)


      	get_movables() (pygamelib.engine.Board method)


      	get_particles() (pygamelib.gfx.particles.ParticlePool method)


      	GHOST (pygamelib.assets.graphics.Models attribute)


      	GIRAFFE (pygamelib.assets.graphics.Models attribute)


      	GIRL (pygamelib.assets.graphics.Models attribute)


      	GLASS_OF_MILK (pygamelib.assets.graphics.Models attribute)


      	GLASSES (pygamelib.assets.graphics.Models attribute)


      	GLOBE_SHOWING_AMERICAS (pygamelib.assets.graphics.Models attribute)


      	GLOBE_SHOWING_ASIA_AUSTRALIA (pygamelib.assets.graphics.Models attribute)


      	GLOBE_SHOWING_EUROPE_AFRICA (pygamelib.assets.graphics.Models attribute)


      	GLOBE_WITH_MERIDIANS (pygamelib.assets.graphics.Models attribute)


      	GLOVES (pygamelib.assets.graphics.Models attribute)


      	GLOWING_STAR (pygamelib.assets.graphics.Models attribute)


      	glyph() (pygamelib.gfx.core.Font method)


      	glyphs_map (pygamelib.gfx.core.Font property)


      	GOAL_NET (pygamelib.assets.graphics.Models attribute)


  

  	
      	GOAT (pygamelib.assets.graphics.Models attribute)


      	GOBLIN (pygamelib.assets.graphics.Models attribute)


      	GOGGLES (pygamelib.assets.graphics.Models attribute)


      	GORILLA (pygamelib.assets.graphics.Models attribute)


      	GRADUATION_CAP (pygamelib.assets.graphics.Models attribute)


      	GRAPES (pygamelib.assets.graphics.Models attribute)


      	green (pygamelib.gfx.ui.ColorPicker property)


      	green() (pygamelib.base.Text static method)


      	GREEN_APPLE (pygamelib.assets.graphics.Models attribute)


      	GREEN_BOOK (pygamelib.assets.graphics.Models attribute)


      	green_bright() (pygamelib.base.Text static method)


      	GREEN_CIRCLE (pygamelib.assets.graphics.Models attribute)


      	green_dim() (pygamelib.base.Text static method)


      	GREEN_HEART (pygamelib.assets.graphics.Models attribute)


      	green_rect() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	GREEN_SALAD (pygamelib.assets.graphics.Models attribute)


      	GREEN_SQUARE (pygamelib.assets.graphics.Models attribute)


      	green_square() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	grid_selector (pygamelib.gfx.ui.GridSelectorDialog property)


      	GridLayout (class in pygamelib.gfx.ui)


      	GridSelector (class in pygamelib.gfx.ui)


      	GridSelectorDialog (class in pygamelib.gfx.ui)


      	GRIMACING_FACE (pygamelib.assets.graphics.Models attribute)


      	GRINNING_CAT (pygamelib.assets.graphics.Models attribute)


      	GRINNING_CAT_WITH_SMILING_EYES (pygamelib.assets.graphics.Models attribute)


      	GRINNING_FACE (pygamelib.assets.graphics.Models attribute)


      	GRINNING_FACE_WITH_BIG_EYES (pygamelib.assets.graphics.Models attribute)


      	GRINNING_FACE_WITH_SMILING_EYES (pygamelib.assets.graphics.Models attribute)


      	GRINNING_FACE_WITH_SWEAT (pygamelib.assets.graphics.Models attribute)


      	GRINNING_SQUINTING_FACE (pygamelib.assets.graphics.Models attribute)


      	GROWING_HEART (pygamelib.assets.graphics.Models attribute)


      	GUARD (pygamelib.assets.graphics.Models attribute)


      	GUIDE_DOG (pygamelib.assets.graphics.Models attribute)


      	GUITAR (pygamelib.assets.graphics.Models attribute)


  





H


  	
      	H_CENTER (pygamelib.constants.Alignment attribute)


      	HacException


      	HacInvalidLevelException


      	HacInvalidTypeException


      	HacObjectIsNotMovableException


      	HacOutOfBoardBoundException


      	HAMBURGER (pygamelib.assets.graphics.Models attribute)


      	HAMMER (pygamelib.assets.graphics.Models attribute)


      	HAMMER_AND_PICK (pygamelib.assets.graphics.Models attribute)


      	HAMMER_AND_WRENCH (pygamelib.assets.graphics.Models attribute)


      	HAMSTER (pygamelib.assets.graphics.Models attribute)


      	HAND_WITH_FINGERS_SPLAYED (pygamelib.assets.graphics.Models attribute)


      	HANDBAG (pygamelib.assets.graphics.Models attribute)


      	handle_notification() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.base.PglBaseObject method)


        	(pygamelib.base.Text method)


        	(pygamelib.board_items.Actionable method)


        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


        	(pygamelib.engine.Board method)


        	(pygamelib.engine.Game method)


        	(pygamelib.engine.Inventory method)


        	(pygamelib.engine.Screen method)


        	(pygamelib.gfx.core.Color method)


        	(pygamelib.gfx.core.Sprite method)


        	(pygamelib.gfx.core.Sprixel method)


        	(pygamelib.gfx.particles.CircleEmitter method)


        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.ParticleSprixel method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


        	(pygamelib.gfx.ui.BoxLayout method)


        	(pygamelib.gfx.ui.Cursor method)


        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.Layout method)


        	(pygamelib.gfx.ui.LineInput method)


        	(pygamelib.gfx.ui.Widget method)


      


      	HANDSHAKE (pygamelib.assets.graphics.Models attribute)


      	has_inventory() (pygamelib.board_items.Camera method)

      
        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


      


      	HATCHING_CHICK (pygamelib.assets.graphics.Models attribute)


      	hcenter (pygamelib.engine.Screen property)


      	heading (pygamelib.board_items.Actionable property)

      
        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


      


      	HEADPHONE (pygamelib.assets.graphics.Models attribute)


      	HEADSTONE (pygamelib.assets.graphics.Models attribute)


      	HEAR_NO_EVIL_MONKEY (pygamelib.assets.graphics.Models attribute)


      	HEART_DECORATION (pygamelib.assets.graphics.Models attribute)


      	HEART_EXCLAMATION (pygamelib.assets.graphics.Models attribute)


      	HEART_SUIT (pygamelib.assets.graphics.Models attribute)


      	HEART_WITH_ARROW (pygamelib.assets.graphics.Models attribute)


  

  	
      	HEART_WITH_RIBBON (pygamelib.assets.graphics.Models attribute)


      	HEAVY_DOLLAR_SIGN (pygamelib.assets.graphics.Models attribute)


      	HEAVY_DOUBLE_DASH_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_DOUBLE_DASH_VERTICAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_DOWN (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_DOWN_AND_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_DOWN_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_DOWN_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_LEFT_AND_LIGHT_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_QUADRUPLE_DASH_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_QUADRUPLE_DASH_VERTICAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_TRIPLE_DASH_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_TRIPLE_DASH_VERTICAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_UP (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_UP_AND_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_UP_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_UP_AND_LIGHT_DOWN (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_UP_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_VERTICAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_VERTICAL_AND_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_VERTICAL_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEAVY_VERTICAL_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	HEDGEHOG (pygamelib.assets.graphics.Models attribute)


      	height (pygamelib.board_items.Actionable property)

      
        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


        	(pygamelib.engine.Board property)


        	(pygamelib.engine.Screen property)


        	(pygamelib.gfx.core.Font property)


        	(pygamelib.gfx.core.Sprite property)


        	(pygamelib.gfx.ui.Box property)


        	(pygamelib.gfx.ui.BoxLayout property)


        	(pygamelib.gfx.ui.FormLayout property)


        	(pygamelib.gfx.ui.GridLayout property)


        	(pygamelib.gfx.ui.Layout property)


        	(pygamelib.gfx.ui.LineInput property)


        	(pygamelib.gfx.ui.MessageDialog property)


        	(pygamelib.gfx.ui.Widget property)


      


      	HELICOPTER (pygamelib.assets.graphics.Models attribute)


      	HELM_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	HERB (pygamelib.assets.graphics.Models attribute)


      	HIBISCUS (pygamelib.assets.graphics.Models attribute)


      	HIGH_HEELED_SHOE (pygamelib.assets.graphics.Models attribute)


      	HIGH_SPEED_TRAIN (pygamelib.assets.graphics.Models attribute)


      	HIGH_VOLTAGE (pygamelib.assets.graphics.Models attribute)


      	HIKING_BOOT (pygamelib.assets.graphics.Models attribute)


      	HINDU_TEMPLE (pygamelib.assets.graphics.Models attribute)


      	HIPPOPOTAMUS (pygamelib.assets.graphics.Models attribute)


      	History (class in pygamelib.base)


      	hit() (pygamelib.board_items.Projectile method)


      	HOLE (pygamelib.assets.graphics.Models attribute)


      	HOLLOW_RED_CIRCLE (pygamelib.assets.graphics.Models attribute)


      	home() (pygamelib.gfx.ui.LineInput method)


      	HONEY_POT (pygamelib.assets.graphics.Models attribute)


      	HONEYBEE (pygamelib.assets.graphics.Models attribute)


      	HOOK (pygamelib.assets.graphics.Models attribute)


      	HORIZONTAL (pygamelib.constants.Orientation attribute)


      	HORIZONTAL_LINE_EXTENSION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	HORIZONTAL_SCAN_LINE_1 (pygamelib.assets.graphics.MiscTechnicals attribute)


      	HORIZONTAL_SCAN_LINE_3 (pygamelib.assets.graphics.MiscTechnicals attribute)


      	HORIZONTAL_SCAN_LINE_7 (pygamelib.assets.graphics.MiscTechnicals attribute)


      	HORIZONTAL_SCAN_LINE_9 (pygamelib.assets.graphics.MiscTechnicals attribute)


      	horizontal_spacing (pygamelib.gfx.core.Font property)

      
        	(pygamelib.gfx.ui.FormLayout property)


        	(pygamelib.gfx.ui.GridLayout property)


      


      	HORIZONTAL_TRAFFIC_LIGHT (pygamelib.assets.graphics.Models attribute)


      	HORSE (pygamelib.assets.graphics.Models attribute)


      	HORSE_FACE (pygamelib.assets.graphics.Models attribute)


      	HORSE_RACING (pygamelib.assets.graphics.Models attribute)


      	HOSPITAL (pygamelib.assets.graphics.Models attribute)


      	HOT_BEVERAGE (pygamelib.assets.graphics.Models attribute)


      	HOT_DOG (pygamelib.assets.graphics.Models attribute)


      	HOT_FACE (pygamelib.assets.graphics.Models attribute)


      	HOT_PEPPER (pygamelib.assets.graphics.Models attribute)


      	HOT_SPRINGS (pygamelib.assets.graphics.Models attribute)


      	HOTEL (pygamelib.assets.graphics.Models attribute)


      	HOURGLASS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	HOURGLASS_DONE (pygamelib.assets.graphics.Models attribute)


      	HOURGLASS_NOT_DONE (pygamelib.assets.graphics.Models attribute)


      	HOURGLASS_WITH_FLOWING_SAND (pygamelib.assets.graphics.MiscTechnicals attribute)


      	HOUSE (pygamelib.assets.graphics.MiscTechnicals attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	HOUSE_WITH_GARDEN (pygamelib.assets.graphics.Models attribute)


      	HOUSES (pygamelib.assets.graphics.Models attribute)


      	HUGGING_FACE (pygamelib.assets.graphics.Models attribute)


      	HUNDRED_POINTS (pygamelib.assets.graphics.Models attribute)


      	HUSHED_FACE (pygamelib.assets.graphics.Models attribute)


      	HUT (pygamelib.assets.graphics.Models attribute)


      	HYSTERESIS_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


  





I


  	
      	ICE (pygamelib.assets.graphics.Models attribute)


      	ICE_CREAM (pygamelib.assets.graphics.Models attribute)


      	ICE_HOCKEY (pygamelib.assets.graphics.Models attribute)


      	ICE_SKATE (pygamelib.assets.graphics.Models attribute)


      	ID_BUTTON (pygamelib.assets.graphics.Models attribute)


      	Immovable (class in pygamelib.board_items)


      	INBOX_TRAY (pygamelib.assets.graphics.Models attribute)


      	INCOMING_ENVELOPE (pygamelib.assets.graphics.Models attribute)


      	INDEX_POINTING_UP (pygamelib.assets.graphics.Models attribute)


      	INFINITY (pygamelib.assets.graphics.Models attribute)


      	info() (pygamelib.base.Text static method)


      	INFORMATION (pygamelib.assets.graphics.Models attribute)


      	init_board() (pygamelib.engine.Board method)


      	init_cell() (pygamelib.engine.Board method)


      	INPUT_LATIN_LETTERS (pygamelib.assets.graphics.Models attribute)


      	INPUT_LATIN_LOWERCASE (pygamelib.assets.graphics.Models attribute)


      	INPUT_LATIN_UPPERCASE (pygamelib.assets.graphics.Models attribute)


      	INPUT_NUMBERS (pygamelib.assets.graphics.Models attribute)


      	INPUT_SYMBOLS (pygamelib.assets.graphics.Models attribute)


      	insert_board() (pygamelib.engine.Game method)


      	insert_characters() (pygamelib.gfx.ui.LineInput method)


      	INSERTION_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	instance() (pygamelib.base.Console class method)

      
        	(pygamelib.base.History class method)


        	(pygamelib.engine.Game class method)


        	(pygamelib.gfx.ui.UiConfig class method)


      


      	instantiate_item() (pygamelib.engine.Board static method)


      	INTEGER_FILTER (pygamelib.constants.InputValidator attribute)


      	INTEGRAL_EXTENSION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	intersect() (pygamelib.base.Math static method)


      	Inventory (class in pygamelib.engine)


      	inventory_space (pygamelib.board_items.Actionable property)

      
        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


      


  

  	
      	INVERSE_BULLET (pygamelib.assets.graphics.GeometricShapes attribute)


      	INVERSE_WHITE_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	item() (pygamelib.board_items.ActionableTile method)

      
        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.engine.Board method)


      


      	items (pygamelib.engine.Inventory property)


      	items() (pygamelib.gfx.core.SpriteCollection method)


      	items_name() (pygamelib.engine.Inventory method)


      	items_per_page() (pygamelib.gfx.ui.GridSelector method)


  





J


  	
      	JACK_O_LANTERN (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_ACCEPTABLE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_APPLICATION_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_BARGAIN_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_CASTLE (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_CONGRATULATIONS_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_DISCOUNT_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_DOLLS (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_FREE_OF_CHARGE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_HERE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_MONTHLY_AMOUNT_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_NO_VACANCY_BUTTON (pygamelib.assets.graphics.Models attribute)


  

  	
      	JAPANESE_NOT_FREE_OF_CHARGE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_OPEN_FOR_BUSINESS_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_PASSING_GRADE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_POST_OFFICE (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_PROHIBITED_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_RESERVED_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_SECRET_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_SERVICE_CHARGE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_SYMBOL_FOR_BEGINNER (pygamelib.assets.graphics.Models attribute)


      	JAPANESE_VACANCY_BUTTON (pygamelib.assets.graphics.Models attribute)


      	JEANS (pygamelib.assets.graphics.Models attribute)


      	JOKER (pygamelib.assets.graphics.Models attribute)


      	JOYSTICK (pygamelib.assets.graphics.Models attribute)


  





K


  	
      	KAABA (pygamelib.assets.graphics.Models attribute)


      	KANGAROO (pygamelib.assets.graphics.Models attribute)


      	KEY (pygamelib.assets.graphics.Models attribute)


      	KEYBOARD (pygamelib.assets.graphics.MiscTechnicals attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	keys() (pygamelib.gfx.core.SpriteCollection method)


      	KICK_SCOOTER (pygamelib.assets.graphics.Models attribute)


      	KIMONO (pygamelib.assets.graphics.Models attribute)


      	KISS (pygamelib.assets.graphics.Models attribute)


  

  	
      	KISS_MARK (pygamelib.assets.graphics.Models attribute)


      	KISSING_CAT (pygamelib.assets.graphics.Models attribute)


      	KISSING_FACE (pygamelib.assets.graphics.Models attribute)


      	KISSING_FACE_WITH_CLOSED_EYES (pygamelib.assets.graphics.Models attribute)


      	KISSING_FACE_WITH_SMILING_EYES (pygamelib.assets.graphics.Models attribute)


      	KITCHEN_KNIFE (pygamelib.assets.graphics.Models attribute)


      	KITE (pygamelib.assets.graphics.Models attribute)


      	KIWI_FRUIT (pygamelib.assets.graphics.Models attribute)


      	KNOT (pygamelib.assets.graphics.Models attribute)


      	KOALA (pygamelib.assets.graphics.Models attribute)


  





L


  	
      	LAB_COAT (pygamelib.assets.graphics.Models attribute)


      	LABEL (pygamelib.assets.graphics.Models attribute)


      	label (pygamelib.gfx.ui.LineInputDialog property)

      
        	(pygamelib.gfx.ui.ProgressDialog property)


      


      	LACROSSE (pygamelib.assets.graphics.Models attribute)


      	LADDER (pygamelib.assets.graphics.Models attribute)


      	LADY_BEETLE (pygamelib.assets.graphics.Models attribute)


      	LAPTOP (pygamelib.assets.graphics.Models attribute)


      	LARGE_BLUE_DIAMOND (pygamelib.assets.graphics.Models attribute)


      	LARGE_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	LARGE_ORANGE_DIAMOND (pygamelib.assets.graphics.Models attribute)


      	LAST_QUARTER_MOON (pygamelib.assets.graphics.Models attribute)


      	LAST_QUARTER_MOON_FACE (pygamelib.assets.graphics.Models attribute)


      	LAST_TRACK_BUTTON (pygamelib.assets.graphics.Models attribute)


      	LATIN_CROSS (pygamelib.assets.graphics.Models attribute)


      	layer (pygamelib.board_items.Actionable property)

      
        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


      


      	layers() (pygamelib.engine.Board method)


      	Layout (class in pygamelib.gfx.ui)


      	layout (pygamelib.gfx.ui.LineInput property)

      
        	(pygamelib.gfx.ui.Widget property)


      


      	LEAF_FLUTTERING_IN_WIND (pygamelib.assets.graphics.Models attribute)


      	LEAFY_GREEN (pygamelib.assets.graphics.Models attribute)


      	LEDGER (pygamelib.assets.graphics.Models attribute)


      	LEFT (pygamelib.constants.Alignment attribute)

      
        	(pygamelib.constants.Direction attribute)


      


      	LEFT_ARROW (pygamelib.assets.graphics.Models attribute)


      	LEFT_ARROW_CURVING_RIGHT (pygamelib.assets.graphics.Models attribute)


      	LEFT_CEILING (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_CURLY_BRACKET_LOWER_HOOK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_CURLY_BRACKET_MIDDLE_PIECE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_CURLY_BRACKET_UPPER_HOOK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LEFT_FACING_FIST (pygamelib.assets.graphics.Models attribute)


      	LEFT_FIVE_EIGHTHS_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LEFT_FLOOR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_HALF_BLACK_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	LEFT_HALF_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LEFT_HEAVY_AND_RIGHT_UP_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	LEFT_LIGHT_AND_RIGHT_UP_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	LEFT_LUGGAGE (pygamelib.assets.graphics.Models attribute)


      	LEFT_ONE_EIGHTH_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LEFT_ONE_QUARTER_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LEFT_PARENTHESIS_EXTENSION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_PARENTHESIS_LOWER_HOOK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_PARENTHESIS_UPPER_HOOK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_POINTING_ANGLE_BRACKET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_RIGHT_ARROW (pygamelib.assets.graphics.Models attribute)


      	LEFT_SEVEN_EIGHTHS_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LEFT_SPEECH_BUBBLE (pygamelib.assets.graphics.Models attribute)


      	LEFT_SQUARE_BRACKET_EXTENSION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_SQUARE_BRACKET_LOWER_CORNER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_SQUARE_BRACKET_UPPER_CORNER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEFT_THREE_EIGHTHS_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LEFT_THREE_QUARTERS_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LEFT_VERTICAL_BOX_LINE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	LEG (pygamelib.assets.graphics.Models attribute)


      	LEMON (pygamelib.assets.graphics.Models attribute)


      	length (pygamelib.base.Text property)

      
        	(pygamelib.gfx.core.Sprixel property)


        	(pygamelib.gfx.particles.ParticleSprixel property)


      


      	length() (pygamelib.base.Vector2D method)

      
        	(pygamelib.gfx.ui.LineInput method)


        	(pygamelib.gfx.ui.MenuBar method)


      


      	LEO (pygamelib.assets.graphics.Models attribute)


      	LEOPARD (pygamelib.assets.graphics.Models attribute)


      	lerp() (pygamelib.base.Math static method)


      	LEVEL_SLIDER (pygamelib.assets.graphics.Models attribute)


      	LIBRA (pygamelib.assets.graphics.Models attribute)


      	LIGHT_ARC_DOWN_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_ARC_DOWN_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_ARC_UP_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_ARC_UP_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_BULB (pygamelib.assets.graphics.Models attribute)


      	LIGHT_DIAGONAL_CROSS (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_DOUBLE_DASH_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_DOUBLE_DASH_VERTICAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_DOWN (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_DOWN_AND_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_DOWN_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_DOWN_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


  

  	
      	LIGHT_LEFT_AND_HEAVY_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_QUADRUPLE_DASH_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_QUADRUPLE_DASH_VERTICAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_RAIL (pygamelib.assets.graphics.Models attribute)


      	LIGHT_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_SHADE (pygamelib.assets.graphics.Blocks attribute)


      	LIGHT_SKIN_TONE (pygamelib.assets.graphics.Models attribute)


      	LIGHT_TRIPLE_DASH_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_TRIPLE_DASH_VERTICAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_UP (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_UP_AND_HEAVY_DOWN (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_UP_AND_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_UP_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_UP_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_VERTICAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_VERTICAL_AND_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_VERTICAL_AND_LEFT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LIGHT_VERTICAL_AND_RIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	LineInput (class in pygamelib.gfx.ui)


      	LineInputDialog (class in pygamelib.gfx.ui)


      	LINK (pygamelib.assets.graphics.Models attribute)


      	LINKED_PAPERCLIPS (pygamelib.assets.graphics.Models attribute)


      	LION (pygamelib.assets.graphics.Models attribute)


      	LIPSTICK (pygamelib.assets.graphics.Models attribute)


      	LITTER_IN_BIN_SIGN (pygamelib.assets.graphics.Models attribute)


      	LIZARD (pygamelib.assets.graphics.Models attribute)


      	LLAMA (pygamelib.assets.graphics.Models attribute)


      	load() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator class method)


        	(pygamelib.actuators.PathFinder class method)


        	(pygamelib.actuators.PatrolActuator class method)


        	(pygamelib.actuators.RandomActuator class method)


        	(pygamelib.actuators.UnidirectionalActuator class method)


        	(pygamelib.base.Text class method)


        	(pygamelib.base.Vector2D class method)


        	(pygamelib.board_items.Actionable class method)


        	(pygamelib.board_items.ActionableTile class method)


        	(pygamelib.board_items.BoardComplexItem class method)


        	(pygamelib.board_items.BoardItem class method)


        	(pygamelib.board_items.BoardItemComplexComponent class method)


        	(pygamelib.board_items.BoardItemVoid class method)


        	(pygamelib.board_items.Camera class method)


        	(pygamelib.board_items.Character class method)


        	(pygamelib.board_items.ComplexDoor class method)


        	(pygamelib.board_items.ComplexNPC class method)


        	(pygamelib.board_items.ComplexPlayer class method)


        	(pygamelib.board_items.ComplexTreasure class method)


        	(pygamelib.board_items.ComplexWall class method)


        	(pygamelib.board_items.Door class method)


        	(pygamelib.board_items.GenericActionableStructure class method)


        	(pygamelib.board_items.GenericStructure class method)


        	(pygamelib.board_items.GenericStructureComplexComponent class method)


        	(pygamelib.board_items.Immovable class method)


        	(pygamelib.board_items.Movable class method)


        	(pygamelib.board_items.NPC class method)


        	(pygamelib.board_items.Player class method)


        	(pygamelib.board_items.Projectile class method)


        	(pygamelib.board_items.TextItem class method)


        	(pygamelib.board_items.Tile class method)


        	(pygamelib.board_items.Treasure class method)


        	(pygamelib.board_items.Wall class method)


        	(pygamelib.engine.Board class method)


        	(pygamelib.engine.Inventory class method)


        	(pygamelib.gfx.core.Animation class method)


        	(pygamelib.gfx.core.Color class method)


        	(pygamelib.gfx.core.Font method)


        	(pygamelib.gfx.core.Sprite class method)


        	(pygamelib.gfx.core.SpriteCollection class method)


        	(pygamelib.gfx.core.Sprixel class method)


        	(pygamelib.gfx.particles.CircleEmitter class method)


        	(pygamelib.gfx.particles.ColorParticle class method)


        	(pygamelib.gfx.particles.ColorPartitionParticle class method)


        	(pygamelib.gfx.particles.EmitterProperties class method)


        	(pygamelib.gfx.particles.Particle class method)


        	(pygamelib.gfx.particles.ParticleEmitter class method)


        	(pygamelib.gfx.particles.ParticleSprixel class method)


        	(pygamelib.gfx.particles.PartitionParticle class method)


        	(pygamelib.gfx.particles.RandomColorParticle class method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle class method)


      


      	load_board() (pygamelib.engine.Game method)


      	load_config() (pygamelib.engine.Game method)


      	load_from_ansi_file() (pygamelib.gfx.core.Sprite class method)


      	load_json_file() (pygamelib.gfx.core.SpriteCollection static method)


      	LOBSTER (pygamelib.assets.graphics.Models attribute)


      	lock_position() (pygamelib.gfx.ui.Cursor method)


      	LOCKED (pygamelib.assets.graphics.Models attribute)


      	LOCKED_WITH_KEY (pygamelib.assets.graphics.Models attribute)


      	LOCKED_WITH_PEN (pygamelib.assets.graphics.Models attribute)


      	LOCOMOTIVE (pygamelib.assets.graphics.Models attribute)


      	LOLLIPOP (pygamelib.assets.graphics.Models attribute)


      	LONG_DRUM (pygamelib.assets.graphics.Models attribute)


      	LOTION_BOTTLE (pygamelib.assets.graphics.Models attribute)


      	LOUDLY_CRYING_FACE (pygamelib.assets.graphics.Models attribute)


      	LOUDSPEAKER (pygamelib.assets.graphics.Models attribute)


      	LOVE_HOTEL (pygamelib.assets.graphics.Models attribute)


      	LOVE_LETTER (pygamelib.assets.graphics.Models attribute)


      	LOVE_YOU_GESTURE (pygamelib.assets.graphics.Models attribute)


      	LOWER_FIVE_EIGHTHS_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LOWER_HALF_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LOWER_HALF_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	LOWER_HALF_INVERSE_WHITE_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	LOWER_LEFT_QUADRANT_CIRCULAR_ARC (pygamelib.assets.graphics.GeometricShapes attribute)


      	LOWER_LEFT_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	LOWER_ONE_EIGHTH_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LOWER_ONE_QUARTER_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LOWER_RIGHT_QUADRANT_CIRCULAR_ARC (pygamelib.assets.graphics.GeometricShapes attribute)


      	LOWER_RIGHT_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	LOWER_SEVEN_EIGHTHS_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LOWER_THREE_EIGHTHS_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LOWER_THREE_QUARTERS_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	LOZENGE (pygamelib.assets.graphics.GeometricShapes attribute)


      	LUGGAGE (pygamelib.assets.graphics.Models attribute)


      	LUNGS (pygamelib.assets.graphics.Models attribute)


      	LYING_FACE (pygamelib.assets.graphics.Models attribute)


  





M


  	
      	MAGE (pygamelib.assets.graphics.Models attribute)


      	magenta() (pygamelib.base.Text static method)


      	magenta_bright() (pygamelib.base.Text static method)


      	magenta_dim() (pygamelib.base.Text static method)


      	magenta_rect() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	magenta_square() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	MAGIC_WAND (pygamelib.assets.graphics.Models attribute)


      	MAGNET (pygamelib.assets.graphics.Models attribute)


      	MAGNIFYING_GLASS_TILTED_LEFT (pygamelib.assets.graphics.Models attribute)


      	MAGNIFYING_GLASS_TILTED_RIGHT (pygamelib.assets.graphics.Models attribute)


      	MAHJONG_RED_DRAGON (pygamelib.assets.graphics.Models attribute)


      	MALE_SIGN (pygamelib.assets.graphics.Models attribute)


      	MAMMOTH (pygamelib.assets.graphics.Models attribute)


      	MAN (pygamelib.assets.graphics.Models attribute)


      	MAN_BEARD (pygamelib.assets.graphics.Models attribute)


      	MAN_DANCING (pygamelib.assets.graphics.Models attribute)


      	MANGO (pygamelib.assets.graphics.Models attribute)


      	MANS_SHOE (pygamelib.assets.graphics.Models attribute)


      	MANTELPIECE_CLOCK (pygamelib.assets.graphics.Models attribute)


      	MANUAL_WHEELCHAIR (pygamelib.assets.graphics.Models attribute)


      	MAP_OF_JAPAN (pygamelib.assets.graphics.Models attribute)


      	MAPLE_LEAF (pygamelib.assets.graphics.Models attribute)


      	MARTIAL_ARTS_UNIFORM (pygamelib.assets.graphics.Models attribute)


      	MATE (pygamelib.assets.graphics.Models attribute)


      	Math (class in pygamelib.base)


      	max_height (pygamelib.gfx.ui.GridSelector property)


      	max_width (pygamelib.gfx.ui.GridSelector property)


      	maximum (pygamelib.gfx.ui.ProgressBar property)

      
        	(pygamelib.gfx.ui.ProgressDialog property)


      


      	maximum_height (pygamelib.gfx.ui.LineInput property)

      
        	(pygamelib.gfx.ui.Widget property)


      


      	MAXIMUM_SIZE (pygamelib.constants.SizeConstraint attribute)


      	maximum_width (pygamelib.gfx.ui.LineInput property)

      
        	(pygamelib.gfx.ui.Widget property)


      


      	MEAT_ON_BONE (pygamelib.assets.graphics.Models attribute)


      	MECHANICAL_ARM (pygamelib.assets.graphics.Models attribute)


      	MECHANICAL_LEG (pygamelib.assets.graphics.Models attribute)


      	MEDICAL_SYMBOL (pygamelib.assets.graphics.Models attribute)


      	MEDIUM_DARK_SKIN_TONE (pygamelib.assets.graphics.Models attribute)


      	MEDIUM_LIGHT_SKIN_TONE (pygamelib.assets.graphics.Models attribute)


      	MEDIUM_SHADE (pygamelib.assets.graphics.Blocks attribute)


      	MEDIUM_SKIN_TONE (pygamelib.assets.graphics.Models attribute)


      	MEGAPHONE (pygamelib.assets.graphics.Models attribute)


      	MELON (pygamelib.assets.graphics.Models attribute)


      	MEMO (pygamelib.assets.graphics.Models attribute)


      	MEN_HOLDING_HANDS (pygamelib.assets.graphics.Models attribute)


      	MENORAH (pygamelib.assets.graphics.Models attribute)


      	MENS_ROOM (pygamelib.assets.graphics.Models attribute)


      	Menu (class in pygamelib.gfx.ui)


      	menu_width() (pygamelib.gfx.ui.Menu method)


      	MenuAction (class in pygamelib.gfx.ui)


      	MenuBar (class in pygamelib.gfx.ui)


      	MERPERSON (pygamelib.assets.graphics.Models attribute)


      	MessageDialog (class in pygamelib.gfx.ui)


      	METRICAL_BREVE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	METRICAL_LONG_OVER_SHORT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	METRICAL_LONG_OVER_TWO_SHORTS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	METRICAL_PENTASEME (pygamelib.assets.graphics.MiscTechnicals attribute)


      	METRICAL_SHORT_OVER_LONG (pygamelib.assets.graphics.MiscTechnicals attribute)


      	METRICAL_TETRASEME (pygamelib.assets.graphics.MiscTechnicals attribute)


      	METRICAL_TRISEME (pygamelib.assets.graphics.MiscTechnicals attribute)


      	METRICAL_TWO_SHORTS_JOINED (pygamelib.assets.graphics.MiscTechnicals attribute)


      	METRICAL_TWO_SHORTS_OVER_LONG (pygamelib.assets.graphics.MiscTechnicals attribute)


      	METRO (pygamelib.assets.graphics.Models attribute)


      	MICROBE (pygamelib.assets.graphics.Models attribute)


      	MICROPHONE (pygamelib.assets.graphics.Models attribute)


      	MICROSCOPE (pygamelib.assets.graphics.Models attribute)


      	MIDDLE_FINGER (pygamelib.assets.graphics.Models attribute)


      	MILITARY_HELMET (pygamelib.assets.graphics.Models attribute)


      	MILITARY_MEDAL (pygamelib.assets.graphics.Models attribute)


      	MILKY_WAY (pygamelib.assets.graphics.Models attribute)


      	MINIBUS (pygamelib.assets.graphics.Models attribute)


      	minimum_height (pygamelib.gfx.ui.LineInput property)

      
        	(pygamelib.gfx.ui.Widget property)


      


      	MINIMUM_SIZE (pygamelib.constants.SizeConstraint attribute)


      	minimum_width (pygamelib.gfx.ui.LineInput property)

      
        	(pygamelib.gfx.ui.Widget property)


      


      	MINUS (pygamelib.assets.graphics.Models attribute)


  

  	
      	MIRROR (pygamelib.assets.graphics.Models attribute)


      	MiscTechnicals (class in pygamelib.assets.graphics)


      	MOAI (pygamelib.assets.graphics.Models attribute)


      	MOBILE_PHONE (pygamelib.assets.graphics.Models attribute)


      	MOBILE_PHONE_OFF (pygamelib.assets.graphics.Models attribute)


      	MOBILE_PHONE_WITH_ARROW (pygamelib.assets.graphics.Models attribute)


      	MODE_REAL_TIME (pygamelib.constants.EngineMode attribute)


      	MODE_TURN_BY_TURN (pygamelib.constants.EngineMode attribute)


      	model (pygamelib.board_items.Actionable property)

      
        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


        	(pygamelib.gfx.core.Sprixel property)


        	(pygamelib.gfx.particles.ParticleSprixel property)


      


      	Models (class in pygamelib.assets.graphics)


      	modulate() (pygamelib.gfx.core.Sprite method)


      	
    module

      
        	pygamelib.constants


      


      	MONEY_BAG (pygamelib.assets.graphics.Models attribute)


      	MONEY_MOUTH_FACE (pygamelib.assets.graphics.Models attribute)


      	MONEY_WITH_WINGS (pygamelib.assets.graphics.Models attribute)


      	MONKEY (pygamelib.assets.graphics.Models attribute)


      	MONKEY_FACE (pygamelib.assets.graphics.Models attribute)


      	MONORAIL (pygamelib.assets.graphics.Models attribute)


      	monospace (pygamelib.gfx.core.Font property)


      	MONOSTABLE_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	MOON_CAKE (pygamelib.assets.graphics.Models attribute)


      	MOON_VIEWING_CEREMONY (pygamelib.assets.graphics.Models attribute)


      	MOSQUE (pygamelib.assets.graphics.Models attribute)


      	MOSQUITO (pygamelib.assets.graphics.Models attribute)


      	MOTOR_BOAT (pygamelib.assets.graphics.Models attribute)


      	MOTOR_SCOOTER (pygamelib.assets.graphics.Models attribute)


      	MOTORCYCLE (pygamelib.assets.graphics.Models attribute)


      	MOTORIZED_WHEELCHAIR (pygamelib.assets.graphics.Models attribute)


      	MOTORWAY (pygamelib.assets.graphics.Models attribute)


      	MOUNT_FUJI (pygamelib.assets.graphics.Models attribute)


      	MOUNTAIN (pygamelib.assets.graphics.Models attribute)


      	MOUNTAIN_CABLEWAY (pygamelib.assets.graphics.Models attribute)


      	MOUNTAIN_RAILWAY (pygamelib.assets.graphics.Models attribute)


      	MOUSE (pygamelib.assets.graphics.Models attribute)


      	MOUSE_FACE (pygamelib.assets.graphics.Models attribute)


      	MOUSE_TRAP (pygamelib.assets.graphics.Models attribute)


      	MOUTH (pygamelib.assets.graphics.Models attribute)


      	Movable (class in pygamelib.board_items)


      	move() (pygamelib.engine.Board method)


      	move_cursor() (pygamelib.gfx.ui.LineInput method)


      	move_player() (pygamelib.engine.Game method)


      	moveset (pygamelib.actuators.RandomActuator property)


      	MOVIE_CAMERA (pygamelib.assets.graphics.Models attribute)


      	MRS_CLAUS (pygamelib.assets.graphics.Models attribute)


      	MultiLineInputDialog (class in pygamelib.gfx.ui)


      	MULTIPLY (pygamelib.assets.graphics.Models attribute)


      	MUSHROOM (pygamelib.assets.graphics.Models attribute)


      	MUSICAL_KEYBOARD (pygamelib.assets.graphics.Models attribute)


      	MUSICAL_NOTE (pygamelib.assets.graphics.Models attribute)


      	MUSICAL_NOTES (pygamelib.assets.graphics.Models attribute)


      	MUSICAL_SCORE (pygamelib.assets.graphics.Models attribute)


      	MUTED_SPEAKER (pygamelib.assets.graphics.Models attribute)


  





N


  	
      	NAIL_POLISH (pygamelib.assets.graphics.Models attribute)


      	name (pygamelib.gfx.core.Font property)


      	NAME_BADGE (pygamelib.assets.graphics.Models attribute)


      	NATIONAL_PARK (pygamelib.assets.graphics.Models attribute)


      	NAUSEATED_FACE (pygamelib.assets.graphics.Models attribute)


      	NAZAR_AMULET (pygamelib.assets.graphics.Models attribute)


      	nb_pages() (pygamelib.gfx.ui.GridSelector method)


      	NECKTIE (pygamelib.assets.graphics.Models attribute)


      	need_rendering (pygamelib.engine.Screen property)


      	neighbors() (pygamelib.engine.Board method)

      
        	(pygamelib.engine.Game method)


      


      	NERD_FACE (pygamelib.assets.graphics.Models attribute)


      	NESTING_DOLLS (pygamelib.assets.graphics.Models attribute)


      	NEUTRAL_FACE (pygamelib.assets.graphics.Models attribute)


      	NEW_BUTTON (pygamelib.assets.graphics.Models attribute)


      	NEW_MOON (pygamelib.assets.graphics.Models attribute)


      	NEW_MOON_FACE (pygamelib.assets.graphics.Models attribute)


      	NEWSPAPER (pygamelib.assets.graphics.Models attribute)


      	next_action() (pygamelib.actuators.Behavioral method)

      
        	(pygamelib.actuators.PathFinder method)


      


      	next_frame() (pygamelib.gfx.core.Animation method)


      	next_move() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


      


      	NEXT_PAGE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	NEXT_TRACK_BUTTON (pygamelib.assets.graphics.Models attribute)


      	next_waypoint() (pygamelib.actuators.PathFinder method)


      	NG_BUTTON (pygamelib.assets.graphics.Models attribute)


      	NIGHT_WITH_STARS (pygamelib.assets.graphics.Models attribute)


      	NINE_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	NINE_THIRTY (pygamelib.assets.graphics.Models attribute)


      	NINJA (pygamelib.assets.graphics.Models attribute)


      	NO_BICYCLES (pygamelib.assets.graphics.Models attribute)


      	NO_DIR (pygamelib.constants.Direction attribute)


      	NO_ENTRY (pygamelib.assets.graphics.Models attribute)


      	NO_LITTERING (pygamelib.assets.graphics.Models attribute)


      	NO_MOBILE_PHONES (pygamelib.assets.graphics.Models attribute)


      	NO_ONE_UNDER_EIGHTEEN (pygamelib.assets.graphics.Models attribute)


      	NO_PEDESTRIANS (pygamelib.assets.graphics.Models attribute)


      	NO_PLAYER (pygamelib.constants.EngineConstant attribute)


      	NO_SMOKING (pygamelib.assets.graphics.Models attribute)


      	NON_POTABLE_WATER (pygamelib.assets.graphics.Models attribute)


      	NONE_AUTHORIZED (pygamelib.constants.Permission attribute)


      	NOSE (pygamelib.assets.graphics.Models attribute)


      	NOT_CHECK_MARK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	NOTEBOOK (pygamelib.assets.graphics.Models attribute)


      	NOTEBOOK_WITH_DECORATIVE_COVER (pygamelib.assets.graphics.Models attribute)


      	notify() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.base.PglBaseObject method)


        	(pygamelib.base.Text method)


        	(pygamelib.board_items.Actionable method)


        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


        	(pygamelib.engine.Board method)


        	(pygamelib.engine.Game method)


        	(pygamelib.engine.Inventory method)


        	(pygamelib.engine.Screen method)


        	(pygamelib.gfx.core.Color method)


        	(pygamelib.gfx.core.Sprite method)


        	(pygamelib.gfx.core.Sprixel method)


        	(pygamelib.gfx.particles.CircleEmitter method)


        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.ParticleSprixel method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


        	(pygamelib.gfx.ui.BoxLayout method)


        	(pygamelib.gfx.ui.Cursor method)


        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.Layout method)


        	(pygamelib.gfx.ui.LineInput method)


        	(pygamelib.gfx.ui.Widget method)


      


  

  	
      	NPC (class in pygamelib.board_items)


      	NPC_AUTHORIZED (pygamelib.constants.Permission attribute)


      	NUT_AND_BOLT (pygamelib.assets.graphics.Models attribute)


  





O


  	
      	O_BUTTON_BLOOD_TYPE (pygamelib.assets.graphics.Models attribute)


      	OBSERVER_EYE_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	OCTOPUS (pygamelib.assets.graphics.Models attribute)


      	ODEN (pygamelib.assets.graphics.Models attribute)


      	OFFICE_BUILDING (pygamelib.assets.graphics.Models attribute)


      	OGRE (pygamelib.assets.graphics.Models attribute)


      	OIL_DRUM (pygamelib.assets.graphics.Models attribute)


      	OK_BUTTON (pygamelib.assets.graphics.Models attribute)


      	OK_HAND (pygamelib.assets.graphics.Models attribute)


      	OLD_KEY (pygamelib.assets.graphics.Models attribute)


      	OLD_MAN (pygamelib.assets.graphics.Models attribute)


      	OLD_WOMAN (pygamelib.assets.graphics.Models attribute)


      	OLDER_PERSON (pygamelib.assets.graphics.Models attribute)


      	OLIVE (pygamelib.assets.graphics.Models attribute)


      	OM (pygamelib.assets.graphics.Models attribute)


      	ON_ARROW (pygamelib.assets.graphics.Models attribute)


      	ONCOMING_AUTOMOBILE (pygamelib.assets.graphics.Models attribute)


      	ONCOMING_BUS (pygamelib.assets.graphics.Models attribute)


      	ONCOMING_FIST (pygamelib.assets.graphics.Models attribute)


      	ONCOMING_POLICE_CAR (pygamelib.assets.graphics.Models attribute)


      	ONCOMING_TAXI (pygamelib.assets.graphics.Models attribute)


      	ONE_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	ONE_PIECE_SWIMSUIT (pygamelib.assets.graphics.Models attribute)


      	ONE_THIRTY (pygamelib.assets.graphics.Models attribute)


      	ONION (pygamelib.assets.graphics.Models attribute)


      	OPEN_BOOK (pygamelib.assets.graphics.Models attribute)


      	OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	OPEN_FILE_FOLDER (pygamelib.assets.graphics.Models attribute)


      	OPEN_HANDS (pygamelib.assets.graphics.Models attribute)


      	OPEN_MAILBOX_WITH_LOWERED_FLAG (pygamelib.assets.graphics.Models attribute)


      	OPEN_MAILBOX_WITH_RAISED_FLAG (pygamelib.assets.graphics.Models attribute)


      	OPHIUCHUS (pygamelib.assets.graphics.Models attribute)


      	OPTICAL_DISK (pygamelib.assets.graphics.Models attribute)


      	OPTION_KEY (pygamelib.assets.graphics.MiscTechnicals attribute)


      	ORANGE_BOOK (pygamelib.assets.graphics.Models attribute)


  

  	
      	ORANGE_CIRCLE (pygamelib.assets.graphics.Models attribute)


      	ORANGE_HEART (pygamelib.assets.graphics.Models attribute)


      	ORANGE_SQUARE (pygamelib.assets.graphics.Models attribute)


      	ORANGUTAN (pygamelib.assets.graphics.Models attribute)


      	orientation (pygamelib.gfx.ui.BoxLayout property)


      	ORTHODOX_CROSS (pygamelib.assets.graphics.Models attribute)


      	OTTER (pygamelib.assets.graphics.Models attribute)


      	OUTBOX_TRAY (pygamelib.assets.graphics.Models attribute)


      	overlappable() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	OWL (pygamelib.assets.graphics.Models attribute)


      	OX (pygamelib.assets.graphics.Models attribute)


      	OYSTER (pygamelib.assets.graphics.Models attribute)


  





P


  	
      	P_BUTTON (pygamelib.assets.graphics.Models attribute)


      	PACKAGE (pygamelib.assets.graphics.Models attribute)


      	padding (pygamelib.gfx.ui.Menu property)

      
        	(pygamelib.gfx.ui.MenuAction property)


      


      	page_down() (pygamelib.gfx.ui.GridSelector method)


      	PAGE_FACING_UP (pygamelib.assets.graphics.Models attribute)


      	page_up() (pygamelib.gfx.ui.GridSelector method)


      	PAGE_WITH_CURL (pygamelib.assets.graphics.Models attribute)


      	PAGER (pygamelib.assets.graphics.Models attribute)


      	PAINTBRUSH (pygamelib.assets.graphics.Models attribute)


      	PALM_TREE (pygamelib.assets.graphics.Models attribute)


      	PALMS_UP_TOGETHER (pygamelib.assets.graphics.Models attribute)


      	PANCAKES (pygamelib.assets.graphics.Models attribute)


      	PANDA (pygamelib.assets.graphics.Models attribute)


      	PAPERCLIP (pygamelib.assets.graphics.Models attribute)


      	PARACHUTE (pygamelib.assets.graphics.Models attribute)


      	parent (pygamelib.base.Text attribute)

      
        	(pygamelib.gfx.ui.BoxLayout property)


        	(pygamelib.gfx.ui.Cursor property)


        	(pygamelib.gfx.ui.FormLayout property)


        	(pygamelib.gfx.ui.GridLayout property)


        	(pygamelib.gfx.ui.Layout property)


        	(pygamelib.gfx.ui.LineInput property)


        	(pygamelib.gfx.ui.Widget property)


      


      	PARROT (pygamelib.assets.graphics.Models attribute)


      	PART_ALTERNATION_MARK (pygamelib.assets.graphics.Models attribute)


      	Particle (class in pygamelib.gfx.particles)


      	particle_emitter (pygamelib.board_items.Actionable property)

      
        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


      


      	particle_pool (pygamelib.gfx.particles.CircleEmitter property)

      
        	(pygamelib.gfx.particles.ParticleEmitter property)


      


      	ParticleEmitter (class in pygamelib.gfx.particles)


      	ParticlePool (class in pygamelib.gfx.particles)


      	ParticleSprixel (class in pygamelib.gfx.particles)


      	PartitionParticle (class in pygamelib.gfx.particles)


      	PARTY_POPPER (pygamelib.assets.graphics.Models attribute)


      	PARTYING_FACE (pygamelib.assets.graphics.Models attribute)


      	PASSENGER_SHIP (pygamelib.assets.graphics.Models attribute)


      	PASSIVE_PULL_DOWN_OUTPUT_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	PASSIVE_PULL_UP_OUTPUT_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	PASSPORT_CONTROL (pygamelib.assets.graphics.Models attribute)


      	path (pygamelib.gfx.ui.FileDialog property)


      	PathActuator (class in pygamelib.actuators)


      	PathFinder (class in pygamelib.actuators)


      	PatrolActuator (class in pygamelib.actuators)


      	pause() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.engine.Game method)


        	(pygamelib.gfx.core.Animation method)


      


      	PAUSE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	PAUSED (pygamelib.constants.State attribute)


      	PAW_PRINTS (pygamelib.assets.graphics.Models attribute)


      	PEACE_SYMBOL (pygamelib.assets.graphics.Models attribute)


      	PEACH (pygamelib.assets.graphics.Models attribute)


      	PEACOCK (pygamelib.assets.graphics.Models attribute)


      	PEANUTS (pygamelib.assets.graphics.Models attribute)


      	PEAR (pygamelib.assets.graphics.Models attribute)


      	PEN (pygamelib.assets.graphics.Models attribute)


      	PENCIL (pygamelib.assets.graphics.Models attribute)


      	PENGUIN (pygamelib.assets.graphics.Models attribute)


      	PENSIVE_FACE (pygamelib.assets.graphics.Models attribute)


      	PEOPLE_HUGGING (pygamelib.assets.graphics.Models attribute)


      	PEOPLE_WITH_BUNNY_EARS (pygamelib.assets.graphics.Models attribute)


      	PEOPLE_WRESTLING (pygamelib.assets.graphics.Models attribute)


      	PERFORMING_ARTS (pygamelib.assets.graphics.Models attribute)


      	PERSEVERING_FACE (pygamelib.assets.graphics.Models attribute)


      	PERSON (pygamelib.assets.graphics.Models attribute)


      	PERSON_BIKING (pygamelib.assets.graphics.Models attribute)


      	PERSON_BLOND_HAIR (pygamelib.assets.graphics.Models attribute)


      	PERSON_BOUNCING_BALL (pygamelib.assets.graphics.Models attribute)


      	PERSON_BOWING (pygamelib.assets.graphics.Models attribute)


      	PERSON_CARTWHEELING (pygamelib.assets.graphics.Models attribute)


      	PERSON_CLIMBING (pygamelib.assets.graphics.Models attribute)


      	PERSON_FACEPALMING (pygamelib.assets.graphics.Models attribute)


      	PERSON_FENCING (pygamelib.assets.graphics.Models attribute)


      	PERSON_FROWNING (pygamelib.assets.graphics.Models attribute)


      	PERSON_GESTURING_NO (pygamelib.assets.graphics.Models attribute)


      	PERSON_GESTURING_OK (pygamelib.assets.graphics.Models attribute)


      	PERSON_GETTING_HAIRCUT (pygamelib.assets.graphics.Models attribute)


      	PERSON_GETTING_MASSAGE (pygamelib.assets.graphics.Models attribute)


      	PERSON_GOLFING (pygamelib.assets.graphics.Models attribute)


      	PERSON_IN_BED (pygamelib.assets.graphics.Models attribute)


      	PERSON_IN_LOTUS_POSITION (pygamelib.assets.graphics.Models attribute)


      	PERSON_IN_STEAMY_ROOM (pygamelib.assets.graphics.Models attribute)


      	PERSON_IN_SUIT_LEVITATING (pygamelib.assets.graphics.Models attribute)


      	PERSON_IN_TUXEDO (pygamelib.assets.graphics.Models attribute)


      	PERSON_JUGGLING (pygamelib.assets.graphics.Models attribute)


      	PERSON_KNEELING (pygamelib.assets.graphics.Models attribute)


      	PERSON_LIFTING_WEIGHTS (pygamelib.assets.graphics.Models attribute)


      	PERSON_MOUNTAIN_BIKING (pygamelib.assets.graphics.Models attribute)


      	PERSON_PLAYING_HANDBALL (pygamelib.assets.graphics.Models attribute)


      	PERSON_PLAYING_WATER_POLO (pygamelib.assets.graphics.Models attribute)


      	PERSON_POUTING (pygamelib.assets.graphics.Models attribute)


      	PERSON_RAISING_HAND (pygamelib.assets.graphics.Models attribute)


      	PERSON_ROWING_BOAT (pygamelib.assets.graphics.Models attribute)


      	PERSON_RUNNING (pygamelib.assets.graphics.Models attribute)


      	PERSON_SHRUGGING (pygamelib.assets.graphics.Models attribute)


      	PERSON_STANDING (pygamelib.assets.graphics.Models attribute)


      	PERSON_SURFING (pygamelib.assets.graphics.Models attribute)


      	PERSON_SWIMMING (pygamelib.assets.graphics.Models attribute)


      	PERSON_TAKING_BATH (pygamelib.assets.graphics.Models attribute)


      	PERSON_TIPPING_HAND (pygamelib.assets.graphics.Models attribute)


      	PERSON_WALKING (pygamelib.assets.graphics.Models attribute)


      	PERSON_WEARING_TURBAN (pygamelib.assets.graphics.Models attribute)


      	PERSON_WITH_SKULLCAP (pygamelib.assets.graphics.Models attribute)


      	PERSON_WITH_VEIL (pygamelib.assets.graphics.Models attribute)


      	PERSPECTIVE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	PETRI_DISH (pygamelib.assets.graphics.Models attribute)


  

  	
      	PglBaseObject (class in pygamelib.base)


      	PglException


      	PglInvalidLevelException


      	PglInvalidTypeException


      	PglInventoryException


      	PglObjectIsNotMovableException


      	PglOutOfBoardBoundException


      	PICK (pygamelib.assets.graphics.Models attribute)


      	pickable() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	PICKUP_TRUCK (pygamelib.assets.graphics.Models attribute)


      	PIE (pygamelib.assets.graphics.Models attribute)


      	PIG (pygamelib.assets.graphics.Models attribute)


      	PIG_FACE (pygamelib.assets.graphics.Models attribute)


      	PIG_NOSE (pygamelib.assets.graphics.Models attribute)


      	PILE_OF_POO (pygamelib.assets.graphics.Models attribute)


      	PILL (pygamelib.assets.graphics.Models attribute)


      	PINCHED_FINGERS (pygamelib.assets.graphics.Models attribute)


      	PINCHING_HAND (pygamelib.assets.graphics.Models attribute)


      	PINE_DECORATION (pygamelib.assets.graphics.Models attribute)


      	PINEAPPLE (pygamelib.assets.graphics.Models attribute)


      	PING_PONG (pygamelib.assets.graphics.Models attribute)


      	PIñATA (pygamelib.assets.graphics.Models attribute)


      	PISCES (pygamelib.assets.graphics.Models attribute)


      	PISTOL (pygamelib.assets.graphics.Models attribute)


      	PIZZA (pygamelib.assets.graphics.Models attribute)


      	PLACARD (pygamelib.assets.graphics.Models attribute)


      	place() (pygamelib.engine.Screen method)


      	place_item() (pygamelib.engine.Board method)


      	PLACE_OF_INTEREST_SIGN (pygamelib.assets.graphics.MiscTechnicals attribute)


      	PLACE_OF_WORSHIP (pygamelib.assets.graphics.Models attribute)


      	play_all() (pygamelib.gfx.core.Animation method)


      	PLAY_BUTTON (pygamelib.assets.graphics.Models attribute)


      	PLAY_OR_PAUSE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	Player (class in pygamelib.board_items)


      	PLAYER_AUTHORIZED (pygamelib.constants.Permission attribute)


      	PLEADING_FACE (pygamelib.assets.graphics.Models attribute)


      	PLUNGER (pygamelib.assets.graphics.Models attribute)


      	PLUS (pygamelib.assets.graphics.Models attribute)


      	POLICE_CAR (pygamelib.assets.graphics.Models attribute)


      	POLICE_CAR_LIGHT (pygamelib.assets.graphics.Models attribute)


      	POLICE_OFFICER (pygamelib.assets.graphics.Models attribute)


      	POODLE (pygamelib.assets.graphics.Models attribute)


      	pool (pygamelib.gfx.particles.ParticlePool property)


      	pop() (pygamelib.gfx.core.SpriteCollection method)


      	POPCORN (pygamelib.assets.graphics.Models attribute)


      	popitem() (pygamelib.gfx.core.SpriteCollection method)


      	position_as_vector() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	POSITION_INDICATOR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	POST_OFFICE (pygamelib.assets.graphics.Models attribute)


      	POSTAL_HORN (pygamelib.assets.graphics.Models attribute)


      	POSTBOX (pygamelib.assets.graphics.Models attribute)


      	POT_OF_FOOD (pygamelib.assets.graphics.Models attribute)


      	POTABLE_WATER (pygamelib.assets.graphics.Models attribute)


      	POTATO (pygamelib.assets.graphics.Models attribute)


      	POTTED_PLANT (pygamelib.assets.graphics.Models attribute)


      	POULTRY_LEG (pygamelib.assets.graphics.Models attribute)


      	POUND_BANKNOTE (pygamelib.assets.graphics.Models attribute)


      	POUTING_CAT (pygamelib.assets.graphics.Models attribute)


      	POUTING_FACE (pygamelib.assets.graphics.Models attribute)


      	POWER_ON_OFF_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	POWER_ON_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	POWER_SLEEP_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	POWER_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	PRAYER_BEADS (pygamelib.assets.graphics.Models attribute)


      	PREGNANT_WOMAN (pygamelib.assets.graphics.Models attribute)


      	PRETZEL (pygamelib.assets.graphics.Models attribute)


      	PREVIOUS_PAGE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	PRINCE (pygamelib.assets.graphics.Models attribute)


      	PRINCESS (pygamelib.assets.graphics.Models attribute)


      	print_formatted() (pygamelib.base.Text method)


      	PRINT_SCREEN_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	print_white_on_red() (pygamelib.base.Text static method)


      	PRINTABLE_FILTER (pygamelib.constants.InputValidator attribute)


      	PRINTER (pygamelib.assets.graphics.Models attribute)


      	progress_marker (pygamelib.gfx.ui.ProgressBar property)


      	ProgressBar (class in pygamelib.gfx.ui)


      	ProgressDialog (class in pygamelib.gfx.ui)


      	PROHIBITED (pygamelib.assets.graphics.Models attribute)


      	Projectile (class in pygamelib.board_items)


      	PROJECTIVE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	PURPLE_CIRCLE (pygamelib.assets.graphics.Models attribute)


      	PURPLE_HEART (pygamelib.assets.graphics.Models attribute)


      	PURPLE_SQUARE (pygamelib.assets.graphics.Models attribute)


      	PURSE (pygamelib.assets.graphics.Models attribute)


      	PUSHPIN (pygamelib.assets.graphics.Models attribute)


      	PUZZLE_PIECE (pygamelib.assets.graphics.Models attribute)


      	
    pygamelib.constants

      
        	module


      


  





Q


  	
      	QUADRANT_LOWER_LEFT (pygamelib.assets.graphics.Blocks attribute)


      	QUADRANT_LOWER_RIGHT (pygamelib.assets.graphics.Blocks attribute)


      	QUADRANT_UPPER_LEFT (pygamelib.assets.graphics.Blocks attribute)


      	QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT (pygamelib.assets.graphics.Blocks attribute)


      	QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT (pygamelib.assets.graphics.Blocks attribute)


  

  	
      	QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT (pygamelib.assets.graphics.Blocks attribute)


      	QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT (pygamelib.assets.graphics.Blocks attribute)


      	QUADRANT_UPPER_RIGHT (pygamelib.assets.graphics.Blocks attribute)


      	QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT (pygamelib.assets.graphics.Blocks attribute)


      	QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT (pygamelib.assets.graphics.Blocks attribute)


      	QUESTION_MARK (pygamelib.assets.graphics.Models attribute)


  





R


  	
      	r (pygamelib.gfx.core.Color property)


      	RABBIT (pygamelib.assets.graphics.Models attribute)


      	RABBIT_FACE (pygamelib.assets.graphics.Models attribute)


      	RACCOON (pygamelib.assets.graphics.Models attribute)


      	RACING_CAR (pygamelib.assets.graphics.Models attribute)


      	RADICAL_SYMBOL_BOTTOM (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RADIO (pygamelib.assets.graphics.Models attribute)


      	RADIO_BUTTON (pygamelib.assets.graphics.Models attribute)


      	RADIOACTIVE (pygamelib.assets.graphics.Models attribute)


      	RAILWAY_CAR (pygamelib.assets.graphics.Models attribute)


      	RAILWAY_TRACK (pygamelib.assets.graphics.Models attribute)


      	RAINBOW (pygamelib.assets.graphics.Models attribute)


      	RAISED_BACK_OF_HAND (pygamelib.assets.graphics.Models attribute)


      	RAISED_FIST (pygamelib.assets.graphics.Models attribute)


      	RAISED_HAND (pygamelib.assets.graphics.Models attribute)


      	RAISING_HANDS (pygamelib.assets.graphics.Models attribute)


      	RAM (pygamelib.assets.graphics.Models attribute)


      	random() (pygamelib.gfx.core.Color class method)


      	RandomActuator (class in pygamelib.actuators)


      	RandomColorParticle (class in pygamelib.gfx.particles)


      	RandomColorPartitionParticle (class in pygamelib.gfx.particles)


      	randomize() (pygamelib.gfx.core.Color method)


      	RAT (pygamelib.assets.graphics.Models attribute)


      	RAZOR (pygamelib.assets.graphics.Models attribute)


      	RECEIPT (pygamelib.assets.graphics.Models attribute)


      	RECORD_BUTTON (pygamelib.assets.graphics.Models attribute)


      	RECYCLING_SYMBOL (pygamelib.assets.graphics.Models attribute)


      	red (pygamelib.gfx.ui.ColorPicker property)


      	red() (pygamelib.base.Text static method)


      	RED_APPLE (pygamelib.assets.graphics.Models attribute)


      	red_bright() (pygamelib.base.Text static method)


      	RED_CIRCLE (pygamelib.assets.graphics.Models attribute)


      	red_dim() (pygamelib.base.Text static method)


      	RED_ENVELOPE (pygamelib.assets.graphics.Models attribute)


      	RED_HAIR (pygamelib.assets.graphics.Models attribute)


      	RED_HEART (pygamelib.assets.graphics.Models attribute)


      	RED_PAPER_LANTERN (pygamelib.assets.graphics.Models attribute)


      	red_rect() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	RED_SQUARE (pygamelib.assets.graphics.Models attribute)


      	red_square() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	RED_TRIANGLE_POINTED_DOWN (pygamelib.assets.graphics.Models attribute)


      	RED_TRIANGLE_POINTED_UP (pygamelib.assets.graphics.Models attribute)


      	redo() (pygamelib.base.History method)

      
        	(pygamelib.gfx.ui.LineInput method)


      


      	REGISTERED (pygamelib.assets.graphics.Models attribute)


      	relative_column (pygamelib.gfx.ui.Cursor property)


      	relative_row (pygamelib.gfx.ui.Cursor property)


      	RELIEVED_FACE (pygamelib.assets.graphics.Models attribute)


      	REMINDER_RIBBON (pygamelib.assets.graphics.Models attribute)


      	remove_constraint() (pygamelib.engine.Inventory method)


      	remove_directional_animation() (pygamelib.board_items.Projectile method)


      	remove_directional_model() (pygamelib.board_items.Projectile method)


      	remove_frame() (pygamelib.gfx.core.Animation method)


      	remove_item() (pygamelib.engine.Board method)


      	remove_npc() (pygamelib.engine.Game method)


      	remove_row() (pygamelib.gfx.ui.FormLayout method)


      	remove_waypoint() (pygamelib.actuators.PathFinder method)


      	rename() (pygamelib.gfx.core.SpriteCollection method)


      	render() (pygamelib.engine.Screen method)

      
        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


      


      	render_cell() (pygamelib.engine.Board method)


      	render_to_buffer() (pygamelib.base.Text method)

      
        	(pygamelib.board_items.Actionable method)


        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


        	(pygamelib.engine.Board method)


        	(pygamelib.gfx.core.Sprite method)


        	(pygamelib.gfx.core.Sprixel method)


        	(pygamelib.gfx.particles.CircleEmitter method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.ParticleSprixel method)


        	(pygamelib.gfx.ui.Box method)


        	(pygamelib.gfx.ui.BoxLayout method)


        	(pygamelib.gfx.ui.ColorPicker method)


        	(pygamelib.gfx.ui.ColorPickerDialog method)


        	(pygamelib.gfx.ui.Cursor method)


        	(pygamelib.gfx.ui.FileDialog method)


        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.GridSelector method)


        	(pygamelib.gfx.ui.GridSelectorDialog method)


        	(pygamelib.gfx.ui.Layout method)


        	(pygamelib.gfx.ui.LineInput method)


        	(pygamelib.gfx.ui.LineInputDialog method)


        	(pygamelib.gfx.ui.Menu method)


        	(pygamelib.gfx.ui.MenuAction method)


        	(pygamelib.gfx.ui.MenuBar method)


        	(pygamelib.gfx.ui.MessageDialog method)


        	(pygamelib.gfx.ui.MultiLineInputDialog method)


        	(pygamelib.gfx.ui.ProgressBar method)


        	(pygamelib.gfx.ui.ProgressDialog method)


        	(pygamelib.gfx.ui.Widget method)


      


      	REPEAT_BUTTON (pygamelib.assets.graphics.Models attribute)


      	REPEAT_SINGLE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	RESCUE_WORKERS_HELMET (pygamelib.assets.graphics.Models attribute)


      	reset() (pygamelib.base.History method)

      
        	(pygamelib.gfx.core.Animation method)


        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


      


      	reset_lifespan() (pygamelib.gfx.particles.ColorParticle method)

      
        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


      


  

  	
      	resize() (pygamelib.gfx.particles.ParticlePool method)


      	resize_pool() (pygamelib.gfx.particles.CircleEmitter method)

      
        	(pygamelib.gfx.particles.ParticleEmitter method)


      


      	restorable() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	RESTROOM (pygamelib.assets.graphics.Models attribute)


      	RETURN_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	REVERSE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	REVERSED_NOT_SIGN (pygamelib.assets.graphics.MiscTechnicals attribute)


      	REVOLVING_HEARTS (pygamelib.assets.graphics.Models attribute)


      	RHINOCEROS (pygamelib.assets.graphics.Models attribute)


      	RIBBON (pygamelib.assets.graphics.Models attribute)


      	RICE_BALL (pygamelib.assets.graphics.Models attribute)


      	RICE_CRACKER (pygamelib.assets.graphics.Models attribute)


      	RIGHT (pygamelib.constants.Alignment attribute)

      
        	(pygamelib.constants.Direction attribute)


      


      	RIGHT_ANGER_BUBBLE (pygamelib.assets.graphics.Models attribute)


      	RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_ARROW (pygamelib.assets.graphics.Models attribute)


      	RIGHT_ARROW_CURVING_DOWN (pygamelib.assets.graphics.Models attribute)


      	RIGHT_ARROW_CURVING_LEFT (pygamelib.assets.graphics.Models attribute)


      	RIGHT_ARROW_CURVING_UP (pygamelib.assets.graphics.Models attribute)


      	RIGHT_CEILING (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_CURLY_BRACKET_LOWER_HOOK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_CURLY_BRACKET_MIDDLE_PIECE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_CURLY_BRACKET_UPPER_HOOK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	RIGHT_FACING_FIST (pygamelib.assets.graphics.Models attribute)


      	RIGHT_FLOOR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_HALF_BLACK_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	RIGHT_HALF_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	RIGHT_HEAVY_AND_LEFT_UP_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	RIGHT_LIGHT_AND_LEFT_UP_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	RIGHT_ONE_EIGHTH_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	RIGHT_PARENTHESIS_EXTENSION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_PARENTHESIS_LOWER_HOOK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_PARENTHESIS_UPPER_HOOK (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_POINTING_ANGLE_BRACKET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_SQUARE_BRACKET_EXTENSION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_SQUARE_BRACKET_LOWER_CORNER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_SQUARE_BRACKET_UPPER_CORNER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	RIGHT_VERTICAL_BOX_LINE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	RING (pygamelib.assets.graphics.Models attribute)


      	RING_OPERATOR (pygamelib.assets.graphics.GeometricShapes attribute)


      	RINGED_PLANET (pygamelib.assets.graphics.Models attribute)


      	ROASTED_SWEET_POTATO (pygamelib.assets.graphics.Models attribute)


      	ROBOT (pygamelib.assets.graphics.Models attribute)


      	ROCK (pygamelib.assets.graphics.Models attribute)


      	ROCKET (pygamelib.assets.graphics.Models attribute)


      	ROLL_OF_PAPER (pygamelib.assets.graphics.Models attribute)


      	ROLLED_UP_NEWSPAPER (pygamelib.assets.graphics.Models attribute)


      	ROLLER_COASTER (pygamelib.assets.graphics.Models attribute)


      	ROLLER_SKATE (pygamelib.assets.graphics.Models attribute)


      	ROLLING_ON_THE_FLOOR_LAUGHING (pygamelib.assets.graphics.Models attribute)


      	ROOSTER (pygamelib.assets.graphics.Models attribute)


      	ROSE (pygamelib.assets.graphics.Models attribute)


      	ROSETTE (pygamelib.assets.graphics.Models attribute)


      	ROUND_PUSHPIN (pygamelib.assets.graphics.Models attribute)


      	rounding_precision (pygamelib.base.Vector2D attribute)


      	row (pygamelib.base.Vector2D property)

      
        	(pygamelib.board_items.Actionable property)


        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


        	(pygamelib.gfx.particles.CircleEmitter property)


        	(pygamelib.gfx.particles.ColorParticle property)


        	(pygamelib.gfx.particles.ColorPartitionParticle property)


        	(pygamelib.gfx.particles.Particle property)


        	(pygamelib.gfx.particles.ParticleEmitter property)


        	(pygamelib.gfx.particles.PartitionParticle property)


        	(pygamelib.gfx.particles.RandomColorParticle property)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle property)


      


      	row_minimum_height (pygamelib.gfx.ui.FormLayout property)

      
        	(pygamelib.gfx.ui.GridLayout property)


      


      	RUGBY_FOOTBALL (pygamelib.assets.graphics.Models attribute)


      	run() (pygamelib.engine.Game method)


      	RUNNING (pygamelib.constants.State attribute)


      	RUNNING_SHIRT (pygamelib.assets.graphics.Models attribute)


      	RUNNING_SHOE (pygamelib.assets.graphics.Models attribute)


  





S


  	
      	SAD_BUT_RELIEVED_FACE (pygamelib.assets.graphics.Models attribute)


      	SAFETY_PIN (pygamelib.assets.graphics.Models attribute)


      	SAFETY_VEST (pygamelib.assets.graphics.Models attribute)


      	SAGITTARIUS (pygamelib.assets.graphics.Models attribute)


      	SAILBOAT (pygamelib.assets.graphics.Models attribute)


      	SAKE (pygamelib.assets.graphics.Models attribute)


      	SALT (pygamelib.assets.graphics.Models attribute)


      	SANDWICH (pygamelib.assets.graphics.Models attribute)


      	SANTA_CLAUS (pygamelib.assets.graphics.Models attribute)


      	SARI (pygamelib.assets.graphics.Models attribute)


      	SATELLITE (pygamelib.assets.graphics.Models attribute)


      	SATELLITE_ANTENNA (pygamelib.assets.graphics.Models attribute)


      	SAUROPOD (pygamelib.assets.graphics.Models attribute)


      	save_board() (pygamelib.engine.Game method)


      	save_config() (pygamelib.engine.Game method)


      	SAXOPHONE (pygamelib.assets.graphics.Models attribute)


      	scalable (pygamelib.gfx.core.Font property)


      	scale() (pygamelib.gfx.core.Sprite method)


      	SCARF (pygamelib.assets.graphics.Models attribute)


      	SCHOOL (pygamelib.assets.graphics.Models attribute)


      	SCISSORS (pygamelib.assets.graphics.Models attribute)


      	SCORPIO (pygamelib.assets.graphics.Models attribute)


      	SCORPION (pygamelib.assets.graphics.Models attribute)


      	Screen (class in pygamelib.engine)


      	screen_column (pygamelib.actuators.Actuator property)

      
        	(pygamelib.actuators.Behavioral property)


        	(pygamelib.actuators.PathActuator property)


        	(pygamelib.actuators.PathFinder property)


        	(pygamelib.actuators.PatrolActuator property)


        	(pygamelib.actuators.RandomActuator property)


        	(pygamelib.actuators.UnidirectionalActuator property)


        	(pygamelib.base.PglBaseObject property)


        	(pygamelib.base.Text property)


        	(pygamelib.board_items.Actionable property)


        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


        	(pygamelib.engine.Board property)


        	(pygamelib.engine.Game property)


        	(pygamelib.engine.Inventory property)


        	(pygamelib.engine.Screen property)


        	(pygamelib.gfx.core.Color property)


        	(pygamelib.gfx.core.Sprite property)


        	(pygamelib.gfx.core.Sprixel property)


        	(pygamelib.gfx.particles.CircleEmitter property)


        	(pygamelib.gfx.particles.ColorParticle property)


        	(pygamelib.gfx.particles.ColorPartitionParticle property)


        	(pygamelib.gfx.particles.Particle property)


        	(pygamelib.gfx.particles.ParticleEmitter property)


        	(pygamelib.gfx.particles.ParticleSprixel property)


        	(pygamelib.gfx.particles.PartitionParticle property)


        	(pygamelib.gfx.particles.RandomColorParticle property)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle property)


        	(pygamelib.gfx.ui.BoxLayout property)


        	(pygamelib.gfx.ui.Cursor property)


        	(pygamelib.gfx.ui.FormLayout property)


        	(pygamelib.gfx.ui.GridLayout property)


        	(pygamelib.gfx.ui.Layout property)


        	(pygamelib.gfx.ui.LineInput property)


        	(pygamelib.gfx.ui.Widget property)


      


      	screen_row (pygamelib.actuators.Actuator property)

      
        	(pygamelib.actuators.Behavioral property)


        	(pygamelib.actuators.PathActuator property)


        	(pygamelib.actuators.PathFinder property)


        	(pygamelib.actuators.PatrolActuator property)


        	(pygamelib.actuators.RandomActuator property)


        	(pygamelib.actuators.UnidirectionalActuator property)


        	(pygamelib.base.PglBaseObject property)


        	(pygamelib.base.Text property)


        	(pygamelib.board_items.Actionable property)


        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


        	(pygamelib.engine.Board property)


        	(pygamelib.engine.Game property)


        	(pygamelib.engine.Inventory property)


        	(pygamelib.engine.Screen property)


        	(pygamelib.gfx.core.Color property)


        	(pygamelib.gfx.core.Sprite property)


        	(pygamelib.gfx.core.Sprixel property)


        	(pygamelib.gfx.particles.CircleEmitter property)


        	(pygamelib.gfx.particles.ColorParticle property)


        	(pygamelib.gfx.particles.ColorPartitionParticle property)


        	(pygamelib.gfx.particles.Particle property)


        	(pygamelib.gfx.particles.ParticleEmitter property)


        	(pygamelib.gfx.particles.ParticleSprixel property)


        	(pygamelib.gfx.particles.PartitionParticle property)


        	(pygamelib.gfx.particles.RandomColorParticle property)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle property)


        	(pygamelib.gfx.ui.BoxLayout property)


        	(pygamelib.gfx.ui.Cursor property)


        	(pygamelib.gfx.ui.FormLayout property)


        	(pygamelib.gfx.ui.GridLayout property)


        	(pygamelib.gfx.ui.Layout property)


        	(pygamelib.gfx.ui.LineInput property)


        	(pygamelib.gfx.ui.Widget property)


      


      	SCREWDRIVER (pygamelib.assets.graphics.Models attribute)


      	SCROLL (pygamelib.assets.graphics.Models attribute)


      	SEAL (pygamelib.assets.graphics.Models attribute)


      	search() (pygamelib.engine.Inventory method)


      	search_frame() (pygamelib.gfx.core.Animation method)


      	SEAT (pygamelib.assets.graphics.Models attribute)


      	SECOND_PLACE_MEDAL (pygamelib.assets.graphics.Models attribute)


      	SECTOR (pygamelib.assets.graphics.MiscTechnicals attribute)


      	SEE_NO_EVIL_MONKEY (pygamelib.assets.graphics.Models attribute)


      	SEEDLING (pygamelib.assets.graphics.Models attribute)


      	SEGMENT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	select_next() (pygamelib.gfx.ui.Menu method)

      
        	(pygamelib.gfx.ui.MenuBar method)


      


      	select_previous() (pygamelib.gfx.ui.Menu method)

      
        	(pygamelib.gfx.ui.MenuBar method)


      


      	selected (pygamelib.gfx.ui.Menu property)

      
        	(pygamelib.gfx.ui.MenuAction property)


      


      	selection (pygamelib.gfx.ui.ColorPicker property)


      	SELFIE (pygamelib.assets.graphics.Models attribute)


      	serialize() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.base.Text method)


        	(pygamelib.base.Vector2D method)


        	(pygamelib.board_items.Actionable method)


        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


        	(pygamelib.engine.Board method)


        	(pygamelib.engine.Inventory method)


        	(pygamelib.gfx.core.Animation method)


        	(pygamelib.gfx.core.Color method)


        	(pygamelib.gfx.core.Sprite method)


        	(pygamelib.gfx.core.SpriteCollection method)


        	(pygamelib.gfx.core.Sprixel method)


        	(pygamelib.gfx.particles.CircleEmitter method)


        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.EmitterProperties method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.ParticleSprixel method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


      


      	session_log() (pygamelib.engine.Game method)


      	session_logs() (pygamelib.engine.Game method)


      	set_can_move() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	set_color() (pygamelib.gfx.ui.ColorPickerDialog method)


      	set_destination() (pygamelib.actuators.PathFinder method)


      	set_direction() (pygamelib.board_items.Projectile method)


      	set_overlappable() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	set_path() (pygamelib.actuators.PathActuator method)

      
        	(pygamelib.actuators.PatrolActuator method)


      


      	set_pickable() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	set_restorable() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


  

  	
      	set_selection() (pygamelib.gfx.ui.ColorPickerDialog method)


      	set_sprixel() (pygamelib.gfx.core.Sprite method)


      	set_transparency() (pygamelib.gfx.core.Sprite method)


      	setdefault() (pygamelib.gfx.core.SpriteCollection method)


      	SEVEN_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	SEVEN_THIRTY (pygamelib.assets.graphics.Models attribute)


      	SEWING_NEEDLE (pygamelib.assets.graphics.Models attribute)


      	SHALLOW_PAN_OF_FOOD (pygamelib.assets.graphics.Models attribute)


      	SHAMROCK (pygamelib.assets.graphics.Models attribute)


      	SHARK (pygamelib.assets.graphics.Models attribute)


      	SHAVED_ICE (pygamelib.assets.graphics.Models attribute)


      	SHEAF_OF_RICE (pygamelib.assets.graphics.Models attribute)


      	SHIELD (pygamelib.assets.graphics.Models attribute)


      	SHINTO_SHRINE (pygamelib.assets.graphics.Models attribute)


      	SHIP (pygamelib.assets.graphics.Models attribute)


      	SHOOTING_STAR (pygamelib.assets.graphics.Models attribute)


      	SHOPPING_BAGS (pygamelib.assets.graphics.Models attribute)


      	SHOPPING_CART (pygamelib.assets.graphics.Models attribute)


      	SHORTCAKE (pygamelib.assets.graphics.Models attribute)


      	SHORTS (pygamelib.assets.graphics.Models attribute)


      	SHOULDERED_OPEN_BOX (pygamelib.assets.graphics.MiscTechnicals attribute)


      	show() (pygamelib.gfx.ui.ColorPickerDialog method)

      
        	(pygamelib.gfx.ui.Dialog method)


        	(pygamelib.gfx.ui.FileDialog method)


        	(pygamelib.gfx.ui.GridSelectorDialog method)


        	(pygamelib.gfx.ui.LineInputDialog method)


        	(pygamelib.gfx.ui.MessageDialog method)


        	(pygamelib.gfx.ui.MultiLineInputDialog method)


        	(pygamelib.gfx.ui.ProgressDialog method)


      


      	show_hidden_files (pygamelib.gfx.ui.FileDialog property)


      	SHOWER (pygamelib.assets.graphics.Models attribute)


      	SHRIMP (pygamelib.assets.graphics.Models attribute)


      	SHUFFLE_TRACKS_BUTTON (pygamelib.assets.graphics.Models attribute)


      	SHUSHING_FACE (pygamelib.assets.graphics.Models attribute)


      	SIGN_OF_THE_HORNS (pygamelib.assets.graphics.Models attribute)


      	SIX_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	SIX_THIRTY (pygamelib.assets.graphics.Models attribute)


      	size (pygamelib.board_items.Actionable property)

      
        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


      


      	size() (pygamelib.engine.Inventory method)


      	size_constraint (pygamelib.gfx.ui.BoxLayout property)

      
        	(pygamelib.gfx.ui.LineInput property)


        	(pygamelib.gfx.ui.Widget property)


      


      	SKATEBOARD (pygamelib.assets.graphics.Models attribute)


      	SKIER (pygamelib.assets.graphics.Models attribute)


      	SKIS (pygamelib.assets.graphics.Models attribute)


      	SKULL (pygamelib.assets.graphics.Models attribute)


      	SKULL_AND_CROSSBONES (pygamelib.assets.graphics.Models attribute)


      	SKUNK (pygamelib.assets.graphics.Models attribute)


      	SLED (pygamelib.assets.graphics.Models attribute)


      	SLEEPING_FACE (pygamelib.assets.graphics.Models attribute)


      	SLEEPY_FACE (pygamelib.assets.graphics.Models attribute)


      	SLIGHTLY_FROWNING_FACE (pygamelib.assets.graphics.Models attribute)


      	SLIGHTLY_SMILING_FACE (pygamelib.assets.graphics.Models attribute)


      	SLOPE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	SLOT_MACHINE (pygamelib.assets.graphics.Models attribute)


      	SLOTH (pygamelib.assets.graphics.Models attribute)


      	SMALL_AIRPLANE (pygamelib.assets.graphics.Models attribute)


      	SMALL_BLUE_DIAMOND (pygamelib.assets.graphics.Models attribute)


      	SMALL_ORANGE_DIAMOND (pygamelib.assets.graphics.Models attribute)


      	SMILE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	SMILING_CAT_WITH_HEART_EYES (pygamelib.assets.graphics.Models attribute)


      	SMILING_FACE (pygamelib.assets.graphics.Models attribute)


      	SMILING_FACE_WITH_HALO (pygamelib.assets.graphics.Models attribute)


      	SMILING_FACE_WITH_HEART_EYES (pygamelib.assets.graphics.Models attribute)


      	SMILING_FACE_WITH_HEARTS (pygamelib.assets.graphics.Models attribute)


      	SMILING_FACE_WITH_HORNS (pygamelib.assets.graphics.Models attribute)


      	SMILING_FACE_WITH_SMILING_EYES (pygamelib.assets.graphics.Models attribute)


      	SMILING_FACE_WITH_SUNGLASSES (pygamelib.assets.graphics.Models attribute)


      	SMILING_FACE_WITH_TEAR (pygamelib.assets.graphics.Models attribute)


      	SMIRKING_FACE (pygamelib.assets.graphics.Models attribute)


      	SNAIL (pygamelib.assets.graphics.Models attribute)


      	SNAKE (pygamelib.assets.graphics.Models attribute)


      	SNEEZING_FACE (pygamelib.assets.graphics.Models attribute)


      	SNOW_CAPPED_MOUNTAIN (pygamelib.assets.graphics.Models attribute)


      	SNOWBOARDER (pygamelib.assets.graphics.Models attribute)


      	SNOWFLAKE (pygamelib.assets.graphics.Models attribute)


      	SNOWMAN (pygamelib.assets.graphics.Models attribute)


      	SNOWMAN_WITHOUT_SNOW (pygamelib.assets.graphics.Models attribute)


      	SOAP (pygamelib.assets.graphics.Models attribute)


      	SOCCER_BALL (pygamelib.assets.graphics.Models attribute)


      	SOCKS (pygamelib.assets.graphics.Models attribute)


      	SOFT_ICE_CREAM (pygamelib.assets.graphics.Models attribute)


      	SOFTBALL (pygamelib.assets.graphics.Models attribute)


      	SOFTWARE_FUNCTION_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	SOON_ARROW (pygamelib.assets.graphics.Models attribute)


      	SOS_BUTTON (pygamelib.assets.graphics.Models attribute)


      	spacing (pygamelib.gfx.ui.BoxLayout property)

      
        	(pygamelib.gfx.ui.FormLayout property)


        	(pygamelib.gfx.ui.GridLayout property)


        	(pygamelib.gfx.ui.Layout property)


        	(pygamelib.gfx.ui.MenuBar property)


      


      	SPADE_SUIT (pygamelib.assets.graphics.Models attribute)


      	SPAGHETTI (pygamelib.assets.graphics.Models attribute)


      	SPARKLE (pygamelib.assets.graphics.Models attribute)


      	SPARKLER (pygamelib.assets.graphics.Models attribute)


      	SPARKLES (pygamelib.assets.graphics.Models attribute)


      	SPARKLING_HEART (pygamelib.assets.graphics.Models attribute)


      	SPEAK_NO_EVIL_MONKEY (pygamelib.assets.graphics.Models attribute)


      	SPEAKER_HIGH_VOLUME (pygamelib.assets.graphics.Models attribute)


      	SPEAKER_LOW_VOLUME (pygamelib.assets.graphics.Models attribute)


      	SPEAKER_MEDIUM_VOLUME (pygamelib.assets.graphics.Models attribute)


      	SPEAKING_HEAD (pygamelib.assets.graphics.Models attribute)


      	SPEECH_BALLOON (pygamelib.assets.graphics.Models attribute)


      	SPEEDBOAT (pygamelib.assets.graphics.Models attribute)


      	SPIDER (pygamelib.assets.graphics.Models attribute)


      	SPIDER_WEB (pygamelib.assets.graphics.Models attribute)


      	SPIRAL_CALENDAR (pygamelib.assets.graphics.Models attribute)


      	SPIRAL_NOTEPAD (pygamelib.assets.graphics.Models attribute)


      	SPIRAL_SHELL (pygamelib.assets.graphics.Models attribute)


      	SPONGE (pygamelib.assets.graphics.Models attribute)


      	SPOON (pygamelib.assets.graphics.Models attribute)


      	SPORT_UTILITY_VEHICLE (pygamelib.assets.graphics.Models attribute)


      	SPORTS_MEDAL (pygamelib.assets.graphics.Models attribute)


      	SPOUTING_WHALE (pygamelib.assets.graphics.Models attribute)


      	Sprite (class in pygamelib.gfx.core)


      	sprite (pygamelib.board_items.ActionableTile property)

      
        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


      


      	SpriteCollection (class in pygamelib.gfx.core)


      	Sprixel (class in pygamelib.gfx.core)


      	sprixel (pygamelib.gfx.ui.Cursor property)


      	sprixel() (pygamelib.gfx.core.Sprite method)


      	SQUARE_FOOT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	SQUARE_LOZENGE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUARE_WITH_HORIZONTAL_FILL (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUARE_WITH_LEFT_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUARE_WITH_RIGHT_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUARE_WITH_VERTICAL_FILL (pygamelib.assets.graphics.GeometricShapes attribute)


      	SQUID (pygamelib.assets.graphics.Models attribute)


      	SQUINTING_FACE_WITH_TONGUE (pygamelib.assets.graphics.Models attribute)


      	STADIUM (pygamelib.assets.graphics.Models attribute)


      	STAR (pygamelib.assets.graphics.Models attribute)


      	STAR_AND_CRESCENT (pygamelib.assets.graphics.Models attribute)


      	STAR_OF_DAVID (pygamelib.assets.graphics.Models attribute)


      	STAR_STRUCK (pygamelib.assets.graphics.Models attribute)


      	start() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.engine.Game method)


        	(pygamelib.gfx.core.Animation method)


      


      	state (pygamelib.engine.Game property)


      	STATION (pygamelib.assets.graphics.Models attribute)


      	STATUE_OF_LIBERTY (pygamelib.assets.graphics.Models attribute)


      	STEAMING_BOWL (pygamelib.assets.graphics.Models attribute)


      	STETHOSCOPE (pygamelib.assets.graphics.Models attribute)


      	stop() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.engine.Game method)


        	(pygamelib.gfx.core.Animation method)


      


      	STOP_BUTTON (pygamelib.assets.graphics.Models attribute)


      	STOP_SIGN (pygamelib.assets.graphics.Models attribute)


      	STOPPED (pygamelib.constants.State attribute)


      	STOPWATCH (pygamelib.assets.graphics.MiscTechnicals attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	store_position() (pygamelib.board_items.Actionable method)

      
        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


      


      	store_screen_position() (pygamelib.actuators.Actuator method)

      
        	(pygamelib.actuators.Behavioral method)


        	(pygamelib.actuators.PathActuator method)


        	(pygamelib.actuators.PathFinder method)


        	(pygamelib.actuators.PatrolActuator method)


        	(pygamelib.actuators.RandomActuator method)


        	(pygamelib.actuators.UnidirectionalActuator method)


        	(pygamelib.base.PglBaseObject method)


        	(pygamelib.base.Text method)


        	(pygamelib.board_items.Actionable method)


        	(pygamelib.board_items.ActionableTile method)


        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.BoardItem method)


        	(pygamelib.board_items.BoardItemComplexComponent method)


        	(pygamelib.board_items.BoardItemVoid method)


        	(pygamelib.board_items.Camera method)


        	(pygamelib.board_items.Character method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.Door method)


        	(pygamelib.board_items.GenericActionableStructure method)


        	(pygamelib.board_items.GenericStructure method)


        	(pygamelib.board_items.GenericStructureComplexComponent method)


        	(pygamelib.board_items.Immovable method)


        	(pygamelib.board_items.Movable method)


        	(pygamelib.board_items.NPC method)


        	(pygamelib.board_items.Player method)


        	(pygamelib.board_items.Projectile method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


        	(pygamelib.board_items.Treasure method)


        	(pygamelib.board_items.Wall method)


        	(pygamelib.engine.Board method)


        	(pygamelib.engine.Game method)


        	(pygamelib.engine.Inventory method)


        	(pygamelib.engine.Screen method)


        	(pygamelib.gfx.core.Color method)


        	(pygamelib.gfx.core.Sprite method)


        	(pygamelib.gfx.core.Sprixel method)


        	(pygamelib.gfx.particles.CircleEmitter method)


        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.ParticleSprixel method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


        	(pygamelib.gfx.ui.BoxLayout method)


        	(pygamelib.gfx.ui.Cursor method)


        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.Layout method)


        	(pygamelib.gfx.ui.LineInput method)


        	(pygamelib.gfx.ui.Widget method)


      


      	STRAIGHT_RULER (pygamelib.assets.graphics.Models attribute)


      	STRAIGHTNESS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	STRAWBERRY (pygamelib.assets.graphics.Models attribute)


      	STUDIO_MICROPHONE (pygamelib.assets.graphics.Models attribute)


      	STUFFED_FLATBREAD (pygamelib.assets.graphics.Models attribute)


      	style (pygamelib.base.Text attribute)


      	SUMMATION_BOTTOM (pygamelib.assets.graphics.MiscTechnicals attribute)


      	SUMMATION_TOP (pygamelib.assets.graphics.MiscTechnicals attribute)


      	SUN (pygamelib.assets.graphics.Models attribute)


      	SUN_BEHIND_CLOUD (pygamelib.assets.graphics.Models attribute)


      	SUN_BEHIND_LARGE_CLOUD (pygamelib.assets.graphics.Models attribute)


      	SUN_BEHIND_RAIN_CLOUD (pygamelib.assets.graphics.Models attribute)


      	SUN_BEHIND_SMALL_CLOUD (pygamelib.assets.graphics.Models attribute)


      	SUN_WITH_FACE (pygamelib.assets.graphics.Models attribute)


      	SUNFLOWER (pygamelib.assets.graphics.Models attribute)


      	SUNGLASSES (pygamelib.assets.graphics.Models attribute)


      	SUNRISE (pygamelib.assets.graphics.Models attribute)


      	SUNRISE_OVER_MOUNTAINS (pygamelib.assets.graphics.Models attribute)


      	SUNSET (pygamelib.assets.graphics.Models attribute)


      	SUPERHERO (pygamelib.assets.graphics.Models attribute)


      	SUPERVILLAIN (pygamelib.assets.graphics.Models attribute)


      	SUSHI (pygamelib.assets.graphics.Models attribute)


      	SUSPENSION_RAILWAY (pygamelib.assets.graphics.Models attribute)


      	SWAN (pygamelib.assets.graphics.Models attribute)


      	SWEAT_DROPLETS (pygamelib.assets.graphics.Models attribute)


      	SYMMETRY (pygamelib.assets.graphics.MiscTechnicals attribute)


      	SYNAGOGUE (pygamelib.assets.graphics.Models attribute)


      	SYRINGE (pygamelib.assets.graphics.Models attribute)


  





T


  	
      	T_REX (pygamelib.assets.graphics.Models attribute)


      	T_SHIRT (pygamelib.assets.graphics.Models attribute)


      	TACO (pygamelib.assets.graphics.Models attribute)


      	TAKEOUT_BOX (pygamelib.assets.graphics.Models attribute)


      	TAMALE (pygamelib.assets.graphics.Models attribute)


      	TANABATA_TREE (pygamelib.assets.graphics.Models attribute)


      	TANGERINE (pygamelib.assets.graphics.Models attribute)


      	TAURUS (pygamelib.assets.graphics.Models attribute)


      	TAXI (pygamelib.assets.graphics.Models attribute)


      	TEACUP_WITHOUT_HANDLE (pygamelib.assets.graphics.Models attribute)


      	TEAPOT (pygamelib.assets.graphics.Models attribute)


      	TEAR_OFF_CALENDAR (pygamelib.assets.graphics.Models attribute)


      	TEDDY_BEAR (pygamelib.assets.graphics.Models attribute)


      	TELEPHONE (pygamelib.assets.graphics.Models attribute)


      	TELEPHONE_RECEIVER (pygamelib.assets.graphics.Models attribute)


      	TELEPHONE_RECORDER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TELESCOPE (pygamelib.assets.graphics.Models attribute)


      	TELEVISION (pygamelib.assets.graphics.Models attribute)


      	TEN_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	TEN_THIRTY (pygamelib.assets.graphics.Models attribute)


      	TENNIS (pygamelib.assets.graphics.Models attribute)


      	TENT (pygamelib.assets.graphics.Models attribute)


      	terminate() (pygamelib.gfx.particles.ColorParticle method)

      
        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


      


      	TEST_TUBE (pygamelib.assets.graphics.Models attribute)


      	Text (class in pygamelib.base)


      	text (pygamelib.base.Text property)

      
        	(pygamelib.board_items.TextItem property)


        	(pygamelib.gfx.ui.LineInput property)


      


      	TextItem (class in pygamelib.board_items)


      	THERMOMETER (pygamelib.assets.graphics.Models attribute)


      	THINKING_FACE (pygamelib.assets.graphics.Models attribute)


      	THIRD_PLACE_MEDAL (pygamelib.assets.graphics.Models attribute)


      	THONG_SANDAL (pygamelib.assets.graphics.Models attribute)


      	THOUGHT_BALLOON (pygamelib.assets.graphics.Models attribute)


      	THREAD (pygamelib.assets.graphics.Models attribute)


      	THREE_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	THREE_THIRTY (pygamelib.assets.graphics.Models attribute)


      	THUMBS_DOWN (pygamelib.assets.graphics.Models attribute)


      	THUMBS_UP (pygamelib.assets.graphics.Models attribute)


      	TICKET (pygamelib.assets.graphics.Models attribute)


      	TIGER (pygamelib.assets.graphics.Models attribute)


      	TIGER_FACE (pygamelib.assets.graphics.Models attribute)


      	Tile (class in pygamelib.board_items)


      	TIMER_CLOCK (pygamelib.assets.graphics.MiscTechnicals attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	tint() (pygamelib.gfx.core.Sprite method)


      	TIRED_FACE (pygamelib.assets.graphics.Models attribute)


      	title (pygamelib.gfx.ui.Box property)

      
        	(pygamelib.gfx.ui.ColorPickerDialog property)


        	(pygamelib.gfx.ui.GridSelectorDialog property)


        	(pygamelib.gfx.ui.LineInputDialog property)


        	(pygamelib.gfx.ui.Menu property)


        	(pygamelib.gfx.ui.MenuAction property)


        	(pygamelib.gfx.ui.MessageDialog property)


        	(pygamelib.gfx.ui.MultiLineInputDialog property)


      


  

  	
      	title_width() (pygamelib.gfx.ui.Menu method)

      
        	(pygamelib.gfx.ui.MenuAction method)


      


      	to_json_file() (pygamelib.gfx.core.SpriteCollection method)


      	toggle_active() (pygamelib.gfx.particles.CircleEmitter method)

      
        	(pygamelib.gfx.particles.ParticleEmitter method)


      


      	TOILET (pygamelib.assets.graphics.Models attribute)


      	TOKYO_TOWER (pygamelib.assets.graphics.Models attribute)


      	TOMATO (pygamelib.assets.graphics.Models attribute)


      	TONGUE (pygamelib.assets.graphics.Models attribute)


      	TOOLBOX (pygamelib.assets.graphics.Models attribute)


      	TOOTH (pygamelib.assets.graphics.Models attribute)


      	TOOTHBRUSH (pygamelib.assets.graphics.Models attribute)


      	TOP (pygamelib.constants.Alignment attribute)


      	TOP_ARROW (pygamelib.assets.graphics.Models attribute)


      	TOP_CURLY_BRACKET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TOP_HALF_INTEGRAL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TOP_HAT (pygamelib.assets.graphics.Models attribute)


      	TOP_LEFT_CORNER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TOP_LEFT_CROP (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TOP_PARENTHESIS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TOP_RIGHT_CORNER (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TOP_RIGHT_CROP (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TOP_SQUARE_BRACKET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TOP_TORTOISE_SHELL_BRACKET (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TORNADO (pygamelib.assets.graphics.Models attribute)


      	TOTAL_RUNOUT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TRACKBALL (pygamelib.assets.graphics.Models attribute)


      	TRACTOR (pygamelib.assets.graphics.Models attribute)


      	TRADE_MARK (pygamelib.assets.graphics.Models attribute)


      	TRAIN (pygamelib.assets.graphics.Models attribute)


      	TRAM (pygamelib.assets.graphics.Models attribute)


      	TRAM_CAR (pygamelib.assets.graphics.Models attribute)


      	TRANSGENDER_SYMBOL (pygamelib.assets.graphics.Models attribute)


      	Treasure (class in pygamelib.board_items)


      	TRIANGULAR_FLAG (pygamelib.assets.graphics.Models attribute)


      	TRIANGULAR_RULER (pygamelib.assets.graphics.Models attribute)


      	TRIDENT_EMBLEM (pygamelib.assets.graphics.Models attribute)


      	trigger_rendering() (pygamelib.engine.Screen method)


      	TROLLEYBUS (pygamelib.assets.graphics.Models attribute)


      	TROPHY (pygamelib.assets.graphics.Models attribute)


      	TROPICAL_DRINK (pygamelib.assets.graphics.Models attribute)


      	TROPICAL_FISH (pygamelib.assets.graphics.Models attribute)


      	TRUMPET (pygamelib.assets.graphics.Models attribute)


      	TULIP (pygamelib.assets.graphics.Models attribute)


      	TUMBLER_GLASS (pygamelib.assets.graphics.Models attribute)


      	TURKEY (pygamelib.assets.graphics.Models attribute)


      	TURNED_NOT_SIGN (pygamelib.assets.graphics.MiscTechnicals attribute)


      	TURTLE (pygamelib.assets.graphics.Models attribute)


      	TWELVE_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	TWELVE_THIRTY (pygamelib.assets.graphics.Models attribute)


      	TWO_HEARTS (pygamelib.assets.graphics.Models attribute)


      	TWO_HUMP_CAMEL (pygamelib.assets.graphics.Models attribute)


      	TWO_OCLOCK (pygamelib.assets.graphics.Models attribute)


      	TWO_THIRTY (pygamelib.assets.graphics.Models attribute)


  





U


  	
      	UiConfig (class in pygamelib.gfx.ui)


      	UMBRELLA (pygamelib.assets.graphics.Models attribute)


      	UMBRELLA_ON_GROUND (pygamelib.assets.graphics.Models attribute)


      	UMBRELLA_WITH_RAIN_DROPS (pygamelib.assets.graphics.Models attribute)


      	UNAMUSED_FACE (pygamelib.assets.graphics.Models attribute)


      	UNDERLINE (pygamelib.constants.TextStyle attribute)


      	undo() (pygamelib.base.History method)

      
        	(pygamelib.gfx.ui.LineInput method)


      


      	UNDO_SYMBOL (pygamelib.assets.graphics.MiscTechnicals attribute)


      	UNICORN (pygamelib.assets.graphics.Models attribute)


      	UnidirectionalActuator (class in pygamelib.actuators)


      	unit() (pygamelib.base.Vector2D method)


      	unlock_position() (pygamelib.gfx.ui.Cursor method)


      	UNLOCKED (pygamelib.assets.graphics.Models attribute)


      	UP (pygamelib.constants.Direction attribute)


      	UP_ARROW (pygamelib.assets.graphics.Models attribute)


      	UP_ARROWHEAD (pygamelib.assets.graphics.MiscTechnicals attribute)


      	UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS (pygamelib.assets.graphics.MiscTechnicals attribute)


      	UP_BUTTON (pygamelib.assets.graphics.Models attribute)


      	UP_DOUBLE_AND_HORIZONTAL_SINGLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_DOUBLE_AND_LEFT_SINGLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_DOUBLE_AND_RIGHT_SINGLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_DOWN_ARROW (pygamelib.assets.graphics.Models attribute)


      	UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_HEAVY_AND_HORIZONTAL_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_HEAVY_AND_LEFT_DOWN_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_HEAVY_AND_LEFT_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_HEAVY_AND_RIGHT_DOWN_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_HEAVY_AND_RIGHT_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_LEFT_ARROW (pygamelib.assets.graphics.Models attribute)


      	UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_LIGHT_AND_HORIZONTAL_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_LIGHT_AND_LEFT_DOWN_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_LIGHT_AND_LEFT_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_LIGHT_AND_RIGHT_DOWN_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_LIGHT_AND_RIGHT_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK (pygamelib.assets.graphics.GeometricShapes attribute)


      	UP_RIGHT_ARROW (pygamelib.assets.graphics.Models attribute)


      	UP_SINGLE_AND_HORIZONTAL_DOUBLE (pygamelib.assets.graphics.BoxDrawings attribute)


  

  	
      	UP_SINGLE_AND_LEFT_DOUBLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	UP_SINGLE_AND_RIGHT_DOUBLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	update() (pygamelib.engine.Screen method)

      
        	(pygamelib.gfx.core.SpriteCollection method)


        	(pygamelib.gfx.particles.CircleEmitter method)


        	(pygamelib.gfx.particles.ColorParticle method)


        	(pygamelib.gfx.particles.ColorPartitionParticle method)


        	(pygamelib.gfx.particles.Particle method)


        	(pygamelib.gfx.particles.ParticleEmitter method)


        	(pygamelib.gfx.particles.PartitionParticle method)


        	(pygamelib.gfx.particles.RandomColorParticle method)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle method)


      


      	update_sprite() (pygamelib.board_items.ActionableTile method)

      
        	(pygamelib.board_items.BoardComplexItem method)


        	(pygamelib.board_items.ComplexDoor method)


        	(pygamelib.board_items.ComplexNPC method)


        	(pygamelib.board_items.ComplexPlayer method)


        	(pygamelib.board_items.ComplexTreasure method)


        	(pygamelib.board_items.ComplexWall method)


        	(pygamelib.board_items.TextItem method)


        	(pygamelib.board_items.Tile method)


      


      	UPPER_HALF_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	UPPER_HALF_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	UPPER_HALF_INVERSE_WHITE_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	UPPER_LEFT_QUADRANT_CIRCULAR_ARC (pygamelib.assets.graphics.GeometricShapes attribute)


      	UPPER_LEFT_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	UPPER_ONE_EIGHTH_BLOCK (pygamelib.assets.graphics.Blocks attribute)


      	UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION (pygamelib.assets.graphics.MiscTechnicals attribute)


      	UPPER_RIGHT_QUADRANT_CIRCULAR_ARC (pygamelib.assets.graphics.GeometricShapes attribute)


      	UPPER_RIGHT_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	UPSIDE_DOWN_FACE (pygamelib.assets.graphics.Models attribute)


      	UPWARDS_BUTTON (pygamelib.assets.graphics.Models attribute)


      	user_input (pygamelib.gfx.ui.ColorPickerDialog property)

      
        	(pygamelib.gfx.ui.Dialog property)


        	(pygamelib.gfx.ui.FileDialog property)


        	(pygamelib.gfx.ui.GridSelectorDialog property)


        	(pygamelib.gfx.ui.LineInputDialog property)


        	(pygamelib.gfx.ui.MessageDialog property)


        	(pygamelib.gfx.ui.MultiLineInputDialog property)


        	(pygamelib.gfx.ui.ProgressDialog property)


      


  





V


  	
      	V_CENTER (pygamelib.constants.Alignment attribute)


      	value (pygamelib.gfx.ui.ProgressBar property)

      
        	(pygamelib.gfx.ui.ProgressDialog property)


      


      	value() (pygamelib.engine.Inventory method)


      	values() (pygamelib.gfx.core.SpriteCollection method)


      	VAMPIRE (pygamelib.assets.graphics.Models attribute)


      	vcenter (pygamelib.engine.Screen property)


      	Vector2D (class in pygamelib.base)


      	VERTICAL (pygamelib.constants.Orientation attribute)


      	VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_DOUBLE_AND_LEFT_SINGLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_DOUBLE_AND_RIGHT_SINGLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_HEAVY_AND_LEFT_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_HEAVY_AND_RIGHT_LIGHT (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_LIGHT_AND_LEFT_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_LIGHT_AND_RIGHT_HEAVY (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_LINE_EXTENSION (pygamelib.assets.graphics.MiscTechnicals attribute)


  

  	
      	VERTICAL_LINE_WITH_MIDDLE_DOT (pygamelib.assets.graphics.MiscTechnicals attribute)


      	VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_SINGLE_AND_LEFT_DOUBLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	VERTICAL_SINGLE_AND_RIGHT_DOUBLE (pygamelib.assets.graphics.BoxDrawings attribute)


      	vertical_spacing (pygamelib.gfx.core.Font property)

      
        	(pygamelib.gfx.ui.FormLayout property)


        	(pygamelib.gfx.ui.GridLayout property)


      


      	VERTICAL_TRAFFIC_LIGHT (pygamelib.assets.graphics.Models attribute)


      	VIBRATION_MODE (pygamelib.assets.graphics.Models attribute)


      	VICTORY_HAND (pygamelib.assets.graphics.Models attribute)


      	VIDEO_CAMERA (pygamelib.assets.graphics.Models attribute)


      	VIDEO_GAME (pygamelib.assets.graphics.Models attribute)


      	VIDEOCASSETTE (pygamelib.assets.graphics.Models attribute)


      	VIEWDATA_SQUARE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	VIOLIN (pygamelib.assets.graphics.Models attribute)


      	VIRGO (pygamelib.assets.graphics.Models attribute)


      	VOLCANO (pygamelib.assets.graphics.Models attribute)


      	VOLLEYBALL (pygamelib.assets.graphics.Models attribute)


      	VS_BUTTON (pygamelib.assets.graphics.Models attribute)


      	VULCAN_SALUTE (pygamelib.assets.graphics.Models attribute)


  





W


  	
      	WAFFLE (pygamelib.assets.graphics.Models attribute)


      	Wall (class in pygamelib.board_items)


      	WANING_CRESCENT_MOON (pygamelib.assets.graphics.Models attribute)


      	WANING_GIBBOUS_MOON (pygamelib.assets.graphics.Models attribute)


      	warn() (pygamelib.base.Text static method)


      	WARNING (pygamelib.assets.graphics.Models attribute)


      	WASTEBASKET (pygamelib.assets.graphics.Models attribute)


      	WATCH (pygamelib.assets.graphics.MiscTechnicals attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	WATER_BUFFALO (pygamelib.assets.graphics.Models attribute)


      	WATER_CLOSET (pygamelib.assets.graphics.Models attribute)


      	WATER_WAVE (pygamelib.assets.graphics.Models attribute)


      	WATERMELON (pygamelib.assets.graphics.Models attribute)


      	WAVING_HAND (pygamelib.assets.graphics.Models attribute)


      	WAVY_DASH (pygamelib.assets.graphics.Models attribute)


      	WAVY_LINE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	WAXING_CRESCENT_MOON (pygamelib.assets.graphics.Models attribute)


      	WAXING_GIBBOUS_MOON (pygamelib.assets.graphics.Models attribute)


      	WEARY_CAT (pygamelib.assets.graphics.Models attribute)


      	WEARY_FACE (pygamelib.assets.graphics.Models attribute)


      	WEDDING (pygamelib.assets.graphics.Models attribute)


      	WHALE (pygamelib.assets.graphics.Models attribute)


      	WHEEL_OF_DHARMA (pygamelib.assets.graphics.Models attribute)


      	WHEELCHAIR_SYMBOL (pygamelib.assets.graphics.Models attribute)


      	white() (pygamelib.base.Text static method)


      	white_bright() (pygamelib.base.Text static method)


      	WHITE_BULLET (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_CANE (pygamelib.assets.graphics.Models attribute)


      	WHITE_CIRCLE (pygamelib.assets.graphics.GeometricShapes attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_DIAMOND (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND (pygamelib.assets.graphics.GeometricShapes attribute)


      	white_dim() (pygamelib.base.Text static method)


      	WHITE_DOWN_POINTING_SMALL_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_DOWN_POINTING_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_EXCLAMATION_MARK (pygamelib.assets.graphics.Models attribute)


      	WHITE_FLAG (pygamelib.assets.graphics.Models attribute)


      	WHITE_FLOWER (pygamelib.assets.graphics.Models attribute)


      	WHITE_HAIR (pygamelib.assets.graphics.Models attribute)


      	WHITE_HEART (pygamelib.assets.graphics.Models attribute)


      	WHITE_LARGE_SQUARE (pygamelib.assets.graphics.Models attribute)


      	WHITE_LEFT_POINTING_POINTER (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_LEFT_POINTING_SMALL_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_LEFT_POINTING_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_MEDIUM_SMALL_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	WHITE_MEDIUM_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	WHITE_PARALLELOGRAM (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_QUESTION_MARK (pygamelib.assets.graphics.Models attribute)


      	white_rect() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	WHITE_RECTANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_RIGHT_POINTING_POINTER (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_RIGHT_POINTING_SMALL_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_RIGHT_POINTING_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_SMALL_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)

      
        	(pygamelib.assets.graphics.Models attribute)


      


      	WHITE_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)


      	white_square() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	WHITE_SQUARE_BUTTON (pygamelib.assets.graphics.Models attribute)


      	WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE (pygamelib.assets.graphics.MiscTechnicals attribute)


      	WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_SQUARE_WITH_ROUNDED_CORNERS (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT (pygamelib.assets.graphics.GeometricShapes attribute)


  

  	
      	WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_TRAPEZIUM (pygamelib.assets.graphics.MiscTechnicals attribute)


      	WHITE_UP_POINTING_SMALL_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_UP_POINTING_TRIANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_UP_POINTING_TRIANGLE_WITH_DOT (pygamelib.assets.graphics.GeometricShapes attribute)


      	WHITE_VERTICAL_RECTANGLE (pygamelib.assets.graphics.GeometricShapes attribute)


      	Widget (class in pygamelib.gfx.ui)


      	widgets() (pygamelib.gfx.ui.BoxLayout method)

      
        	(pygamelib.gfx.ui.FormLayout method)


        	(pygamelib.gfx.ui.GridLayout method)


        	(pygamelib.gfx.ui.Layout method)


      


      	width (pygamelib.board_items.Actionable property)

      
        	(pygamelib.board_items.ActionableTile property)


        	(pygamelib.board_items.BoardComplexItem property)


        	(pygamelib.board_items.BoardItem property)


        	(pygamelib.board_items.BoardItemComplexComponent property)


        	(pygamelib.board_items.BoardItemVoid property)


        	(pygamelib.board_items.Camera property)


        	(pygamelib.board_items.Character property)


        	(pygamelib.board_items.ComplexDoor property)


        	(pygamelib.board_items.ComplexNPC property)


        	(pygamelib.board_items.ComplexPlayer property)


        	(pygamelib.board_items.ComplexTreasure property)


        	(pygamelib.board_items.ComplexWall property)


        	(pygamelib.board_items.Door property)


        	(pygamelib.board_items.GenericActionableStructure property)


        	(pygamelib.board_items.GenericStructure property)


        	(pygamelib.board_items.GenericStructureComplexComponent property)


        	(pygamelib.board_items.Immovable property)


        	(pygamelib.board_items.Movable property)


        	(pygamelib.board_items.NPC property)


        	(pygamelib.board_items.Player property)


        	(pygamelib.board_items.Projectile property)


        	(pygamelib.board_items.TextItem property)


        	(pygamelib.board_items.Tile property)


        	(pygamelib.board_items.Treasure property)


        	(pygamelib.board_items.Wall property)


        	(pygamelib.engine.Board property)


        	(pygamelib.engine.Screen property)


        	(pygamelib.gfx.core.Sprite property)


        	(pygamelib.gfx.ui.Box property)


        	(pygamelib.gfx.ui.BoxLayout property)


        	(pygamelib.gfx.ui.FormLayout property)


        	(pygamelib.gfx.ui.GridLayout property)


        	(pygamelib.gfx.ui.Layout property)


        	(pygamelib.gfx.ui.LineInput property)


        	(pygamelib.gfx.ui.Widget property)


      


      	WILTED_FLOWER (pygamelib.assets.graphics.Models attribute)


      	WIND_CHIME (pygamelib.assets.graphics.Models attribute)


      	WIND_FACE (pygamelib.assets.graphics.Models attribute)


      	WINDOW (pygamelib.assets.graphics.Models attribute)


      	WINE_GLASS (pygamelib.assets.graphics.Models attribute)


      	WINKING_FACE (pygamelib.assets.graphics.Models attribute)


      	WINKING_FACE_WITH_TONGUE (pygamelib.assets.graphics.Models attribute)


      	WOLF (pygamelib.assets.graphics.Models attribute)


      	WOMAN (pygamelib.assets.graphics.Models attribute)


      	WOMAN_AND_MAN_HOLDING_HANDS (pygamelib.assets.graphics.Models attribute)


      	WOMAN_DANCING (pygamelib.assets.graphics.Models attribute)


      	WOMAN_WITH_HEADSCARF (pygamelib.assets.graphics.Models attribute)


      	WOMANS_BOOT (pygamelib.assets.graphics.Models attribute)


      	WOMANS_CLOTHES (pygamelib.assets.graphics.Models attribute)


      	WOMANS_HAT (pygamelib.assets.graphics.Models attribute)


      	WOMANS_SANDAL (pygamelib.assets.graphics.Models attribute)


      	WOMEN_HOLDING_HANDS (pygamelib.assets.graphics.Models attribute)


      	WOMENS_ROOM (pygamelib.assets.graphics.Models attribute)


      	WOOD (pygamelib.assets.graphics.Models attribute)


      	WOOZY_FACE (pygamelib.assets.graphics.Models attribute)


      	WORLD_MAP (pygamelib.assets.graphics.Models attribute)


      	WORM (pygamelib.assets.graphics.Models attribute)


      	WORRIED_FACE (pygamelib.assets.graphics.Models attribute)


      	WRAPPED_GIFT (pygamelib.assets.graphics.Models attribute)


      	WRENCH (pygamelib.assets.graphics.Models attribute)


      	WRITING_HAND (pygamelib.assets.graphics.Models attribute)


  





X


  	
      	x (pygamelib.base.Vector2D property)

      
        	(pygamelib.gfx.particles.CircleEmitter property)


        	(pygamelib.gfx.particles.ColorParticle property)


        	(pygamelib.gfx.particles.ColorPartitionParticle property)


        	(pygamelib.gfx.particles.Particle property)


        	(pygamelib.gfx.particles.ParticleEmitter property)


        	(pygamelib.gfx.particles.PartitionParticle property)


        	(pygamelib.gfx.particles.RandomColorParticle property)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle property)


        	(pygamelib.gfx.ui.LineInput property)


        	(pygamelib.gfx.ui.Widget property)


      


  

  	
      	X_IN_A_RECTANGLE_BOX (pygamelib.assets.graphics.MiscTechnicals attribute)


  





Y


  	
      	y (pygamelib.base.Vector2D property)

      
        	(pygamelib.gfx.particles.CircleEmitter property)


        	(pygamelib.gfx.particles.ColorParticle property)


        	(pygamelib.gfx.particles.ColorPartitionParticle property)


        	(pygamelib.gfx.particles.Particle property)


        	(pygamelib.gfx.particles.ParticleEmitter property)


        	(pygamelib.gfx.particles.PartitionParticle property)


        	(pygamelib.gfx.particles.RandomColorParticle property)


        	(pygamelib.gfx.particles.RandomColorPartitionParticle property)


        	(pygamelib.gfx.ui.LineInput property)


        	(pygamelib.gfx.ui.Widget property)


      


      	YARN (pygamelib.assets.graphics.Models attribute)


      	YAWNING_FACE (pygamelib.assets.graphics.Models attribute)


  

  	
      	yellow() (pygamelib.base.Text static method)


      	yellow_bright() (pygamelib.base.Text static method)


      	YELLOW_CIRCLE (pygamelib.assets.graphics.Models attribute)


      	yellow_dim() (pygamelib.base.Text static method)


      	YELLOW_HEART (pygamelib.assets.graphics.Models attribute)


      	yellow_rect() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	YELLOW_SQUARE (pygamelib.assets.graphics.Models attribute)


      	yellow_square() (pygamelib.gfx.core.Sprixel class method)

      
        	(pygamelib.gfx.particles.ParticleSprixel class method)


      


      	YEN_BANKNOTE (pygamelib.assets.graphics.Models attribute)


      	YIN_YANG (pygamelib.assets.graphics.Models attribute)


      	YO_YO (pygamelib.assets.graphics.Models attribute)


  





Z


  	
      	ZANY_FACE (pygamelib.assets.graphics.Models attribute)


      	ZEBRA (pygamelib.assets.graphics.Models attribute)


  

  	
      	ZIPPER_MOUTH_FACE (pygamelib.assets.graphics.Models attribute)


      	ZOMBIE (pygamelib.assets.graphics.Models attribute)


      	ZZZ (pygamelib.assets.graphics.Models attribute)


  







            

          

      

      

    

  
_static/file.png





_static/plus.png





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		
          pygamelib - documentation
        


        		
          actuators
          
            		
              Actuator
              
                		
                  Actuator
                


              


            


            		
              Behavioral
              
                		
                  Behavioral
                


              


            


            		
              PathActuator
              
                		
                  PathActuator
                


              


            


            		
              PatrolActuator
              
                		
                  PatrolActuator
                


              


            


            		
              PathFinder
              
                		
                  PathFinder
                


              


            


            		
              RandomActuator
              
                		
                  RandomActuator
                


              


            


            		
              UnidirectionalActuator
              
                		
                  UnidirectionalActuator
                


              


            


          


        


        		
          assets
          
            		
              graphics
              
                		
                  Blocks
                


                		
                  BoxDrawings
                


                		
                  GeometricShapes
                


                		
                  MiscTechnicals
                


                		
                  Models
                


              


            


            		
              Fonts
              
                		
                  8bits
                


                		
                  figlet-caligraphy
                


                		
                  figlet-doom
                


                		
                  figlet-graffiti
                


                		
                  figlet-mirror
                


                		
                  figlet-pepper
                


                		
                  figlet-poison
                


                		
                  figlet-puffy
                


                		
                  figlet-rounded
                


                		
                  figlet-stampatello
                


                		
                  figlet-univers
                


                		
                  figlet-wavy
                


              


            


          


        


        		
          base
          
            		
              Console
              
                		
                  Console
                


              


            


            		
              History
              
                		
                  History
                


              


            


            		
              Math
              
                		
                  Math
                


              


            


            		
              PglBaseObject
              
                		
                  PglBaseObject
                


              


            


            		
              PglException
              
                		
                  PglException
                


              


            


            		
              PglInvalidLevelException
              
                		
                  PglInvalidLevelException
                


              


            


            		
              PglInvalidTypeException
              
                		
                  PglInvalidTypeException
                


              


            


            		
              PglInventoryException
              
                		
                  PglInventoryException
                


              


            


            		
              PglObjectIsNotMovableException
              
                		
                  PglObjectIsNotMovableException
                


              


            


            		
              PglOutOfBoardBoundException
              
                		
                  PglOutOfBoardBoundException
                


              


            


            		
              Text
              
                		
                  Text
                


              


            


            		
              Vector2D
              
                		
                  Vector2D
                


              


            


            		
              Deprecated objects
              
                		
                  HacException
                


                		
                  HacInvalidLevelException
                


                		
                  HacInvalidTypeException
                


                		
                  HacObjectIsNotMovableException
                


                		
                  HacOutOfBoardBoundException
                


              


            


          


        


        		
          board_items
          
            		
              Actionable
              
                		
                  Actionable
                


              


            


            		
              ActionableTile
              
                		
                  ActionableTile
                


              


            


            		
              BoardComplexItem
              
                		
                  BoardComplexItem
                


              


            


            		
              BoardItemComplexComponent
              
                		
                  BoardItemComplexComponent
                


              


            


            		
              BoardItem
              
                		
                  BoardItem
                


              


            


            		
              BoardItemVoid
              
                		
                  BoardItemVoid
                


              


            


            		
              Camera
              
                		
                  Camera
                


              


            


            		
              Character
              
                		
                  Character
                


              


            


            		
              ComplexDoor
              
                		
                  ComplexDoor
                


              


            


            		
              ComplexNPC
              
                		
                  ComplexNPC
                


              


            


            		
              ComplexPlayer
              
                		
                  ComplexPlayer
                


              


            


            		
              ComplexTreasure
              
                		
                  ComplexTreasure
                


              


            


            		
              ComplexWall
              
                		
                  ComplexWall
                


              


            


            		
              Door
              
                		
                  Door
                


              


            


            		
              GenericActionableStructure
              
                		
                  GenericActionableStructure
                


              


            


            		
              GenericStructureComplexComponent
              
                		
                  GenericStructureComplexComponent
                


              


            


            		
              GenericStructure
              
                		
                  GenericStructure
                


              


            


            		
              Immovable
              
                		
                  Immovable
                


              


            


            		
              Movable
              
                		
                  Movable
                


              


            


            		
              NPC
              
                		
                  NPC
                


              


            


            		
              Player
              
                		
                  Player
                


              


            


            		
              Projectile
              
                		
                  Projectile
                


              


            


            		
              TextItem
              
                		
                  TextItem
                


              


            


            		
              Tile
              
                		
                  Tile
                


              


            


            		
              Treasure
              
                		
                  Treasure
                


              


            


            		
              Wall
              
                		
                  Wall
                


              


            


          


        


        		
          constants
          
            		
              Alignment
              
                		
                  Alignment.LEFT
                


                		
                  Alignment.RIGHT
                


                		
                  Alignment.CENTER
                


                		
                  Alignment.TOP
                


                		
                  Alignment.BOTTOM
                


                		
                  Alignment.V_CENTER
                


                		
                  Alignment.H_CENTER
                


              


            


            		
              Algorithm
              
                		
                  Algorithm.BFS
                


                		
                  Algorithm.ASTAR
                


              


            


            		
              Direction
              
                		
                  Direction.NO_DIR
                


                		
                  Direction.UP
                


                		
                  Direction.DOWN
                


                		
                  Direction.LEFT
                


                		
                  Direction.RIGHT
                


                		
                  Direction.DRUP
                


                		
                  Direction.DRDOWN
                


                		
                  Direction.DLUP
                


                		
                  Direction.DLDOWN
                


              


            


            		
              EngineConstant
              
                		
                  EngineConstant.NO_PLAYER
                


              


            


            		
              EngineMode
              
                		
                  EngineMode.MODE_REAL_TIME
                


                		
                  EngineMode.MODE_TURN_BY_TURN
                


              


            


            		
              InputValidator
              
                		
                  InputValidator.INTEGER_FILTER
                


                		
                  InputValidator.PRINTABLE_FILTER
                


              


            


            		
              Orientation
              
                		
                  Orientation.HORIZONTAL
                


                		
                  Orientation.VERTICAL
                


              


            


            		
              Permission
              
                		
                  Permission.PLAYER_AUTHORIZED
                


                		
                  Permission.NPC_AUTHORIZED
                


                		
                  Permission.ALL_CHARACTERS_AUTHORIZED
                


                		
                  Permission.ALL_MOVABLE_AUTHORIZED
                


                		
                  Permission.NONE_AUTHORIZED
                


              


            


            		
              SizeConstraint
              
                		
                  SizeConstraint.DEFAULT_SIZE
                


                		
                  SizeConstraint.MINIMUM_SIZE
                


                		
                  SizeConstraint.MAXIMUM_SIZE
                


                		
                  SizeConstraint.EXPAND
                


              


            


            		
              State
              
                		
                  State.RUNNING
                


                		
                  State.PAUSED
                


                		
                  State.STOPPED
                


              


            


            		
              TextStyle
              
                		
                  TextStyle.BOLD
                


                		
                  TextStyle.UNDERLINE
                


              


            


          


        


        		
          engine
          
            		
              Board
              
                		
                  Board
                


              


            


            		
              Game
              
                		
                  Game
                


              


            


            		
              Inventory
              
                		
                  Inventory
                


              


            


            		
              Screen
              
                		
                  Screen
                


              


            


          


        


        		
          gfx
          
            		
              core
              
                		
                  Animation
                


                		
                  Font
                


                		
                  SpriteCollection
                


                		
                  Sprite
                


                		
                  Sprixel
                


                		
                  Color
                


              


            


            		
              ui
              
                		
                  Box
                


                		
                  BoxLayout
                


                		
                  ColorPickerDialog
                


                		
                  ColorPicker
                


                		
                  Cursor
                


                		
                  Dialog
                


                		
                  FileDialog
                


                		
                  FormLayout
                


                		
                  GridLayout
                


                		
                  GridSelectorDialog
                


                		
                  GridSelector
                


                		
                  Layout
                


                		
                  LineInput
                


                		
                  LineInputDialog
                


                		
                  Menu
                


                		
                  MenuAction
                


                		
                  MenuBar
                


                		
                  MessageDialog
                


                		
                  MultiLineInputDialog
                


                		
                  ProgressBar
                


                		
                  ProgressDialog
                


                		
                  UiConfig
                


                		
                  Widget
                


              


            


            		
              particles
              
                		
                  CircleEmitter
                


                		
                  ColorParticle
                


                		
                  ColorPartitionParticle
                


                		
                  EmitterProperties
                


                		
                  ParticleEmitter
                


                		
                  ParticlePool
                


                		
                  Particle
                


                		
                  ParticleSprixel
                


                		
                  PartitionParticle
                


                		
                  RandomColorParticle
                


                		
                  RandomColorPartitionParticle
                


              


            


          


        


        		
          Credits
          
            		
              Development Lead
            


            		
              Contributors
            


          


        


        		
          Release notes
          
            		
              1.3.0 (2022-10-07)
              
                		
                  â¬�ï¸� Main updates
                


                		
                  â� ï¸� Breaking changes
                


                		
                  ð��§ Other changes
                


              


            


            		
              1.2.3 (2020-09-01)
            


            		
              1.2.2 (2020-09-01)
            


            		
              1.2.0 (2020-08-29)
            


            		
              1.1.1 (2020-07-18)
            


            		
              1.1.0 (2020-06-12)
            


            		
              1.0.1 (2020-05-17)
            


            		
              1.0.0 (2020-03-20)
            


            		
              2019.5
            


            		
              pre-2019.5
            


          


        


      


    
  

_images/font-example-figlet-stampatello.png





_images/font-example-figlet-rounded.png
MSVAANDAN

| 10N 70
| ) x(/

s,
~Z -
s,
~Z -
~_0
|
|
11—
i
[I—
=<
()
~_ -
~_
T
=
]
———="J
————/
1 7
~Z -
T
117
ST





_images/font-example-figlet-wavy.png
O

I
) O
(

00 COv





_images/font-example-figlet-univers.png
883838838888 88 88
88 88 i
88 88
88 88,dPPYba, 88 ,adPPYba,
88 8gP'  "8a 88 I8[ "
88 88 88 88 "Y8ba,
88 88 88 88 aa 18I
88 88 88 88 "YbbdP"'
,adPPYba, 8b, ,d8 ,adPPYYba, 88,dP
agP___88 Y8, ,8P' " "8 88P’
" )888( ,adPPPPPB8 88
8b, ,aa b, 88, ,88 88
“"Ybbdg"* Y8 "gbbdP"Y8 88
adss 88 88
ag" " 88
88 88
MM8BMMM 88 ,adPPYb,d8 88 ,adPPYba
88 88 ag" Y88 83 asP___ 88
88 88 8b 88 88 8PP "
88 88 "8a, ,d88 88 "8b, ,aa
88 88 "YbbdP"Y8 88 "Ybbds"'
aa, 88
"Y8bbdP"
adss
8" ,d
88 88
MMBMMM  ,adPPYba,  8b,dPPYba,  MM8BMMM
88  a8"  "8a 88P' "8a 88
88 8b d8 88 88 88
88 "sa, ,as" 88 88 88,
88 “"YbbdP"' 88 88 "v8ss

88
88 ,adPPYba, ,adPPYYba, 8b,dPPYba
8g I8[ " i Y8 88P'  "8a
88 "Ysba, ,adPPPPPB8 88 88
88 aa 18I 88, ,88 88 88
88 "YbbdP"' “"8bbdP"Y8 88 88

88
88
88
Yba,,adPYba, ~ 8b,dPPYba, 88 ,adPPYba
"g8"  "8a 88P'  "8a 88 asP___ 88
88 88 88 d8 88 8Pl
88 88 88b, ,a8" 88 "8b, ,aa
88 88 88'YbbdP"' 88 "Ybbds"
88
88
,d
88
MMBBHMHM 88 88 8b,dPPYba, 88
88  aaaasaaa 88 88 88P' "8a 88
88 - 88 88 88 88
88, "8a, ,a88 88 88 88
Y888 “"YbbdP'Y8 88 88 88

,adPPYba,
ag"  "8a
8b 8
"8a, ,a8"
“"YbbdP"*

8b

“8b dg*
“8b d8'
“8b,d8"

d8

ad8s
dg"
88

MM8BMMM

as8P. 88 88P"
8Pl

88
88
88
88

,adPPYba,

b,
“"Ybbd:

88
,d 88
88 88

MMBBMMM 88, dPPYba,
88 88P'  "8a
88 88 88
88, 88 88
Y888 88 88

8b,dPPYba, ,adPPYb:

"¥8 I8[

88 “"Y8ba,

88 aa 18I

88 “"YbbdP"!

,adPPYba,
agP___ 88
8PP "
8b, ,aa
“"Ybbdg"*






_images/pygamelib-logo.png





_images/menu.png





_images/font-example-figlet-poison.png
@eeEeRE @@ @@ @e@  @eeeed @ee  @eeeee
@eeEeee @E@ @R @e@ @eeeeer @ee @Eeeeeee
ee! @! eee ee! 'ee ee! lee
1@l le! e'e 'e! ‘e Q! le!
@'l elele'e !'e !lee!! ti@ !lee!!
[EERNEN TN [ETRT

@oeeeeee @ee eea
@eoeeeee @ee eea
@a! @e! 'ee
Q! @ @!!
@izt eel@!
! H

©EEEEE  (@EeEEEEEEE  @eEeece  @ee
(@EREEREE (EEEEERERRE  @EeeeeeR  @ee
@@! @e@ @e! ee! ee! ea! eee @e!
1@ ele le! le! le! le! ele le!
e'e'e'e! e!! !leele e'ee'e

1@l !l@l li@tt!
2N

@EPEEREE @@@  @eeeceer @ee @eeeeeee  @aeeeer
@EeEeREe @@ @eEeeeeeR @ee (@eeeeeee  @eeeeer
ee! ee! lee ee! ee! ee!
1e! el le! 1e! 1e! 1e!
@'!:t !l le! e'e'e @!! @'t
o

@oeeeeee  @eeeee
(@EeeeRee  @aeeeeed

ca! ! eee
Q! ! @le
etz @la le!
T

Q! 11

@ttt
!

@ee @e@ @eeeeer
@eee @e@  @eeeeer
@e'e!eee ee!
ellele! @t
ele I'e! @!!
I TTRTT

@lelelele
tigle!!!

@eeeee eee @ee

@eeeeeee @eee @ee

@e! @eee @e'e'eea

1@ ele le!'e'e!

e'e'e'e! ele !'@!

! toel
It

@eeeeer @eeeee @e@  @eeeed
@EREEREE (@EeEeRRe @ee  @eeeeee
@e! @e@ @e! eee ee! ‘ee
el ele !e! ele 'e! !e!
e'eele! ele 'e! !'e !lee!!
ti@itt @b o gttt

@eeeee eee @ee
@eeeeeee @eee @ee
@e! @eee @e'e'eea
1@ ele le!'e'e!
e'e 'e! ele !'@!
1@l 1ol o

1!

(@eeeeeee @eeeee  eeeeeeer @eeeeee eee @ee
(@eeeeece (@eeeeeee  @aeeeeee @eeeeee ee@ @ee
ee! @e! eee ee! ee! @e! @ee
1e! el ele le! el le! e'e
e'e 'e! @'l eleee

I 1

(@eeeeeee
(@eeeeece
@e!
1e!
@it






_images/font-example-figlet-pepper.png
Sl o oo L
/N TN

P 2 | Ry
VA VAV A A B SV A A AV
/
[ B A A,
A/, /11"
-/ /
/1 _

v





_images/font-example-figlet-puffy.png





_images/font-example-8bits.png
THIS 15 AN
E