
pygamelib Documentation
Release 1.3.0

Arnaud Dupuis

Oct 16, 2022

Contents (API reference):

1 Forewords 3

2 Introduction 5

3 Tutorials 7
3.1 actuators . 7
3.2 assets . 34
3.3 base . 190
3.4 board_items . 206
3.5 constants . 431
3.6 engine . 432
3.7 gfx . 479
3.8 Credits . 599
3.9 Release notes . 600

4 Indices and tables 607

Python Module Index 609

Index 611

i

ii

pygamelib Documentation, Release 1.3.0

Contents (API reference): 1

pygamelib Documentation, Release 1.3.0

2 Contents (API reference):

CHAPTER 1

Forewords

Historically, this library was (and still is) used as a base to teach coding to kids from 6 to 15. It aims at giving an
environment to new and learning developers (including kids) that let them focus on the algorithm instead of the lousy
display or precise management.

It started as a very simple library with very little capabilities, but over time it became something more. To the point
that it is now possible to make very decent terminal games with it.

So this is obviously still extremely simple compared to other game framework and it still does not have the pretention
of being anything serious for real game developers. However, it can now be used by aspiring game developers for an
introduction to 2D games development.

3

pygamelib Documentation, Release 1.3.0

4 Chapter 1. Forewords

CHAPTER 2

Introduction

First of all, his module is exclusively compatible with python 3.6+.

The core concept is that writting a game mostly involve the Game object, the Board object and the derivatives of
board_items.

More advanced game will use the ui module to create terminal user interfaces (or TUI) and the GFX core module to
improve the graphics with Sprite and Color.

Here is an example of what the current version allow to build:

And a quick peak at the new features in the most recent version:

5

pygamelib Documentation, Release 1.3.0

6 Chapter 2. Introduction

CHAPTER 3

Tutorials

Most tutorials to teach you how to use the library to build games are (or will be) on the wiki.

Tutorials that teach you how to expand the library are (or will be) centralized here.

The complete API documentation is referenced bellow.

3.1 actuators

This module contains the base classes for simple and advanced actuators. These classes are the base contract for
actuators. If you wish to create your own one, you need to inherit from one of these base class.

3.1.1 Actuator

class pygamelib.actuators.Actuator(parent)
Bases: pygamelib.base.PglBaseObject

Actuator is the base class for all Actuators. It is mainly a contract class with some utility methods.

By default, all actuators are considered movement actuators. So the base class only require next_move() to be
implemented.

Parameters parent – the item parent.

__init__(parent)
The constructor take only one (positional) parameter: the parent object.

Important: The default state of ALL actuators is RUNNING. If you want your actuator to be in a different
state (PAUSED for example), you have to do it yourself.

7

https://github.com/pygamelib/pygamelib/wiki

pygamelib Documentation, Release 1.3.0

Methods

__init__(parent) The constructor take only one (positional) parameter:
the parent object.

attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load serialized data, create and returns a new actua-
tor out of these data.

next_move() That method needs to be implemented by all actu-
ators or a NotImplementedError exception will be
raised.

notify([modifier]) Notify all the observers that a change occurred.
pause() Set the actuator state to PAUSED.
serialize() Serializes the actuator and returns it as a dict.
start() Set the actuator state to RUNNING.
stop() Set the actuator state to STOPPED.
store_screen_position(row, column) Store the screen position of the object.

Attributes

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

8 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

load(data: dict = None)
Load serialized data, create and returns a new actuator out of these data.

That method needs to be implemented by all actuators or a NotImplementedError exception will be raised.

Raises NotImplementedError

next_move()
That method needs to be implemented by all actuators or a NotImplementedError exception will be raised.

Raises NotImplementedError

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

pause()
Set the actuator state to PAUSED.

Example:

mygame.pause()

screen_column
A property to get/set the screen column.

3.1. actuators 9

pygamelib Documentation, Release 1.3.0

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serializes the actuator and returns it as a dict.

That method needs to be implemented by all actuators or a NotImplementedError exception will be raised.

Raises NotImplementedError

start()
Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function (and all derivatives) should not
return anything.

Example:

mygame.start()

stop()
Set the actuator state to STOPPED.

Example:

mygame.stop()

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.1.2 Behavioral

class pygamelib.actuators.Behavioral(parent)
Bases: pygamelib.actuators.Actuator

The behavioral actuator is inheriting from Actuator and is adding a next_action() method. The actual actions
are left to the actuator that implements Behavioral.

Parameters parent – the item parent.

__init__(parent)
The constructor simply construct an Actuator. It takes on positional parameter: the parent object.

10 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Methods

__init__(parent) The constructor simply construct an Actuator.
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load serialized data, create and returns a new actua-
tor out of these data.

next_action() That method needs to be implemented by all behav-
ioral actuators or a NotImplementedError exception
will be raised.

next_move() That method needs to be implemented by all actu-
ators or a NotImplementedError exception will be
raised.

notify([modifier]) Notify all the observers that a change occurred.
pause() Set the actuator state to PAUSED.
serialize() Serializes the actuator and returns it as a dict.
start() Set the actuator state to RUNNING.
stop() Set the actuator state to STOPPED.
store_screen_position(row, column) Store the screen position of the object.

Attributes

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

3.1. actuators 11

pygamelib Documentation, Release 1.3.0

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

load(data: dict = None)
Load serialized data, create and returns a new actuator out of these data.

That method needs to be implemented by all actuators or a NotImplementedError exception will be raised.

Raises NotImplementedError

next_action()
That method needs to be implemented by all behavioral actuators or a NotImplementedError exception
will be raised.

Raises NotImplementedError

next_move()
That method needs to be implemented by all actuators or a NotImplementedError exception will be raised.

Raises NotImplementedError

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

pause()
Set the actuator state to PAUSED.

Example:

12 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

mygame.pause()

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serializes the actuator and returns it as a dict.

That method needs to be implemented by all actuators or a NotImplementedError exception will be raised.

Raises NotImplementedError

start()
Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function (and all derivatives) should not
return anything.

Example:

mygame.start()

stop()
Set the actuator state to STOPPED.

Example:

mygame.stop()

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.1.3 PathActuator

class pygamelib.actuators.PathActuator(path=None, parent=None)
Bases: pygamelib.actuators.Actuator

The path actuator is a subclass of Actuator. The move inside the function next_move depends on path and
index. If the state is not running it returns None otherwise it increments the index & then, further compares the

3.1. actuators 13

pygamelib Documentation, Release 1.3.0

index with length of the path. If they both are same then, index is set to value zero and the move is returned
back.

Parameters

• path (list) – A list of paths.

• parent (pygamelib.board_items.BoardItem) – The parent object to actuate.

__init__(path=None, parent=None)
The constructor take only one (positional) parameter: the parent object.

Important: The default state of ALL actuators is RUNNING. If you want your actuator to be in a different
state (PAUSED for example), you have to do it yourself.

Methods

__init__([path, parent]) The constructor take only one (positional) parameter:
the parent object.

attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new PathActuator out of it.
next_move() Return the movement based on current index
notify([modifier]) Notify all the observers that a change occurred.
pause() Set the actuator state to PAUSED.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_path(path) Defines a new path
start() Set the actuator state to RUNNING.
stop() Set the actuator state to STOPPED.
store_screen_position(row, column) Store the screen position of the object.

Attributes

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

14 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data: dict = None)
Load data and create a new PathActuator out of it.

Parameters data (dict) – Data to create a new actuator (usually generated by
serialize())

Returns A new actuator.

Return type PathActuator

Example:

path_actuator = PathActuator.load(actuator_data)

next_move()
Return the movement based on current index

The movement is selected from path if state is RUNNING, otherwise it returns NO_DIR from the
constants module. When state is RUNNING, the movement is selected before incrementing the in-
dex by 1. When the index equal the length of path, the index should return back to 0.

Returns The next movement

Return type int | pygamelib.constants.NO_DIR

Example:

3.1. actuators 15

pygamelib Documentation, Release 1.3.0

path_actuator.next_move()

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

pause()
Set the actuator state to PAUSED.

Example:

mygame.pause()

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_path(path)
Defines a new path

This will also reset the index back to 0.

Parameters path (list) – A list of movements.

Example:

path_actuator.set_path([constants.UP,constants.DOWN,constants.LEFT,constants.
→˓RIGHT])

16 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

start()
Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function (and all derivatives) should not
return anything.

Example:

mygame.start()

stop()
Set the actuator state to STOPPED.

Example:

mygame.stop()

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.1.4 PatrolActuator

class pygamelib.actuators.PatrolActuator(path=None, parent=None)
Bases: pygamelib.actuators.PathActuator

The patrol actuator is a subclass of PathActuator. The move inside the function next_move depends on
path and index and the mode. Once it reaches the end of the move list it will start cycling back to the beginning
of the list. Once it reaches the beginning it will start moving forwards If the state is not running it returns None
otherwise it increments the index & then, further compares the index with length of the path. If they both are
same then, index is set to value zero and the move is returned back.

Parameters path (list) – A list of directions.

__init__(path=None, parent=None)
The constructor take only one (positional) parameter: the parent object.

Important: The default state of ALL actuators is RUNNING. If you want your actuator to be in a different
state (PAUSED for example), you have to do it yourself.

Methods

3.1. actuators 17

pygamelib Documentation, Release 1.3.0

__init__([path, parent]) The constructor take only one (positional) parameter:
the parent object.

attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new PatrolActuator out of it.
next_move() Return the movement based on current index
notify([modifier]) Notify all the observers that a change occurred.
pause() Set the actuator state to PAUSED.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_path(path) Defines a new path
start() Set the actuator state to RUNNING.
stop() Set the actuator state to STOPPED.
store_screen_position(row, column) Store the screen position of the object.

Attributes

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

18 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data: dict = None)
Load data and create a new PatrolActuator out of it.

Parameters data (dict) – Data to create a new actuator (usually generated by
serialize())

Returns A new actuator.

Return type PatrolActuator

Example:

patrol_actuator = PatrolActuator.load(actuator_data)

next_move()
Return the movement based on current index

The movement is selected from path if state is RUNNING, otherwise it returns NO_DIR from the
constants module. When state is RUNNING, the movement is selected before incrementing the in-
dex by 1. When the index equals the length of path, the index should return back to 0 and the path list
should be reversed before the next call.

Returns The next movement

Return type int | pygamelib.constants.NO_DIR

Example:

patrol_actuator.next_move()

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

3.1. actuators 19

pygamelib Documentation, Release 1.3.0

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

pause()
Set the actuator state to PAUSED.

Example:

mygame.pause()

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_path(path)
Defines a new path

This will also reset the index back to 0.

Parameters path (list) – A list of movements.

Example:

path_actuator.set_path([constants.UP,constants.DOWN,constants.LEFT,constants.
→˓RIGHT])

start()
Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function (and all derivatives) should not
return anything.

Example:

mygame.start()

stop()
Set the actuator state to STOPPED.

Example:

mygame.stop()

20 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.1.5 PathFinder

class pygamelib.actuators.PathFinder(game=None, actuated_object=None, cir-
cle_waypoints=True, parent=None, algo-
rithm=90000100)

Bases: pygamelib.actuators.Behavioral

Important: This module assume a one step movement. If you need more than one step, you will need to
sub-class this module and re-implement next_waypoint().

This actuator is a bit different than the simple actuators (SimpleActuators) as it requires the knowledge of
both the game object and the actuated object.

The constructor takes the following parameters:

Parameters

• game (pygamelib.engine.Game) – A reference to the instantiated game engine.

• actuated_object (pygamelib.board_items.BoardItem) – The object to ac-
tuate. Deprecated in favor of parent. Only kept for backward compatibility.

• parent (pygamelib.board_items.BoardItem) – The parent object to actuate.

• circle_waypoints (bool) – If True the next_waypoint() method is going to circle
between the waypoints (when the last is visited, go back to the first)

• algorithm (constant) – ALGO_BFS - BFS, ALGO_ASTAR - AStar

__init__(game=None, actuated_object=None, circle_waypoints=True, parent=None, algo-
rithm=90000100)

The constructor simply construct an Actuator. It takes on positional parameter: the parent object.

Methods

__init__([game, actuated_object, . . .]) The constructor simply construct an Actuator.
add_waypoint(row, column) Add a waypoint to the list of waypoints.
attach(observer) Attach an observer to this instance.
clear_waypoints() Empty the waypoints stack.
current_path() This method simply return a copy of the current path

of the actuator.
Continued on next page

3.1. actuators 21

pygamelib Documentation, Release 1.3.0

Table 9 – continued from previous page
current_waypoint() Return the currently active waypoint.
detach(observer) Detach an observer from this instance.
find_path() Find a path to the destination.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new PathFinder out of it.
next_action() That method needs to be implemented by all behav-

ioral actuators or a NotImplementedError exception
will be raised.

next_move() This method return the next move calculated by this
actuator.

next_waypoint() Return the next active waypoint.
notify([modifier]) Notify all the observers that a change occurred.
pause() Set the actuator state to PAUSED.
remove_waypoint(row, column) Remove a waypoint from the stack.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_destination([row, column]) Set the targeted destination.
start() Set the actuator state to RUNNING.
stop() Set the actuator state to STOPPED.
store_screen_position(row, column) Store the screen position of the object.

Attributes

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

add_waypoint(row, column)
Add a waypoint to the list of waypoints.

Waypoints are used one after the other on a FIFO basis (First In, First Out).

If not destination (i.e destination == (None, None)) have been set yet, that method sets it.

Parameters

• row (int) – The “row” part of the waypoint’s coordinate.

• column – The “column” part of the waypoint’s coordinate.

Raises PglInvalidTypeException – If any of the parameters is not an int.

Example:

pf = PathFinder(game=mygame, actuated_object=npc1)
pf.add_waypoint(3,5)
pf.add_waypoint(12,15)

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

22 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

clear_waypoints()
Empty the waypoints stack.

Example:

pf.clear_waypoints()

current_path()
This method simply return a copy of the current path of the actuator.

The current path is to be understood as: the list of positions still remaining. All positions that have already
been gone through are removed from the stack.

Important: A copy of the path is returned for every call to that function so be wary of the performances
impact.

Example:

mykillernpc.actuator = PathFinder(
game=mygame,
actuated_object=mykillernpc

)
mykillernpc.actuator.set_destination(

mygame.player.pos[0],
mygame.player.pos[1]

)
mykillernpc.actuator.find_path()
for i in mykillernpc.actuator.current_path():

print(i)

current_waypoint()
Return the currently active waypoint.

If no waypoint have been added, this function return None.

Returns Either a None tuple or the current waypoint.

Return type A None tuple or a tuple of integer.

Example:

(row,column) = pf.current_waypoint()
pf.set_destination(row,column)

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

3.1. actuators 23

pygamelib Documentation, Release 1.3.0

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

find_path()
Find a path to the destination.

Destination (PathFinder.destination) has to be set beforehand.

Example:

mykillernpc.actuator = PathFinder(
game=mygame, actuated_object=mykillernpc

)
mykillernpc.actuator.set_destination(

mygame.player.pos[0], mygame.player.pos[1]
)

mykillernpc.actuator.find_path()

Warning: PathFinder.destination is a tuple! Please use PathFinder.set_destination(x,y) to avoid prob-
lems.

Path Finding Algorithm Description:

Breadth First Search: This method implements a Breadth First Search algorithm (Wikipedia: BFS) to find
the shortest path to destination.

A* Search: This method implements a A* Search algorithm (Wikipedia: A*) to find the shortest path to
destination.

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data: dict = None)
Load data and create a new PathFinder out of it.

Parameters data (dict) – Data to create a new actuator (usually generated by
serialize())

Returns A new actuator.

24 Chapter 3. Tutorials

https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/A*_search_algorithm

pygamelib Documentation, Release 1.3.0

Return type PathFinder

Example:

path_finder = PathFinder.load(actuator_data)

next_action()
That method needs to be implemented by all behavioral actuators or a NotImplementedError exception
will be raised.

Raises NotImplementedError

next_move()
This method return the next move calculated by this actuator.

In the case of this PathFinder actuator, next move does the following:

• If the destination is not set return NO_DIR (see constants) - If the destination is set, but the path
is empty and actuated object’s position is different from destination: call find_path()

• Look at the current waypoint, if the actuated object is not at that position return a direction from
the constants module. The direction is calculated from the difference between actuated object’s
position and waypoint’s position.

• If the actuated object is at the waypoint position, then call next_waypoint(), set the destination and
return a direction. In this case, also call find_path().

• In any case, if there is no more waypoints in the path this method returns NO_DIR (see constants)

Example:

seeker = NPC(model=graphics.Models.SKULL)
seeker.actuator = PathFinder(game=mygame,actuated_object=seeker)
while True:

seeker.actuator.set_destination(mygame.player.pos[0],mygame.player.pos[1])
next_move() will call find_path() for us.
next_move = seeker.actuator.next_move()
if next_move == constants.NO_DIR:

seeker.actuator.set_destination(mygame.player.pos[0],mygame.player.
→˓pos[1])

else:
mygame.current_board().move(seeker,next_move,1)

next_waypoint()
Return the next active waypoint.

If no waypoint have been added, this function return None. If there is no more waypoint in the stack:

• if PathFinder.circle_waypoints is True this function reset the waypoints stack and return the first one.

• else, return None.

Returns Either a None tuple or the next waypoint.

Return type A None tuple or a tuple of integer.

Example:

pf.circle_waypoints = True
(row,column) = pf.next_waypoint()
pf.set_destination(row,column)

3.1. actuators 25

pygamelib Documentation, Release 1.3.0

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

pause()
Set the actuator state to PAUSED.

Example:

mygame.pause()

remove_waypoint(row, column)
Remove a waypoint from the stack.

This method removes the first occurrence of a waypoint in the stack.

If the waypoint cannot be found, it raises a ValueError exception. If the row and column parameters are
not int, an PglInvalidTypeException is raised.

Parameters

• row (int) – The “row” part of the waypoint’s coordinate.

• column – The “column” part of the waypoint’s coordinate.

Raises

• PglInvalidTypeException – If any of the parameters is not an int.

• ValueError – If the waypoint is not found in the stack.

Example:

path_finder.remove_waypoint(2,5)

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

26 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_destination(row=0, column=0)
Set the targeted destination.

Parameters

• row (int) – “row” coordinate on the board grid

• column (int) – “column” coordinate on the board grid

Raises PglInvalidTypeException – if row or column are not int.

Example:

mykillernpc.actuator.set_destination(
mygame.player.pos[0], mygame.player.pos[1]

)

start()
Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function (and all derivatives) should not
return anything.

Example:

mygame.start()

stop()
Set the actuator state to STOPPED.

Example:

mygame.stop()

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.1.6 RandomActuator

class pygamelib.actuators.RandomActuator(moveset=None, parent=None)
Bases: pygamelib.actuators.Actuator

A class that implements a random choice of movement.

3.1. actuators 27

pygamelib Documentation, Release 1.3.0

The random actuator is a subclass of Actuator. It is simply implementing a random choice in a predefined
move set.

Parameters

• moveset (list) – A list of movements.

• parent (pygamelib.board_items.BoardItem) – The parent object to actuate.

__init__(moveset=None, parent=None)
The constructor take only one (positional) parameter: the parent object.

Important: The default state of ALL actuators is RUNNING. If you want your actuator to be in a different
state (PAUSED for example), you have to do it yourself.

Methods

__init__([moveset, parent]) The constructor take only one (positional) parameter:
the parent object.

attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new RandomActuator out of
it.

next_move() Return a randomly selected movement
notify([modifier]) Notify all the observers that a change occurred.
pause() Set the actuator state to PAUSED.
serialize() Return a dictionary with all the attributes of this ob-

ject.
start() Set the actuator state to RUNNING.
stop() Set the actuator state to STOPPED.
store_screen_position(row, column) Store the screen position of the object.

Attributes

moveset Return the moveset.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

28 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data: dict = None)
Load data and create a new RandomActuator out of it.

Parameters data (dict) – Data to create a new actuator (usually generated by
serialize())

Returns A new actuator.

Return type RandomActuator

Example:

npc2.actuator = actuators.RandomActuator.load(npc1.actuator.serialize())

moveset
Return the moveset.

Returns The moveset.

Return type list

next_move()
Return a randomly selected movement

The movement is randomly selected from moveset if state is RUNNING, otherwise it returns NO_DIR
from the constants module.

3.1. actuators 29

pygamelib Documentation, Release 1.3.0

Returns The next movement

Return type int | pygamelib.constants.NO_DIR

Example:

random_actuator.next_move()

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

pause()
Set the actuator state to PAUSED.

Example:

mygame.pause()

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

start()
Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function (and all derivatives) should not
return anything.

Example:

30 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

mygame.start()

stop()
Set the actuator state to STOPPED.

Example:

mygame.stop()

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.1.7 UnidirectionalActuator

class pygamelib.actuators.UnidirectionalActuator(direction=10000100, parent=None)
Bases: pygamelib.actuators.Actuator

A class that implements a single movement.

The unidirectional actuator is a subclass of Actuator. It is simply implementing a mono directional move-
ment. It is primarily target at projectiles.

Parameters

• direction (int) – A single direction from the Constants module.

• parent (pygamelib.board_items.BoardItem) – The parent object to actuate.

__init__(direction=10000100, parent=None)
The constructor take only one (positional) parameter: the parent object.

Important: The default state of ALL actuators is RUNNING. If you want your actuator to be in a different
state (PAUSED for example), you have to do it yourself.

Methods

__init__([direction, parent]) The constructor take only one (positional) parameter:
the parent object.

attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

Continued on next page

3.1. actuators 31

pygamelib Documentation, Release 1.3.0

Table 13 – continued from previous page
load(data) Load data and create a new UnidirectionalActuator

out of it.
next_move() Return the direction.
notify([modifier]) Notify all the observers that a change occurred.
pause() Set the actuator state to PAUSED.
serialize() Return a dictionary with all the attributes of this ob-

ject.
start() Set the actuator state to RUNNING.
stop() Set the actuator state to STOPPED.
store_screen_position(row, column) Store the screen position of the object.

Attributes

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

32 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data: dict = None)
Load data and create a new UnidirectionalActuator out of it.

Parameters data (dict) – Data to create a new actuator (usually generated by
serialize())

Returns A new actuator.

Return type UnidirectionalActuator

Example:

unidir_actuator = UnidirectionalActuator.load(actuator_data)

next_move()
Return the direction.

The movement is always direction if state is RUNNING, otherwise it returns NO_DIR from the
constants module.

Returns The next movement

Return type int | pygamelib.constants.NO_DIR

Example:

unidirectional_actuator.next_move()

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

pause()
Set the actuator state to PAUSED.

Example:

mygame.pause()

3.1. actuators 33

pygamelib Documentation, Release 1.3.0

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

start()
Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function (and all derivatives) should not
return anything.

Example:

mygame.start()

stop()
Set the actuator state to STOPPED.

Example:

mygame.stop()

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.2 assets

The assets sub-module holds all the classes that are adding features without being core features. The graphics module
is a good example of that: it is cool to have and provides a nice default set of assets to build games. But the library can
work without it.

34 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

3.2.1 graphics

Important: The Graphics module was introduced in version 1.1.0.

The Graphics module hold many variables that aims at simplifying the use of unicode characters in the game develop-
ment process.

This module also import colorama. All styling features are accessible through:

• Graphics.Fore for Foreground colors.

• Graphics.Back for Background colors.

• Graphics.Style for styling options.

For convenience, the different entities are scattered in grouping classes:

• All emojis are in the Models class.

• The UI/box drawings are grouped into the BoxDrawings class.

• The block glyphs are in the Blocks class.

• The geometric shapes are in the GeometricShapes class.

This modules defines a couple of colored squares and rectangles that should displays correctly in all terminals.

These are kept for legacy purpose (I personally have a lot of kids that are still using it), but for anyone starting fresh, it
is better to use the <color>_rect() and <color>_square() static methods of the Sprixel class. Particularly if you are
going to use them as background for your Board.

Colored rectangles:

• WHITE_RECT

• BLUE_RECT

• RED_RECT

• MAGENTA_RECT

• GREEN_RECT

• YELLOW_RECT

• BLACK_RECT

• CYAN_RECT

Then colored squares:

• WHITE_SQUARE

• MAGENTA_SQUARE

• GREEN_SQUARE

• RED_SQUARE

• BLUE_SQUARE

• YELLOW_SQUARE

• BLACK_SQUARE

• CYAN_SQUARE

3.2. assets 35

pygamelib Documentation, Release 1.3.0

And finally an example of composition of rectangles to make different colored squares:

• RED_BLUE_SQUARE = RED_RECT+BLUE_RECT

• YELLOW_CYAN_SQUARE = YELLOW_RECT+CYAN_RECT

The Graphics module contains the following classes:

Blocks

class pygamelib.assets.graphics.Blocks
Bases: object

Block elements (unicode)

Here is the list of supported glyphs:

• UPPER_HALF_BLOCK =

• LOWER_ONE_EIGHTH_BLOCK =

• LOWER_ONE_QUARTER_BLOCK =

• LOWER_THREE_EIGHTHS_BLOCK =

• LOWER_HALF_BLOCK =

• LOWER_FIVE_EIGHTHS_BLOCK =

• LOWER_THREE_QUARTERS_BLOCK =

• LOWER_SEVEN_EIGHTHS_BLOCK =

• FULL_BLOCK =

• LEFT_SEVEN_EIGHTHS_BLOCK =

• LEFT_THREE_QUARTERS_BLOCK =

• LEFT_FIVE_EIGHTHS_BLOCK =

• LEFT_HALF_BLOCK =

• LEFT_THREE_EIGHTHS_BLOCK =

• LEFT_ONE_QUARTER_BLOCK =

• LEFT_ONE_EIGHTH_BLOCK =

• RIGHT_HALF_BLOCK =

• LIGHT_SHADE =

• MEDIUM_SHADE =

• DARK_SHADE =

• UPPER_ONE_EIGHTH_BLOCK =

• RIGHT_ONE_EIGHTH_BLOCK =

• QUADRANT_LOWER_LEFT =

• QUADRANT_LOWER_RIGHT =

• QUADRANT_UPPER_LEFT =

• QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT =

36 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT =

• QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT =

• QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT =

• QUADRANT_UPPER_RIGHT =

• QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT =

• QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT =

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ Initialize self.

Attributes

DARK_SHADE
FULL_BLOCK
LEFT_FIVE_EIGHTHS_BLOCK
LEFT_HALF_BLOCK
LEFT_ONE_EIGHTH_BLOCK
LEFT_ONE_QUARTER_BLOCK
LEFT_SEVEN_EIGHTHS_BLOCK
LEFT_THREE_EIGHTHS_BLOCK
LEFT_THREE_QUARTERS_BLOCK
LIGHT_SHADE
LOWER_FIVE_EIGHTHS_BLOCK
LOWER_HALF_BLOCK
LOWER_ONE_EIGHTH_BLOCK
LOWER_ONE_QUARTER_BLOCK
LOWER_SEVEN_EIGHTHS_BLOCK
LOWER_THREE_EIGHTHS_BLOCK
LOWER_THREE_QUARTERS_BLOCK
MEDIUM_SHADE
QUADRANT_LOWER_LEFT
QUADRANT_LOWER_RIGHT
QUADRANT_UPPER_LEFT
QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT
QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT
QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT
QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT
QUADRANT_UPPER_RIGHT
QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT
QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT
RIGHT_HALF_BLOCK
RIGHT_ONE_EIGHTH_BLOCK
UPPER_HALF_BLOCK

Continued on next page

3.2. assets 37

pygamelib Documentation, Release 1.3.0

Table 16 – continued from previous page
UPPER_ONE_EIGHTH_BLOCK

DARK_SHADE = ''

FULL_BLOCK = ''

LEFT_FIVE_EIGHTHS_BLOCK = ''

LEFT_HALF_BLOCK = ''

LEFT_ONE_EIGHTH_BLOCK = ''

LEFT_ONE_QUARTER_BLOCK = ''

LEFT_SEVEN_EIGHTHS_BLOCK = ''

LEFT_THREE_EIGHTHS_BLOCK = ''

LEFT_THREE_QUARTERS_BLOCK = ''

LIGHT_SHADE = ''

LOWER_FIVE_EIGHTHS_BLOCK = ''

LOWER_HALF_BLOCK = ''

LOWER_ONE_EIGHTH_BLOCK = ''

LOWER_ONE_QUARTER_BLOCK = ''

LOWER_SEVEN_EIGHTHS_BLOCK = ''

LOWER_THREE_EIGHTHS_BLOCK = ''

LOWER_THREE_QUARTERS_BLOCK = ''

MEDIUM_SHADE = ''

QUADRANT_LOWER_LEFT = ''

QUADRANT_LOWER_RIGHT = ''

QUADRANT_UPPER_LEFT = ''

QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT = ''

QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT = ''

QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT = ''

QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT = ''

QUADRANT_UPPER_RIGHT = ''

QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT = ''

QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT = ''

RIGHT_HALF_BLOCK = ''

RIGHT_ONE_EIGHTH_BLOCK = ''

UPPER_HALF_BLOCK = ''

UPPER_ONE_EIGHTH_BLOCK = ''

38 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

BoxDrawings

class pygamelib.assets.graphics.BoxDrawings
Bases: object

Box drawing elements (unicode)

Here is the list of supported glyphs:

• LIGHT_HORIZONTAL =

• HEAVY_HORIZONTAL =

• LIGHT_VERTICAL =

• HEAVY_VERTICAL =

• LIGHT_TRIPLE_DASH_HORIZONTAL =

• HEAVY_TRIPLE_DASH_HORIZONTAL =

• LIGHT_TRIPLE_DASH_VERTICAL =

• HEAVY_TRIPLE_DASH_VERTICAL =

• LIGHT_QUADRUPLE_DASH_HORIZONTAL =

• HEAVY_QUADRUPLE_DASH_HORIZONTAL =

• LIGHT_QUADRUPLE_DASH_VERTICAL =

• HEAVY_QUADRUPLE_DASH_VERTICAL =

• LIGHT_DOWN_AND_RIGHT =

• DOWN_LIGHT_AND_RIGHT_HEAVY =

• DOWN_HEAVY_AND_RIGHT_LIGHT =

• HEAVY_DOWN_AND_RIGHT =

• LIGHT_DOWN_AND_LEFT =

• DOWN_LIGHT_AND_LEFT_HEAVY =

• DOWN_HEAVY_AND_LEFT_LIGHT =

• HEAVY_DOWN_AND_LEFT =

• LIGHT_UP_AND_RIGHT =

• UP_LIGHT_AND_RIGHT_HEAVY =

• UP_HEAVY_AND_RIGHT_LIGHT =

• HEAVY_UP_AND_RIGHT =

• LIGHT_UP_AND_LEFT =

• UP_LIGHT_AND_LEFT_HEAVY =

• UP_HEAVY_AND_LEFT_LIGHT =

• HEAVY_UP_AND_LEFT =

• LIGHT_VERTICAL_AND_RIGHT =

• VERTICAL_LIGHT_AND_RIGHT_HEAVY =

• UP_HEAVY_AND_RIGHT_DOWN_LIGHT =

3.2. assets 39

pygamelib Documentation, Release 1.3.0

• DOWN_HEAVY_AND_RIGHT_UP_LIGHT =

• VERTICAL_HEAVY_AND_RIGHT_LIGHT =

• DOWN_LIGHT_AND_RIGHT_UP_HEAVY =

• UP_LIGHT_AND_RIGHT_DOWN_HEAVY =

• HEAVY_VERTICAL_AND_RIGHT =

• LIGHT_VERTICAL_AND_LEFT =

• VERTICAL_LIGHT_AND_LEFT_HEAVY =

• UP_HEAVY_AND_LEFT_DOWN_LIGHT =

• DOWN_HEAVY_AND_LEFT_UP_LIGHT =

• VERTICAL_HEAVY_AND_LEFT_LIGHT =

• DOWN_LIGHT_AND_LEFT_UP_HEAVY =

• UP_LIGHT_AND_LEFT_DOWN_HEAVY =

• HEAVY_VERTICAL_AND_LEFT =

• LIGHT_DOWN_AND_HORIZONTAL =

• LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT =

• RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT =

• DOWN_LIGHT_AND_HORIZONTAL_HEAVY =

• DOWN_HEAVY_AND_HORIZONTAL_LIGHT =

• RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY =

• LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY =

• HEAVY_DOWN_AND_HORIZONTAL =

• LIGHT_UP_AND_HORIZONTAL =

• LEFT_HEAVY_AND_RIGHT_UP_LIGHT =

• RIGHT_HEAVY_AND_LEFT_UP_LIGHT =

• UP_LIGHT_AND_HORIZONTAL_HEAVY =

• UP_HEAVY_AND_HORIZONTAL_LIGHT =

• RIGHT_LIGHT_AND_LEFT_UP_HEAVY =

• LEFT_LIGHT_AND_RIGHT_UP_HEAVY =

• HEAVY_UP_AND_HORIZONTAL =

• LIGHT_VERTICAL_AND_HORIZONTAL =

• LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT =

• RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT =

• VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY =

• UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT =

• DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT =

• VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT =

40 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT =

• RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT =

• LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT =

• RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT =

• DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY =

• UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY =

• RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY =

• LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY =

• HEAVY_VERTICAL_AND_HORIZONTAL =

• LIGHT_DOUBLE_DASH_HORIZONTAL =

• HEAVY_DOUBLE_DASH_HORIZONTAL =

• LIGHT_DOUBLE_DASH_VERTICAL =

• HEAVY_DOUBLE_DASH_VERTICAL =

• DOUBLE_HORIZONTAL =

• DOUBLE_VERTICAL =

• DOWN_SINGLE_AND_RIGHT_DOUBLE =

• DOWN_DOUBLE_AND_RIGHT_SINGLE =

• DOUBLE_DOWN_AND_RIGHT =

• DOWN_SINGLE_AND_LEFT_DOUBLE =

• DOWN_DOUBLE_AND_LEFT_SINGLE =

• DOUBLE_DOWN_AND_LEFT =

• UP_SINGLE_AND_RIGHT_DOUBLE =

• UP_DOUBLE_AND_RIGHT_SINGLE =

• DOUBLE_UP_AND_RIGHT =

• UP_SINGLE_AND_LEFT_DOUBLE =

• UP_DOUBLE_AND_LEFT_SINGLE =

• DOUBLE_UP_AND_LEFT =

• VERTICAL_SINGLE_AND_RIGHT_DOUBLE =

• VERTICAL_DOUBLE_AND_RIGHT_SINGLE =

• DOUBLE_VERTICAL_AND_RIGHT =

• VERTICAL_SINGLE_AND_LEFT_DOUBLE =

• VERTICAL_DOUBLE_AND_LEFT_SINGLE =

• DOUBLE_VERTICAL_AND_LEFT =

• DOWN_SINGLE_AND_HORIZONTAL_DOUBLE =

• DOWN_DOUBLE_AND_HORIZONTAL_SINGLE =

• DOUBLE_DOWN_AND_HORIZONTAL =

3.2. assets 41

pygamelib Documentation, Release 1.3.0

• UP_SINGLE_AND_HORIZONTAL_DOUBLE =

• UP_DOUBLE_AND_HORIZONTAL_SINGLE =

• DOUBLE_UP_AND_HORIZONTAL =

• VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE =

• VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE =

• DOUBLE_VERTICAL_AND_HORIZONTAL =

• LIGHT_ARC_DOWN_AND_RIGHT =

• LIGHT_ARC_DOWN_AND_LEFT =

• LIGHT_ARC_UP_AND_LEFT =

• LIGHT_ARC_UP_AND_RIGHT =

• LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT =

• LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT = \

• LIGHT_DIAGONAL_CROSS =

• LIGHT_LEFT =

• LIGHT_UP =

• LIGHT_RIGHT =

• LIGHT_DOWN =

• HEAVY_LEFT =

• HEAVY_UP =

• HEAVY_RIGHT =

• HEAVY_DOWN =

• LIGHT_LEFT_AND_HEAVY_RIGHT =

• LIGHT_UP_AND_HEAVY_DOWN =

• HEAVY_LEFT_AND_LIGHT_RIGHT =

• HEAVY_UP_AND_LIGHT_DOWN =

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ Initialize self.

Attributes

DOUBLE_DOWN_AND_HORIZONTAL
DOUBLE_DOWN_AND_LEFT
DOUBLE_DOWN_AND_RIGHT
DOUBLE_HORIZONTAL

Continued on next page

42 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 18 – continued from previous page
DOUBLE_UP_AND_HORIZONTAL
DOUBLE_UP_AND_LEFT
DOUBLE_UP_AND_RIGHT
DOUBLE_VERTICAL
DOUBLE_VERTICAL_AND_HORIZONTAL
DOUBLE_VERTICAL_AND_LEFT
DOUBLE_VERTICAL_AND_RIGHT
DOWN_DOUBLE_AND_HORIZONTAL_SINGLE
DOWN_DOUBLE_AND_LEFT_SINGLE
DOWN_DOUBLE_AND_RIGHT_SINGLE
DOWN_HEAVY_AND_HORIZONTAL_LIGHT
DOWN_HEAVY_AND_LEFT_LIGHT
DOWN_HEAVY_AND_LEFT_UP_LIGHT
DOWN_HEAVY_AND_RIGHT_LIGHT
DOWN_HEAVY_AND_RIGHT_UP_LIGHT
DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT
DOWN_LIGHT_AND_HORIZONTAL_HEAVY
DOWN_LIGHT_AND_LEFT_HEAVY
DOWN_LIGHT_AND_LEFT_UP_HEAVY
DOWN_LIGHT_AND_RIGHT_HEAVY
DOWN_LIGHT_AND_RIGHT_UP_HEAVY
DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY
DOWN_SINGLE_AND_HORIZONTAL_DOUBLE
DOWN_SINGLE_AND_LEFT_DOUBLE
DOWN_SINGLE_AND_RIGHT_DOUBLE
HEAVY_DOUBLE_DASH_HORIZONTAL
HEAVY_DOUBLE_DASH_VERTICAL
HEAVY_DOWN
HEAVY_DOWN_AND_HORIZONTAL
HEAVY_DOWN_AND_LEFT
HEAVY_DOWN_AND_RIGHT
HEAVY_HORIZONTAL
HEAVY_LEFT
HEAVY_LEFT_AND_LIGHT_RIGHT
HEAVY_QUADRUPLE_DASH_HORIZONTAL
HEAVY_QUADRUPLE_DASH_VERTICAL
HEAVY_RIGHT
HEAVY_TRIPLE_DASH_HORIZONTAL
HEAVY_TRIPLE_DASH_VERTICAL
HEAVY_UP
HEAVY_UP_AND_HORIZONTAL
HEAVY_UP_AND_LEFT
HEAVY_UP_AND_LIGHT_DOWN
HEAVY_UP_AND_RIGHT
HEAVY_VERTICAL
HEAVY_VERTICAL_AND_HORIZONTAL
HEAVY_VERTICAL_AND_LEFT
HEAVY_VERTICAL_AND_RIGHT
LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT
LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT

Continued on next page

3.2. assets 43

pygamelib Documentation, Release 1.3.0

Table 18 – continued from previous page
LEFT_HEAVY_AND_RIGHT_UP_LIGHT
LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT
LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY
LEFT_LIGHT_AND_RIGHT_UP_HEAVY
LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY
LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT
LIGHT_ARC_DOWN_AND_LEFT
LIGHT_ARC_DOWN_AND_RIGHT
LIGHT_ARC_UP_AND_LEFT
LIGHT_ARC_UP_AND_RIGHT
LIGHT_DIAGONAL_CROSS
LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT
LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT
LIGHT_DOUBLE_DASH_HORIZONTAL
LIGHT_DOUBLE_DASH_VERTICAL
LIGHT_DOWN
LIGHT_DOWN_AND_HORIZONTAL
LIGHT_DOWN_AND_LEFT
LIGHT_DOWN_AND_RIGHT
LIGHT_HORIZONTAL
LIGHT_LEFT
LIGHT_LEFT_AND_HEAVY_RIGHT
LIGHT_QUADRUPLE_DASH_HORIZONTAL
LIGHT_QUADRUPLE_DASH_VERTICAL
LIGHT_RIGHT
LIGHT_TRIPLE_DASH_HORIZONTAL
LIGHT_TRIPLE_DASH_VERTICAL
LIGHT_UP
LIGHT_UP_AND_HEAVY_DOWN
LIGHT_UP_AND_HORIZONTAL
LIGHT_UP_AND_LEFT
LIGHT_UP_AND_RIGHT
LIGHT_VERTICAL
LIGHT_VERTICAL_AND_HORIZONTAL
LIGHT_VERTICAL_AND_LEFT
LIGHT_VERTICAL_AND_RIGHT
RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT
RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT
RIGHT_HEAVY_AND_LEFT_UP_LIGHT
RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT
RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY
RIGHT_LIGHT_AND_LEFT_UP_HEAVY
RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY
RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT
UP_DOUBLE_AND_HORIZONTAL_SINGLE
UP_DOUBLE_AND_LEFT_SINGLE
UP_DOUBLE_AND_RIGHT_SINGLE
UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT
UP_HEAVY_AND_HORIZONTAL_LIGHT
UP_HEAVY_AND_LEFT_DOWN_LIGHT

Continued on next page

44 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 18 – continued from previous page
UP_HEAVY_AND_LEFT_LIGHT
UP_HEAVY_AND_RIGHT_DOWN_LIGHT
UP_HEAVY_AND_RIGHT_LIGHT
UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY
UP_LIGHT_AND_HORIZONTAL_HEAVY
UP_LIGHT_AND_LEFT_DOWN_HEAVY
UP_LIGHT_AND_LEFT_HEAVY
UP_LIGHT_AND_RIGHT_DOWN_HEAVY
UP_LIGHT_AND_RIGHT_HEAVY
UP_SINGLE_AND_HORIZONTAL_DOUBLE
UP_SINGLE_AND_LEFT_DOUBLE
UP_SINGLE_AND_RIGHT_DOUBLE
VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE
VERTICAL_DOUBLE_AND_LEFT_SINGLE
VERTICAL_DOUBLE_AND_RIGHT_SINGLE
VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT
VERTICAL_HEAVY_AND_LEFT_LIGHT
VERTICAL_HEAVY_AND_RIGHT_LIGHT
VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY
VERTICAL_LIGHT_AND_LEFT_HEAVY
VERTICAL_LIGHT_AND_RIGHT_HEAVY
VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE
VERTICAL_SINGLE_AND_LEFT_DOUBLE
VERTICAL_SINGLE_AND_RIGHT_DOUBLE

DOUBLE_DOWN_AND_HORIZONTAL = ''

DOUBLE_DOWN_AND_LEFT = ''

DOUBLE_DOWN_AND_RIGHT = ''

DOUBLE_HORIZONTAL = ''

DOUBLE_UP_AND_HORIZONTAL = ''

DOUBLE_UP_AND_LEFT = ''

DOUBLE_UP_AND_RIGHT = ''

DOUBLE_VERTICAL = ''

DOUBLE_VERTICAL_AND_HORIZONTAL = ''

DOUBLE_VERTICAL_AND_LEFT = ''

DOUBLE_VERTICAL_AND_RIGHT = ''

DOWN_DOUBLE_AND_HORIZONTAL_SINGLE = ''

DOWN_DOUBLE_AND_LEFT_SINGLE = ''

DOWN_DOUBLE_AND_RIGHT_SINGLE = ''

DOWN_HEAVY_AND_HORIZONTAL_LIGHT = ''

DOWN_HEAVY_AND_LEFT_LIGHT = ''

DOWN_HEAVY_AND_LEFT_UP_LIGHT = ''

DOWN_HEAVY_AND_RIGHT_LIGHT = ''

3.2. assets 45

pygamelib Documentation, Release 1.3.0

DOWN_HEAVY_AND_RIGHT_UP_LIGHT = ''

DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT = ''

DOWN_LIGHT_AND_HORIZONTAL_HEAVY = ''

DOWN_LIGHT_AND_LEFT_HEAVY = ''

DOWN_LIGHT_AND_LEFT_UP_HEAVY = ''

DOWN_LIGHT_AND_RIGHT_HEAVY = ''

DOWN_LIGHT_AND_RIGHT_UP_HEAVY = ''

DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY = ''

DOWN_SINGLE_AND_HORIZONTAL_DOUBLE = ''

DOWN_SINGLE_AND_LEFT_DOUBLE = ''

DOWN_SINGLE_AND_RIGHT_DOUBLE = ''

HEAVY_DOUBLE_DASH_HORIZONTAL = ''

HEAVY_DOUBLE_DASH_VERTICAL = ''

HEAVY_DOWN = ''

HEAVY_DOWN_AND_HORIZONTAL = ''

HEAVY_DOWN_AND_LEFT = ''

HEAVY_DOWN_AND_RIGHT = ''

HEAVY_HORIZONTAL = ''

HEAVY_LEFT = ''

HEAVY_LEFT_AND_LIGHT_RIGHT = ''

HEAVY_QUADRUPLE_DASH_HORIZONTAL = ''

HEAVY_QUADRUPLE_DASH_VERTICAL = ''

HEAVY_RIGHT = ''

HEAVY_TRIPLE_DASH_HORIZONTAL = ''

HEAVY_TRIPLE_DASH_VERTICAL = ''

HEAVY_UP = ''

HEAVY_UP_AND_HORIZONTAL = ''

HEAVY_UP_AND_LEFT = ''

HEAVY_UP_AND_LIGHT_DOWN = ''

HEAVY_UP_AND_RIGHT = ''

HEAVY_VERTICAL = ''

HEAVY_VERTICAL_AND_HORIZONTAL = ''

HEAVY_VERTICAL_AND_LEFT = ''

HEAVY_VERTICAL_AND_RIGHT = ''

LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT = ''

LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT = ''

46 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

LEFT_HEAVY_AND_RIGHT_UP_LIGHT = ''

LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT = ''

LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY = ''

LEFT_LIGHT_AND_RIGHT_UP_HEAVY = ''

LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY = ''

LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT = ''

LIGHT_ARC_DOWN_AND_LEFT = ''

LIGHT_ARC_DOWN_AND_RIGHT = ''

LIGHT_ARC_UP_AND_LEFT = ''

LIGHT_ARC_UP_AND_RIGHT = ''

LIGHT_DIAGONAL_CROSS = ''

LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT = '\'

LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT = ''

LIGHT_DOUBLE_DASH_HORIZONTAL = ''

LIGHT_DOUBLE_DASH_VERTICAL = ''

LIGHT_DOWN = ''

LIGHT_DOWN_AND_HORIZONTAL = ''

LIGHT_DOWN_AND_LEFT = ''

LIGHT_DOWN_AND_RIGHT = ''

LIGHT_HORIZONTAL = ' '

LIGHT_LEFT = ''

LIGHT_LEFT_AND_HEAVY_RIGHT = ''

LIGHT_QUADRUPLE_DASH_HORIZONTAL = ''

LIGHT_QUADRUPLE_DASH_VERTICAL = ''

LIGHT_RIGHT = ''

LIGHT_TRIPLE_DASH_HORIZONTAL = ''

LIGHT_TRIPLE_DASH_VERTICAL = ''

LIGHT_UP = ''

LIGHT_UP_AND_HEAVY_DOWN = ''

LIGHT_UP_AND_HORIZONTAL = ''

LIGHT_UP_AND_LEFT = ''

LIGHT_UP_AND_RIGHT = ' '

LIGHT_VERTICAL = ' '

LIGHT_VERTICAL_AND_HORIZONTAL = ''

LIGHT_VERTICAL_AND_LEFT = ''

LIGHT_VERTICAL_AND_RIGHT = ' '

3.2. assets 47

pygamelib Documentation, Release 1.3.0

RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT = ''

RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT = ''

RIGHT_HEAVY_AND_LEFT_UP_LIGHT = ''

RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT = ''

RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY = ''

RIGHT_LIGHT_AND_LEFT_UP_HEAVY = ''

RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY = ''

RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT = ''

UP_DOUBLE_AND_HORIZONTAL_SINGLE = ''

UP_DOUBLE_AND_LEFT_SINGLE = ''

UP_DOUBLE_AND_RIGHT_SINGLE = ''

UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT = ''

UP_HEAVY_AND_HORIZONTAL_LIGHT = ''

UP_HEAVY_AND_LEFT_DOWN_LIGHT = ''

UP_HEAVY_AND_LEFT_LIGHT = ''

UP_HEAVY_AND_RIGHT_DOWN_LIGHT = ''

UP_HEAVY_AND_RIGHT_LIGHT = ''

UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY = ''

UP_LIGHT_AND_HORIZONTAL_HEAVY = ''

UP_LIGHT_AND_LEFT_DOWN_HEAVY = ''

UP_LIGHT_AND_LEFT_HEAVY = ''

UP_LIGHT_AND_RIGHT_DOWN_HEAVY = ''

UP_LIGHT_AND_RIGHT_HEAVY = ''

UP_SINGLE_AND_HORIZONTAL_DOUBLE = ''

UP_SINGLE_AND_LEFT_DOUBLE = ''

UP_SINGLE_AND_RIGHT_DOUBLE = ''

VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE = ''

VERTICAL_DOUBLE_AND_LEFT_SINGLE = ''

VERTICAL_DOUBLE_AND_RIGHT_SINGLE = ''

VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT = ''

VERTICAL_HEAVY_AND_LEFT_LIGHT = ''

VERTICAL_HEAVY_AND_RIGHT_LIGHT = ''

VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY = ''

VERTICAL_LIGHT_AND_LEFT_HEAVY = ''

VERTICAL_LIGHT_AND_RIGHT_HEAVY = ''

VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE = ''

48 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

VERTICAL_SINGLE_AND_LEFT_DOUBLE = ''

VERTICAL_SINGLE_AND_RIGHT_DOUBLE = ''

GeometricShapes

class pygamelib.assets.graphics.GeometricShapes
Bases: object

Geometric shapes elements (unicode)

Here is the list of supported glyphs:

• BLACK_SQUARE =

• BLACK_LARGE_SQUARE =

• WHITE_SQUARE =

• WHITE_SQUARE_WITH_ROUNDED_CORNERS =

• WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE =

• SQUARE_WITH_HORIZONTAL_FILL =

• SQUARE_WITH_VERTICAL_FILL =

• SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL =

• SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL =

• SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL =

• SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL =

• BLACK_SMALL_SQUARE =

• WHITE_SMALL_SQUARE =

• BLACK_RECTANGLE =

• WHITE_RECTANGLE =

• BLACK_VERTICAL_RECTANGLE =

• WHITE_VERTICAL_RECTANGLE =

• BLACK_PARALLELOGRAM =

• WHITE_PARALLELOGRAM =

• BLACK_UP_POINTING_TRIANGLE =

• WHITE_UP_POINTING_TRIANGLE =

• BLACK_UP_POINTING_SMALL_TRIANGLE =

• WHITE_UP_POINTING_SMALL_TRIANGLE =

• BLACK_RIGHT_POINTING_TRIANGLE =

• WHITE_RIGHT_POINTING_TRIANGLE =

• BLACK_RIGHT_POINTING_SMALL_TRIANGLE =

• WHITE_RIGHT_POINTING_SMALL_TRIANGLE =

• BLACK_RIGHT_POINTING_POINTER =

3.2. assets 49

pygamelib Documentation, Release 1.3.0

• WHITE_RIGHT_POINTING_POINTER =

• BLACK_DOWN_POINTING_TRIANGLE =

• WHITE_DOWN_POINTING_TRIANGLE =

• BLACK_DOWN_POINTING_SMALL_TRIANGLE =

• WHITE_DOWN_POINTING_SMALL_TRIANGLE =

• BLACK_LEFT_POINTING_TRIANGLE =

• WHITE_LEFT_POINTING_TRIANGLE =

• BLACK_LEFT_POINTING_SMALL_TRIANGLE =

• WHITE_LEFT_POINTING_SMALL_TRIANGLE =

• BLACK_LEFT_POINTING_POINTER =

• WHITE_LEFT_POINTING_POINTER =

• BLACK_DIAMOND =

• WHITE_DIAMOND =

• WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND =

• FISHEYE =

• LOZENGE =

• WHITE_CIRCLE =

• DOTTED_CIRCLE =

• CIRCLE_WITH_VERTICAL_FILL =

• BULLSEYE =

• BLACK_CIRCLE =

• CIRCLE_WITH_LEFT_HALF_BLACK =

• CIRCLE_WITH_RIGHT_HALF_BLACK =

• CIRCLE_WITH_LOWER_HALF_BLACK =

• CIRCLE_WITH_UPPER_HALF_BLACK =

• CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK =

• CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK =

• LEFT_HALF_BLACK_CIRCLE =

• RIGHT_HALF_BLACK_CIRCLE =

• INVERSE_BULLET =

• INVERSE_WHITE_CIRCLE =

• UPPER_HALF_INVERSE_WHITE_CIRCLE =

• LOWER_HALF_INVERSE_WHITE_CIRCLE =

• UPPER_LEFT_QUADRANT_CIRCULAR_ARC =

• UPPER_RIGHT_QUADRANT_CIRCULAR_ARC =

• LOWER_RIGHT_QUADRANT_CIRCULAR_ARC =

50 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• LOWER_LEFT_QUADRANT_CIRCULAR_ARC =

• UPPER_HALF_CIRCLE =

• LOWER_HALF_CIRCLE =

• BLACK_LOWER_RIGHT_TRIANGLE =

• BLACK_LOWER_LEFT_TRIANGLE =

• BLACK_UPPER_LEFT_TRIANGLE =

• BLACK_UPPER_RIGHT_TRIANGLE =

• WHITE_BULLET = ◦

• BULLET = •

• RING_OPERATOR =

• SQUARE_WITH_LEFT_HALF_BLACK =

• SQUARE_WITH_RIGHT_HALF_BLACK =

• SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK =

• SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK =

• WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE =

• WHITE_UP_POINTING_TRIANGLE_WITH_DOT =

• UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK =

• UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK =

• LARGE_CIRCLE = ○

• WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT =

• WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT =

• WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT =

• WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT =

• WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT =

• WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT =

• WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT =

• WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT =

• UPPER_LEFT_TRIANGLE =

• UPPER_RIGHT_TRIANGLE =

• LOWER_LEFT_TRIANGLE =

• WHITE_MEDIUM_SQUARE =

• BLACK_MEDIUM_SQUARE =

• WHITE_MEDIUM_SMALL_SQUARE =

• BLACK_MEDIUM_SMALL_SQUARE =

• LOWER_RIGHT_TRIANGLE =

3.2. assets 51

pygamelib Documentation, Release 1.3.0

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ Initialize self.

Attributes

BLACK_CIRCLE
BLACK_DIAMOND
BLACK_DOWN_POINTING_SMALL_TRIANGLE
BLACK_DOWN_POINTING_TRIANGLE
BLACK_LARGE_SQUARE
BLACK_LEFT_POINTING_POINTER
BLACK_LEFT_POINTING_SMALL_TRIANGLE
BLACK_LEFT_POINTING_TRIANGLE
BLACK_LOWER_LEFT_TRIANGLE
BLACK_LOWER_RIGHT_TRIANGLE
BLACK_MEDIUM_SMALL_SQUARE
BLACK_MEDIUM_SQUARE
BLACK_PARALLELOGRAM
BLACK_RECTANGLE
BLACK_RIGHT_POINTING_POINTER
BLACK_RIGHT_POINTING_SMALL_TRIANGLE
BLACK_RIGHT_POINTING_TRIANGLE
BLACK_SMALL_SQUARE
BLACK_SQUARE
BLACK_UPPER_LEFT_TRIANGLE
BLACK_UPPER_RIGHT_TRIANGLE
BLACK_UP_POINTING_SMALL_TRIANGLE
BLACK_UP_POINTING_TRIANGLE
BLACK_VERTICAL_RECTANGLE
BULLET
BULLSEYE
CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK
CIRCLE_WITH_LEFT_HALF_BLACK
CIRCLE_WITH_LOWER_HALF_BLACK
CIRCLE_WITH_RIGHT_HALF_BLACK
CIRCLE_WITH_UPPER_HALF_BLACK
CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK
CIRCLE_WITH_VERTICAL_FILL
DOTTED_CIRCLE
FISHEYE
INVERSE_BULLET
INVERSE_WHITE_CIRCLE
LARGE_CIRCLE
LEFT_HALF_BLACK_CIRCLE
LOWER_HALF_CIRCLE

Continued on next page

52 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 20 – continued from previous page
LOWER_HALF_INVERSE_WHITE_CIRCLE
LOWER_LEFT_QUADRANT_CIRCULAR_ARC
LOWER_LEFT_TRIANGLE
LOWER_RIGHT_QUADRANT_CIRCULAR_ARC
LOWER_RIGHT_TRIANGLE
LOZENGE
RIGHT_HALF_BLACK_CIRCLE
RING_OPERATOR
SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL
SQUARE_WITH_HORIZONTAL_FILL
SQUARE_WITH_LEFT_HALF_BLACK
SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK
SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL
SQUARE_WITH_RIGHT_HALF_BLACK
SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK
SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL
SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL
SQUARE_WITH_VERTICAL_FILL
UPPER_HALF_CIRCLE
UPPER_HALF_INVERSE_WHITE_CIRCLE
UPPER_LEFT_QUADRANT_CIRCULAR_ARC
UPPER_LEFT_TRIANGLE
UPPER_RIGHT_QUADRANT_CIRCULAR_ARC
UPPER_RIGHT_TRIANGLE
UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK
UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK
WHITE_BULLET
WHITE_CIRCLE
WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT
WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT
WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT
WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT
WHITE_DIAMOND
WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND
WHITE_DOWN_POINTING_SMALL_TRIANGLE
WHITE_DOWN_POINTING_TRIANGLE
WHITE_LEFT_POINTING_POINTER
WHITE_LEFT_POINTING_SMALL_TRIANGLE
WHITE_LEFT_POINTING_TRIANGLE
WHITE_MEDIUM_SMALL_SQUARE
WHITE_MEDIUM_SQUARE
WHITE_PARALLELOGRAM
WHITE_RECTANGLE
WHITE_RIGHT_POINTING_POINTER
WHITE_RIGHT_POINTING_SMALL_TRIANGLE
WHITE_RIGHT_POINTING_TRIANGLE
WHITE_SMALL_SQUARE
WHITE_SQUARE
WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE
WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT

Continued on next page

3.2. assets 53

pygamelib Documentation, Release 1.3.0

Table 20 – continued from previous page
WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT
WHITE_SQUARE_WITH_ROUNDED_CORNERS
WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT
WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT
WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE
WHITE_UP_POINTING_SMALL_TRIANGLE
WHITE_UP_POINTING_TRIANGLE
WHITE_UP_POINTING_TRIANGLE_WITH_DOT
WHITE_VERTICAL_RECTANGLE

BLACK_CIRCLE = ''

BLACK_DIAMOND = ''

BLACK_DOWN_POINTING_SMALL_TRIANGLE = ''

BLACK_DOWN_POINTING_TRIANGLE = ''

BLACK_LARGE_SQUARE = ''

BLACK_LEFT_POINTING_POINTER = ''

BLACK_LEFT_POINTING_SMALL_TRIANGLE = ''

BLACK_LEFT_POINTING_TRIANGLE = ''

BLACK_LOWER_LEFT_TRIANGLE = ''

BLACK_LOWER_RIGHT_TRIANGLE = ''

BLACK_MEDIUM_SMALL_SQUARE = ''

BLACK_MEDIUM_SQUARE = ''

BLACK_PARALLELOGRAM = ''

BLACK_RECTANGLE = ''

BLACK_RIGHT_POINTING_POINTER = ''

BLACK_RIGHT_POINTING_SMALL_TRIANGLE = ''

BLACK_RIGHT_POINTING_TRIANGLE = ''

BLACK_SMALL_SQUARE = ''

BLACK_SQUARE = ''

BLACK_UPPER_LEFT_TRIANGLE = ''

BLACK_UPPER_RIGHT_TRIANGLE = ''

BLACK_UP_POINTING_SMALL_TRIANGLE = ''

BLACK_UP_POINTING_TRIANGLE = ''

BLACK_VERTICAL_RECTANGLE = ''

BULLET = '•'

BULLSEYE = ''

CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK = ''

CIRCLE_WITH_LEFT_HALF_BLACK = ''

54 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

CIRCLE_WITH_LOWER_HALF_BLACK = ''

CIRCLE_WITH_RIGHT_HALF_BLACK = ''

CIRCLE_WITH_UPPER_HALF_BLACK = ''

CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK = ''

CIRCLE_WITH_VERTICAL_FILL = ''

DOTTED_CIRCLE = ''

FISHEYE = ''

INVERSE_BULLET = ''

INVERSE_WHITE_CIRCLE = ''

LARGE_CIRCLE = '○'

LEFT_HALF_BLACK_CIRCLE = ''

LOWER_HALF_CIRCLE = ''

LOWER_HALF_INVERSE_WHITE_CIRCLE = ''

LOWER_LEFT_QUADRANT_CIRCULAR_ARC = ''

LOWER_LEFT_TRIANGLE = ''

LOWER_RIGHT_QUADRANT_CIRCULAR_ARC = ''

LOWER_RIGHT_TRIANGLE = ''

LOZENGE = ''

RIGHT_HALF_BLACK_CIRCLE = ''

RING_OPERATOR = ''

SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL = ''

SQUARE_WITH_HORIZONTAL_FILL = ''

SQUARE_WITH_LEFT_HALF_BLACK = ''

SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK = ''

SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL = ''

SQUARE_WITH_RIGHT_HALF_BLACK = ''

SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK = ''

SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL = ''

SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL = ''

SQUARE_WITH_VERTICAL_FILL = ''

UPPER_HALF_CIRCLE = ''

UPPER_HALF_INVERSE_WHITE_CIRCLE = ''

UPPER_LEFT_QUADRANT_CIRCULAR_ARC = ''

UPPER_LEFT_TRIANGLE = ''

UPPER_RIGHT_QUADRANT_CIRCULAR_ARC = ''

UPPER_RIGHT_TRIANGLE = ''

3.2. assets 55

pygamelib Documentation, Release 1.3.0

UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK = ''

UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK = ''

WHITE_BULLET = '◦'

WHITE_CIRCLE = ''

WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT = ''

WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT = ''

WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT = ''

WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT = ''

WHITE_DIAMOND = ''

WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND = ''

WHITE_DOWN_POINTING_SMALL_TRIANGLE = ''

WHITE_DOWN_POINTING_TRIANGLE = ''

WHITE_LEFT_POINTING_POINTER = ''

WHITE_LEFT_POINTING_SMALL_TRIANGLE = ''

WHITE_LEFT_POINTING_TRIANGLE = ''

WHITE_MEDIUM_SMALL_SQUARE = ''

WHITE_MEDIUM_SQUARE = ''

WHITE_PARALLELOGRAM = ''

WHITE_RECTANGLE = ''

WHITE_RIGHT_POINTING_POINTER = ''

WHITE_RIGHT_POINTING_SMALL_TRIANGLE = ''

WHITE_RIGHT_POINTING_TRIANGLE = ''

WHITE_SMALL_SQUARE = ''

WHITE_SQUARE = ''

WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE = ''

WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT = ''

WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT = ''

WHITE_SQUARE_WITH_ROUNDED_CORNERS = ''

WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT = ''

WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT = ''

WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE = ''

WHITE_UP_POINTING_SMALL_TRIANGLE = ''

WHITE_UP_POINTING_TRIANGLE = ''

WHITE_UP_POINTING_TRIANGLE_WITH_DOT = ''

WHITE_VERTICAL_RECTANGLE = ''

56 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

MiscTechnicals

class pygamelib.assets.graphics.MiscTechnicals
Bases: object

Miscellanous Technical block (unicode)

Here is the list of supported glyphs:

• DIAMETER_SIGN = “”

• ELECTRIC_ARROW = “”

• HOUSE = “”

• UP_ARROWHEAD = “”

• DOWN_ARROWHEAD = “”

• PROJECTIVE = “”

• PERSPECTIVE = “”

• WAVY_LINE = “”

• LEFT_CEILING = “”

• RIGHT_CEILING = “”

• LEFT_FLOOR = “”

• RIGHT_FLOOR = “”

• BOTTOM_RIGHT_CROP = “”

• BOTTOM_LEFT_CROP = “”

• TOP_RIGHT_CROP = “”

• TOP_LEFT_CROP = “”

• REVERSED_NOT_SIGN = “”

• SQUARE_LOZENGE = “”

• ARC = “”

• SEGMENT = “”

• SECTOR = “”

• TELEPHONE_RECORDER = “”

• POSITION_INDICATOR = “”

• VIEWDATA_SQUARE = “”

• PLACE_OF_INTEREST_SIGN = “”

• TURNED_NOT_SIGN = “”

• WATCH = “”

• HOURGLASS = “”

• TOP_LEFT_CORNER = “”

• TOP_RIGHT_CORNER = “”

• BOTTOM_LEFT_CORNER = “”

3.2. assets 57

pygamelib Documentation, Release 1.3.0

• BOTTOM_RIGHT_CORNER = “”

• TOP_HALF_INTEGRAL = “”

• BOTTOM_HALF_INTEGRAL = “”

• FROWN = “”

• SMILE = “”

• UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS = “”

• OPTION_KEY = “”

• ERASE_TO_THE_RIGHT = “”

• X_IN_A_RECTANGLE_BOX = “”

• KEYBOARD = “”

• LEFT_POINTING_ANGLE_BRACKET = “〈”

• RIGHT_POINTING_ANGLE_BRACKET = “〉”

• ERASE_TO_THE_LEFT = “”

• BENZENE_RING = “”

• CYLINDRICITY = “”

• ALL_AROUND_PROFILE = “”

• SYMMETRY = “”

• TOTAL_RUNOUT = “”

• DIMENSION_ORIGIN = “”

• CONICAL_TAPER = “”

• SLOPE = “”

• COUNTERBORE = “”

• COUNTERSINK = “”

• APL_FUNCTIONAL_SYMBOL_I_BEAM = “”

• APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_JOT = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE = “”

• APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE = “”

• APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT = “”

• APL_FUNCTIONAL_SYMBOL_SLASH_BAR = “”

• APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_SLASH = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH = “”

58 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN = “”

• APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE = “”

• APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW = “”

• APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH = “”

• APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_DELTA_STILE = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_DELTA = “”

• APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT = “”

• APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW = “”

• APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR = “”

• APL_FUNCTIONAL_SYMBOL_DEL_STILE = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_DEL = “”

• APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT = “”

• APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW = “”

• APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT = “”

• APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD = “”

• APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_COLON = “”

• APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS = “”

• APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS = “”

• APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS = “”

• APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS = “”

• APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS = “”

• APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE = “”

3.2. assets 59

pygamelib Documentation, Release 1.3.0

• APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE = “”

• APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS = “”

• APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS = “”

• APL_FUNCTIONAL_SYMBOL_COMMA_BAR = “”

• APL_FUNCTIONAL_SYMBOL_DEL_TILDE = “”

• APL_FUNCTIONAL_SYMBOL_ZILDE = “”

• APL_FUNCTIONAL_SYMBOL_STILE_TILDE = “”

• APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL = “”

• APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION = “”

• APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE = “”

• APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE = “”

• APL_FUNCTIONAL_SYMBOL_IOTA = “”

• APL_FUNCTIONAL_SYMBOL_RHO = “”

• APL_FUNCTIONAL_SYMBOL_OMEGA = “”

• APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR = “”

• APL_FUNCTIONAL_SYMBOL_ALPHA = “”

• NOT_CHECK_MARK = “”

• RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW = “”

• SHOULDERED_OPEN_BOX = “”

• BELL_SYMBOL = “”

• VERTICAL_LINE_WITH_MIDDLE_DOT = “”

• INSERTION_SYMBOL = “”

• CONTINUOUS_UNDERLINE_SYMBOL = “”

• DISCONTINUOUS_UNDERLINE_SYMBOL = “”

• EMPHASIS_SYMBOL = “”

• COMPOSITION_SYMBOL = “”

• WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE = “”

• ENTER_SYMBOL = “”

• ALTERNATIVE_KEY_SYMBOL = “”

• HELM_SYMBOL = “”

• CIRCLED_HORIZONTAL_BAR_WITH_NOTCH = “”

• CIRCLED_TRIANGLE_DOWN = “”

60 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• BROKEN_CIRCLE_WITH_NORTHWEST_ARROW = “”

• UNDO_SYMBOL = “”

• MONOSTABLE_SYMBOL = “”

• HYSTERESIS_SYMBOL = “”

• OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL = “”

• OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL = “”

• PASSIVE_PULL_DOWN_OUTPUT_SYMBOL = “”

• PASSIVE_PULL_UP_OUTPUT_SYMBOL = “”

• DIRECT_CURRENT_SYMBOL_FORM_TWO = “”

• SOFTWARE_FUNCTION_SYMBOL = “”

• APL_FUNCTIONAL_SYMBOL_QUAD = “”

• DECIMAL_SEPARATOR_KEY_SYMBOL = “”

• PREVIOUS_PAGE = “”

• NEXT_PAGE = “”

• PRINT_SCREEN_SYMBOL = “”

• CLEAR_SCREEN_SYMBOL = “”

• LEFT_PARENTHESIS_UPPER_HOOK = “”

• LEFT_PARENTHESIS_EXTENSION = “”

• LEFT_PARENTHESIS_LOWER_HOOK = “”

• RIGHT_PARENTHESIS_UPPER_HOOK = “”

• RIGHT_PARENTHESIS_EXTENSION = “”

• RIGHT_PARENTHESIS_LOWER_HOOK = “”

• LEFT_SQUARE_BRACKET_UPPER_CORNER = “”

• LEFT_SQUARE_BRACKET_EXTENSION = “”

• LEFT_SQUARE_BRACKET_LOWER_CORNER = “”

• RIGHT_SQUARE_BRACKET_UPPER_CORNER = “”

• RIGHT_SQUARE_BRACKET_EXTENSION = “”

• RIGHT_SQUARE_BRACKET_LOWER_CORNER = “”

• LEFT_CURLY_BRACKET_UPPER_HOOK = “”

• LEFT_CURLY_BRACKET_MIDDLE_PIECE = “”

• LEFT_CURLY_BRACKET_LOWER_HOOK = “”

• CURLY_BRACKET_EXTENSION = “”

• RIGHT_CURLY_BRACKET_UPPER_HOOK = “”

• RIGHT_CURLY_BRACKET_MIDDLE_PIECE = “”

• RIGHT_CURLY_BRACKET_LOWER_HOOK = “”

• INTEGRAL_EXTENSION = “”

3.2. assets 61

pygamelib Documentation, Release 1.3.0

• HORIZONTAL_LINE_EXTENSION = “”

• UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION = “”

• UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION = “”

• SUMMATION_TOP = “”

• SUMMATION_BOTTOM = “”

• TOP_SQUARE_BRACKET = “”

• BOTTOM_SQUARE_BRACKET = “”

• BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET = “”

• RADICAL_SYMBOL_BOTTOM = “”

• LEFT_VERTICAL_BOX_LINE = “”

• RIGHT_VERTICAL_BOX_LINE = “”

• HORIZONTAL_SCAN_LINE_1 = “”

• HORIZONTAL_SCAN_LINE_3 = “”

• HORIZONTAL_SCAN_LINE_7 = “”

• HORIZONTAL_SCAN_LINE_9 = “_”

• DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT = “”

• DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT = “”

• DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE = “”

• DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE = “”

• DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE = “”

• DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE = “”

• DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE = “”

• DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE = “”

• DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE = “”

• DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE = “”

• DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE = “”

• DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL = “”

• DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL = “”

• DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT = “”

• DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT = “”

• SQUARE_FOOT = “”

• RETURN_SYMBOL = “”

• EJECT_SYMBOL = “”

• VERTICAL_LINE_EXTENSION = “”

• METRICAL_BREVE = “”

• METRICAL_LONG_OVER_SHORT = “”

62 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• METRICAL_SHORT_OVER_LONG = “”

• METRICAL_LONG_OVER_TWO_SHORTS = “”

• METRICAL_TWO_SHORTS_OVER_LONG = “”

• METRICAL_TWO_SHORTS_JOINED = “”

• METRICAL_TRISEME = “”

• METRICAL_TETRASEME = “”

• METRICAL_PENTASEME = “”

• EARTH_GROUND = “”

• FUSE = “”

• TOP_PARENTHESIS = “”

• BOTTOM_PARENTHESIS = “”

• TOP_CURLY_BRACKET = “”

• BOTTOM_CURLY_BRACKET = “”

• TOP_TORTOISE_SHELL_BRACKET = “”

• BOTTOM_TORTOISE_SHELL_BRACKET = “”

• WHITE_TRAPEZIUM = “”

• BENZENE_RING_WITH_CIRCLE = “”

• STRAIGHTNESS = “”

• FLATNESS = “”

• AC_CURRENT = “”

• ELECTRICAL_INTERSECTION = “”

• DECIMAL_EXPONENT_SYMBOL = “”

• BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE = “”

• BLACK_LEFT_POINTING_DOUBLE_TRIANGLE = “”

• BLACK_UP_POINTING_DOUBLE_TRIANGLE = “”

• BLACK_DOWN_POINTING_DOUBLE_TRIANGLE = “”

• BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR = “”

• BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR = “”

• BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR = “”

• ALARM_CLOCK = “”

• STOPWATCH = “”

• TIMER_CLOCK = “”

• HOURGLASS_WITH_FLOWING_SAND = “”

• BLACK_MEDIUM_LEFT_POINTING_TRIANGLE = “”

• BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE = “”

• BLACK_MEDIUM_UP_POINTING_TRIANGLE = “”

3.2. assets 63

pygamelib Documentation, Release 1.3.0

• BLACK_MEDIUM_DOWN_POINTING_TRIANGLE = “”

• DOUBLE_VERTICAL_BAR = “”

• BLACK_SQUARE_FOR_STOP = “”

• BLACK_CIRCLE_FOR_RECORD = “”

• POWER_SYMBOL = “”

• POWER_ON_OFF_SYMBOL = “”

• POWER_ON_SYMBOL = “”

• POWER_SLEEP_SYMBOL = “”

• OBSERVER_EYE_SYMBOL = “”

Attributes

DIAMETER_SIGN
ELECTRIC_ARROW
HOUSE
UP_ARROWHEAD
DOWN_ARROWHEAD
PROJECTIVE
PERSPECTIVE
WAVY_LINE
LEFT_CEILING
RIGHT_CEILING
LEFT_FLOOR
RIGHT_FLOOR
BOTTOM_RIGHT_CROP
BOTTOM_LEFT_CROP
TOP_RIGHT_CROP
TOP_LEFT_CROP
REVERSED_NOT_SIGN
SQUARE_LOZENGE
ARC
SEGMENT
SECTOR
TELEPHONE_RECORDER
POSITION_INDICATOR
VIEWDATA_SQUARE
PLACE_OF_INTEREST_SIGN
TURNED_NOT_SIGN
WATCH
HOURGLASS
TOP_LEFT_CORNER
TOP_RIGHT_CORNER
BOTTOM_LEFT_CORNER
BOTTOM_RIGHT_CORNER
TOP_HALF_INTEGRAL
BOTTOM_HALF_INTEGRAL

Continued on next page

64 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 21 – continued from previous page
FROWN
SMILE
UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS
OPTION_KEY
ERASE_TO_THE_RIGHT
X_IN_A_RECTANGLE_BOX
KEYBOARD
LEFT_POINTING_ANGLE_BRACKET
RIGHT_POINTING_ANGLE_BRACKET
ERASE_TO_THE_LEFT
BENZENE_RING
CYLINDRICITY
ALL_AROUND_PROFILE
SYMMETRY
TOTAL_RUNOUT
DIMENSION_ORIGIN
CONICAL_TAPER
SLOPE
COUNTERBORE
COUNTERSINK
APL_FUNCTIONAL_SYMBOL_I_BEAM
APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD
APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL
APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE
APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND
APL_FUNCTIONAL_SYMBOL_QUAD_JOT
APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE
APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE
APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT
APL_FUNCTIONAL_SYMBOL_SLASH_BAR
APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR
APL_FUNCTIONAL_SYMBOL_QUAD_SLASH
APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH
APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN
APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN
APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE
APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE
APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW
APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW
APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH
APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR
APL_FUNCTIONAL_SYMBOL_DELTA_STILE
APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET
APL_FUNCTIONAL_SYMBOL_QUAD_DELTA
APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT
APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE
APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW
APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR
APL_FUNCTIONAL_SYMBOL_DEL_STILE
APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET

Continued on next page

3.2. assets 65

pygamelib Documentation, Release 1.3.0

Table 21 – continued from previous page
APL_FUNCTIONAL_SYMBOL_QUAD_DEL
APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT
APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE
APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW
APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR
APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR
APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR
APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR
APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR
APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT
APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD
APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR
APL_FUNCTIONAL_SYMBOL_QUAD_COLON
APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS
APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS
APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS
APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS
APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS
APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE
APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE
APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS
APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS
APL_FUNCTIONAL_SYMBOL_COMMA_BAR
APL_FUNCTIONAL_SYMBOL_DEL_TILDE
APL_FUNCTIONAL_SYMBOL_ZILDE
APL_FUNCTIONAL_SYMBOL_STILE_TILDE
APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR
APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL
APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION
APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE
APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE
APL_FUNCTIONAL_SYMBOL_IOTA
APL_FUNCTIONAL_SYMBOL_RHO
APL_FUNCTIONAL_SYMBOL_OMEGA
APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR
APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR
APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR
APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR
APL_FUNCTIONAL_SYMBOL_ALPHA
NOT_CHECK_MARK
RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW
SHOULDERED_OPEN_BOX
BELL_SYMBOL
VERTICAL_LINE_WITH_MIDDLE_DOT
INSERTION_SYMBOL
CONTINUOUS_UNDERLINE_SYMBOL
DISCONTINUOUS_UNDERLINE_SYMBOL
EMPHASIS_SYMBOL
COMPOSITION_SYMBOL
WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE

Continued on next page

66 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 21 – continued from previous page
ENTER_SYMBOL
ALTERNATIVE_KEY_SYMBOL
HELM_SYMBOL
CIRCLED_HORIZONTAL_BAR_WITH_NOTCH
CIRCLED_TRIANGLE_DOWN
BROKEN_CIRCLE_WITH_NORTHWEST_ARROW
UNDO_SYMBOL
MONOSTABLE_SYMBOL
HYSTERESIS_SYMBOL
OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL
OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL
PASSIVE_PULL_DOWN_OUTPUT_SYMBOL
PASSIVE_PULL_UP_OUTPUT_SYMBOL
DIRECT_CURRENT_SYMBOL_FORM_TWO
SOFTWARE_FUNCTION_SYMBOL
APL_FUNCTIONAL_SYMBOL_QUAD
DECIMAL_SEPARATOR_KEY_SYMBOL
PREVIOUS_PAGE
NEXT_PAGE
PRINT_SCREEN_SYMBOL
CLEAR_SCREEN_SYMBOL
LEFT_PARENTHESIS_UPPER_HOOK
LEFT_PARENTHESIS_EXTENSION
LEFT_PARENTHESIS_LOWER_HOOK
RIGHT_PARENTHESIS_UPPER_HOOK
RIGHT_PARENTHESIS_EXTENSION
RIGHT_PARENTHESIS_LOWER_HOOK
LEFT_SQUARE_BRACKET_UPPER_CORNER
LEFT_SQUARE_BRACKET_EXTENSION
LEFT_SQUARE_BRACKET_LOWER_CORNER
RIGHT_SQUARE_BRACKET_UPPER_CORNER
RIGHT_SQUARE_BRACKET_EXTENSION
RIGHT_SQUARE_BRACKET_LOWER_CORNER
LEFT_CURLY_BRACKET_UPPER_HOOK
LEFT_CURLY_BRACKET_MIDDLE_PIECE
LEFT_CURLY_BRACKET_LOWER_HOOK
CURLY_BRACKET_EXTENSION
RIGHT_CURLY_BRACKET_UPPER_HOOK
RIGHT_CURLY_BRACKET_MIDDLE_PIECE
RIGHT_CURLY_BRACKET_LOWER_HOOK
INTEGRAL_EXTENSION
HORIZONTAL_LINE_EXTENSION
UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION
UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION
SUMMATION_TOP
SUMMATION_BOTTOM
TOP_SQUARE_BRACKET
BOTTOM_SQUARE_BRACKET
BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET
RADICAL_SYMBOL_BOTTOM

Continued on next page

3.2. assets 67

pygamelib Documentation, Release 1.3.0

Table 21 – continued from previous page
LEFT_VERTICAL_BOX_LINE
RIGHT_VERTICAL_BOX_LINE
HORIZONTAL_SCAN_LINE_1
HORIZONTAL_SCAN_LINE_3
HORIZONTAL_SCAN_LINE_7
HORIZONTAL_SCAN_LINE_9
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT
DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE
DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE
DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE
DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE
DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE
DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE
DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE
DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE
DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL
DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT
DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT
SQUARE_FOOT
RETURN_SYMBOL
EJECT_SYMBOL
VERTICAL_LINE_EXTENSION
METRICAL_BREVE
METRICAL_LONG_OVER_SHORT
METRICAL_SHORT_OVER_LONG
METRICAL_LONG_OVER_TWO_SHORTS
METRICAL_TWO_SHORTS_OVER_LONG
METRICAL_TWO_SHORTS_JOINED
METRICAL_TRISEME
METRICAL_TETRASEME
METRICAL_PENTASEME
EARTH_GROUND
FUSE
TOP_PARENTHESIS
BOTTOM_PARENTHESIS
TOP_CURLY_BRACKET
BOTTOM_CURLY_BRACKET
TOP_TORTOISE_SHELL_BRACKET
BOTTOM_TORTOISE_SHELL_BRACKET
WHITE_TRAPEZIUM
BENZENE_RING_WITH_CIRCLE
STRAIGHTNESS
FLATNESS
AC_CURRENT
ELECTRICAL_INTERSECTION
DECIMAL_EXPONENT_SYMBOL
BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE

Continued on next page

68 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 21 – continued from previous page
BLACK_LEFT_POINTING_DOUBLE_TRIANGLE
BLACK_UP_POINTING_DOUBLE_TRIANGLE
BLACK_DOWN_POINTING_DOUBLE_TRIANGLE
BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR
BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR
BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR
ALARM_CLOCK
STOPWATCH
TIMER_CLOCK
HOURGLASS_WITH_FLOWING_SAND
BLACK_MEDIUM_LEFT_POINTING_TRIANGLE
BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE
BLACK_MEDIUM_UP_POINTING_TRIANGLE
BLACK_MEDIUM_DOWN_POINTING_TRIANGLE
DOUBLE_VERTICAL_BAR
BLACK_SQUARE_FOR_STOP
BLACK_CIRCLE_FOR_RECORD
POWER_SYMBOL
POWER_ON_OFF_SYMBOL
POWER_ON_SYMBOL
POWER_SLEEP_SYMBOL
OBSERVER_EYE_SYMBOL

AC_CURRENT = ''

ALARM_CLOCK = ''

ALL_AROUND_PROFILE = ''

ALTERNATIVE_KEY_SYMBOL = ''

APL_FUNCTIONAL_SYMBOL_ALPHA = ''

APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR = ''

APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH = ''

APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS = ''

APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT = ''

APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR = ''

APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE = ''

APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_COMMA_BAR = ''

APL_FUNCTIONAL_SYMBOL_DELTA_STILE = ''

APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS = ''

APL_FUNCTIONAL_SYMBOL_DEL_STILE = ''

APL_FUNCTIONAL_SYMBOL_DEL_TILDE = ''

APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR = ''

3.2. assets 69

pygamelib Documentation, Release 1.3.0

APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE = ''

APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE = ''

APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE = ''

APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT = ''

APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS = ''

APL_FUNCTIONAL_SYMBOL_IOTA = ''

APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_I_BEAM = ''

APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS = ''

APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE = ''

APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE = ''

APL_FUNCTIONAL_SYMBOL_OMEGA = ''

APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_QUAD = ''

APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH = ''

APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE = ''

APL_FUNCTIONAL_SYMBOL_QUAD_COLON = ''

APL_FUNCTIONAL_SYMBOL_QUAD_DEL = ''

APL_FUNCTIONAL_SYMBOL_QUAD_DELTA = ''

APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND = ''

APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE = ''

APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW = ''

APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET = ''

APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL = ''

APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN = ''

APL_FUNCTIONAL_SYMBOL_QUAD_JOT = ''

APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW = ''

APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN = ''

APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL = ''

APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION = ''

APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW = ''

APL_FUNCTIONAL_SYMBOL_QUAD_SLASH = ''

APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW = ''

70 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET = ''

APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD = ''

APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_RHO = ''

APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE = ''

APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR = ''

APL_FUNCTIONAL_SYMBOL_SLASH_BAR = ''

APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD = ''

APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS = ''

APL_FUNCTIONAL_SYMBOL_STILE_TILDE = ''

APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS = ''

APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE = ''

APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE = ''

APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT = ''

APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS = ''

APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT = ''

APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR = ''

APL_FUNCTIONAL_SYMBOL_ZILDE = ''

ARC = ''

BELL_SYMBOL = ''

BENZENE_RING = ''

BENZENE_RING_WITH_CIRCLE = ''

BLACK_CIRCLE_FOR_RECORD = ''

BLACK_DOWN_POINTING_DOUBLE_TRIANGLE = ''

BLACK_LEFT_POINTING_DOUBLE_TRIANGLE = ''

BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR = ''

BLACK_MEDIUM_DOWN_POINTING_TRIANGLE = ''

BLACK_MEDIUM_LEFT_POINTING_TRIANGLE = ''

BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE = ''

BLACK_MEDIUM_UP_POINTING_TRIANGLE = ''

BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE = ''

BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR = ''

BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR = ''

BLACK_SQUARE_FOR_STOP = ''

BLACK_UP_POINTING_DOUBLE_TRIANGLE = ''

BOTTOM_CURLY_BRACKET = ''

3.2. assets 71

pygamelib Documentation, Release 1.3.0

BOTTOM_HALF_INTEGRAL = ''

BOTTOM_LEFT_CORNER = ''

BOTTOM_LEFT_CROP = ''

BOTTOM_PARENTHESIS = ''

BOTTOM_RIGHT_CORNER = ''

BOTTOM_RIGHT_CROP = ''

BOTTOM_SQUARE_BRACKET = ''

BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET = ''

BOTTOM_TORTOISE_SHELL_BRACKET = ''

BROKEN_CIRCLE_WITH_NORTHWEST_ARROW = ''

CIRCLED_HORIZONTAL_BAR_WITH_NOTCH = ''

CIRCLED_TRIANGLE_DOWN = ''

CLEAR_SCREEN_SYMBOL = ''

COMPOSITION_SYMBOL = ''

CONICAL_TAPER = ''

CONTINUOUS_UNDERLINE_SYMBOL = ''

COUNTERBORE = ''

COUNTERSINK = ''

CURLY_BRACKET_EXTENSION = ''

CYLINDRICITY = ''

DECIMAL_EXPONENT_SYMBOL = ''

DECIMAL_SEPARATOR_KEY_SYMBOL = ''

DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL = ''

DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE = ''

DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE = ''

DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE = ''

DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL = ''

DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE = ''

DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE = ''

DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE = ''

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT = ''

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT = ''

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT = ''

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT = ''

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE = ''

DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE = ''

72 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE = ''

DIAMETER_SIGN = ''

DIMENSION_ORIGIN = ''

DIRECT_CURRENT_SYMBOL_FORM_TWO = ''

DISCONTINUOUS_UNDERLINE_SYMBOL = ''

DOUBLE_VERTICAL_BAR = ''

DOWN_ARROWHEAD = ''

EARTH_GROUND = ''

EJECT_SYMBOL = ''

ELECTRICAL_INTERSECTION = ''

ELECTRIC_ARROW = ''

EMPHASIS_SYMBOL = ''

ENTER_SYMBOL = ''

ERASE_TO_THE_LEFT = ''

ERASE_TO_THE_RIGHT = ''

FLATNESS = ''

FROWN = ''

FUSE = ''

HELM_SYMBOL = ''

HORIZONTAL_LINE_EXTENSION = ''

HORIZONTAL_SCAN_LINE_1 = ''

HORIZONTAL_SCAN_LINE_3 = ''

HORIZONTAL_SCAN_LINE_7 = ''

HORIZONTAL_SCAN_LINE_9 = '_'

HOURGLASS = ''

HOURGLASS_WITH_FLOWING_SAND = ''

HOUSE = ''

HYSTERESIS_SYMBOL = ''

INSERTION_SYMBOL = ''

INTEGRAL_EXTENSION = ''

KEYBOARD = ''

LEFT_CEILING = ''

LEFT_CURLY_BRACKET_LOWER_HOOK = ''

LEFT_CURLY_BRACKET_MIDDLE_PIECE = ''

LEFT_CURLY_BRACKET_UPPER_HOOK = ''

LEFT_FLOOR = ''

3.2. assets 73

pygamelib Documentation, Release 1.3.0

LEFT_PARENTHESIS_EXTENSION = ''

LEFT_PARENTHESIS_LOWER_HOOK = ''

LEFT_PARENTHESIS_UPPER_HOOK = ''

LEFT_POINTING_ANGLE_BRACKET = '〈'

LEFT_SQUARE_BRACKET_EXTENSION = ''

LEFT_SQUARE_BRACKET_LOWER_CORNER = ''

LEFT_SQUARE_BRACKET_UPPER_CORNER = ''

LEFT_VERTICAL_BOX_LINE = ''

METRICAL_BREVE = ''

METRICAL_LONG_OVER_SHORT = ''

METRICAL_LONG_OVER_TWO_SHORTS = ''

METRICAL_PENTASEME = ''

METRICAL_SHORT_OVER_LONG = ''

METRICAL_TETRASEME = ''

METRICAL_TRISEME = ''

METRICAL_TWO_SHORTS_JOINED = ''

METRICAL_TWO_SHORTS_OVER_LONG = ''

MONOSTABLE_SYMBOL = ''

NEXT_PAGE = ''

NOT_CHECK_MARK = ''

OBSERVER_EYE_SYMBOL = ''

OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL = ''

OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL = ''

OPTION_KEY = ''

PASSIVE_PULL_DOWN_OUTPUT_SYMBOL = ''

PASSIVE_PULL_UP_OUTPUT_SYMBOL = ''

PERSPECTIVE = ''

PLACE_OF_INTEREST_SIGN = ''

POSITION_INDICATOR = ''

POWER_ON_OFF_SYMBOL = ''

POWER_ON_SYMBOL = ''

POWER_SLEEP_SYMBOL = ''

POWER_SYMBOL = ''

PREVIOUS_PAGE = ''

PRINT_SCREEN_SYMBOL = ''

PROJECTIVE = ''

74 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

RADICAL_SYMBOL_BOTTOM = ''

RETURN_SYMBOL = ''

REVERSED_NOT_SIGN = ''

RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW = ''

RIGHT_CEILING = ''

RIGHT_CURLY_BRACKET_LOWER_HOOK = ''

RIGHT_CURLY_BRACKET_MIDDLE_PIECE = ''

RIGHT_CURLY_BRACKET_UPPER_HOOK = ''

RIGHT_FLOOR = ''

RIGHT_PARENTHESIS_EXTENSION = ''

RIGHT_PARENTHESIS_LOWER_HOOK = ''

RIGHT_PARENTHESIS_UPPER_HOOK = ''

RIGHT_POINTING_ANGLE_BRACKET = '〉'

RIGHT_SQUARE_BRACKET_EXTENSION = ''

RIGHT_SQUARE_BRACKET_LOWER_CORNER = ''

RIGHT_SQUARE_BRACKET_UPPER_CORNER = ''

RIGHT_VERTICAL_BOX_LINE = ''

SECTOR = ''

SEGMENT = ''

SHOULDERED_OPEN_BOX = ''

SLOPE = ''

SMILE = ''

SOFTWARE_FUNCTION_SYMBOL = ''

SQUARE_FOOT = ''

SQUARE_LOZENGE = ''

STOPWATCH = ''

STRAIGHTNESS = ''

SUMMATION_BOTTOM = ''

SUMMATION_TOP = ''

SYMMETRY = ''

TELEPHONE_RECORDER = ''

TIMER_CLOCK = ''

TOP_CURLY_BRACKET = ''

TOP_HALF_INTEGRAL = ''

TOP_LEFT_CORNER = ''

TOP_LEFT_CROP = ''

3.2. assets 75

pygamelib Documentation, Release 1.3.0

TOP_PARENTHESIS = ''

TOP_RIGHT_CORNER = ''

TOP_RIGHT_CROP = ''

TOP_SQUARE_BRACKET = ''

TOP_TORTOISE_SHELL_BRACKET = ''

TOTAL_RUNOUT = ''

TURNED_NOT_SIGN = ''

UNDO_SYMBOL = ''

UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION = ''

UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION = ''

UP_ARROWHEAD = ''

UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS = ''

VERTICAL_LINE_EXTENSION = ''

VERTICAL_LINE_WITH_MIDDLE_DOT = ''

VIEWDATA_SQUARE = ''

WATCH = ''

WAVY_LINE = ''

WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE = ''

WHITE_TRAPEZIUM = ''

X_IN_A_RECTANGLE_BOX = ''

Models

class pygamelib.assets.graphics.Models
Bases: object

List of models (emojis by unicode denomination)

Models are filtered emojis. This class does not map the entire specification.

Models replaces the previous Sprites class. Renaming that class is necessary with the introduction of a real
Sprite class in the GFX module.

This class contains 1328 emojis (this is not the full list). All emoji codes come from: https://unicode.org/emoji/
charts/full_emoji_list.html Additional emojis can be added by codes.

The complete list of aliased emojis is:

• GRINNING_FACE =

• GRINNING_FACE_WITH_BIG_EYES =

• GRINNING_FACE_WITH_SMILING_EYES =

• BEAMING_FACE_WITH_SMILING_EYES =

• GRINNING_SQUINTING_FACE =

• GRINNING_FACE_WITH_SWEAT =

76 Chapter 3. Tutorials

https://unicode.org/emoji/charts/full_emoji_list.html
https://unicode.org/emoji/charts/full_emoji_list.html

pygamelib Documentation, Release 1.3.0

• ROLLING_ON_THE_FLOOR_LAUGHING =

• FACE_WITH_TEARS_OF_JOY =

• SLIGHTLY_SMILING_FACE =

• UPSIDE_DOWN_FACE =

• WINKING_FACE =

• SMILING_FACE_WITH_SMILING_EYES =

• SMILING_FACE_WITH_HALO =

• SMILING_FACE_WITH_HEARTS =

• SMILING_FACE_WITH_HEART_EYES =

• STAR_STRUCK =

• FACE_BLOWING_A_KISS =

• KISSING_FACE =

• SMILING_FACE =

• KISSING_FACE_WITH_CLOSED_EYES =

• KISSING_FACE_WITH_SMILING_EYES =

• SMILING_FACE_WITH_TEAR =

• FACE_SAVORING_FOOD =

• FACE_WITH_TONGUE =

• WINKING_FACE_WITH_TONGUE =

• ZANY_FACE =

• SQUINTING_FACE_WITH_TONGUE =

• MONEY_MOUTH_FACE =

• HUGGING_FACE =

• FACE_WITH_HAND_OVER_MOUTH =

• SHUSHING_FACE =

• THINKING_FACE =

• ZIPPER_MOUTH_FACE =

• FACE_WITH_RAISED_EYEBROW =

• NEUTRAL_FACE =

• EXPRESSIONLESS_FACE =

• FACE_WITHOUT_MOUTH =

• SMIRKING_FACE =

• UNAMUSED_FACE =

• FACE_WITH_ROLLING_EYES =

• GRIMACING_FACE =

• LYING_FACE =

3.2. assets 77

pygamelib Documentation, Release 1.3.0

• RELIEVED_FACE =

• PENSIVE_FACE =

• SLEEPY_FACE =

• DROOLING_FACE =

• SLEEPING_FACE =

• FACE_WITH_MEDICAL_MASK =

• FACE_WITH_THERMOMETER =

• FACE_WITH_HEAD_BANDAGE =

• NAUSEATED_FACE =

• FACE_VOMITING =

• SNEEZING_FACE =

• HOT_FACE =

• COLD_FACE =

• WOOZY_FACE =

• DIZZY_FACE =

• EXPLODING_HEAD =

• COWBOY_HAT_FACE =

• PARTYING_FACE =

• DISGUISED_FACE =

• SMILING_FACE_WITH_SUNGLASSES =

• NERD_FACE =

• FACE_WITH_MONOCLE =

• CONFUSED_FACE =

• WORRIED_FACE =

• SLIGHTLY_FROWNING_FACE =

• FROWNING_FACE =

• FACE_WITH_OPEN_MOUTH =

• HUSHED_FACE =

• ASTONISHED_FACE =

• FLUSHED_FACE =

• PLEADING_FACE =

• FROWNING_FACE_WITH_OPEN_MOUTH =

• ANGUISHED_FACE =

• FEARFUL_FACE =

• ANXIOUS_FACE_WITH_SWEAT =

• SAD_BUT_RELIEVED_FACE =

78 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• CRYING_FACE =

• LOUDLY_CRYING_FACE =

• FACE_SCREAMING_IN_FEAR =

• CONFOUNDED_FACE =

• PERSEVERING_FACE =

• DISAPPOINTED_FACE =

• DOWNCAST_FACE_WITH_SWEAT =

• WEARY_FACE =

• TIRED_FACE =

• YAWNING_FACE =

• FACE_WITH_STEAM_FROM_NOSE =

• POUTING_FACE =

• ANGRY_FACE =

• FACE_WITH_SYMBOLS_ON_MOUTH =

• SMILING_FACE_WITH_HORNS =

• ANGRY_FACE_WITH_HORNS =

• SKULL =

• SKULL_AND_CROSSBONES =

• PILE_OF_POO =

• CLOWN_FACE =

• OGRE =

• GOBLIN =

• GHOST =

• ALIEN =

• ALIEN_MONSTER =

• ROBOT =

• GRINNING_CAT =

• GRINNING_CAT_WITH_SMILING_EYES =

• CAT_WITH_TEARS_OF_JOY =

• SMILING_CAT_WITH_HEART_EYES =

• CAT_WITH_WRY_SMILE =

• KISSING_CAT =

• WEARY_CAT =

• CRYING_CAT =

• POUTING_CAT =

• SEE_NO_EVIL_MONKEY =

3.2. assets 79

pygamelib Documentation, Release 1.3.0

• HEAR_NO_EVIL_MONKEY =

• SPEAK_NO_EVIL_MONKEY =

• KISS_MARK =

• LOVE_LETTER =

• HEART_WITH_ARROW =

• HEART_WITH_RIBBON =

• SPARKLING_HEART =

• GROWING_HEART =

• BEATING_HEART =

• REVOLVING_HEARTS =

• TWO_HEARTS =

• HEART_DECORATION =

• HEART_EXCLAMATION =

• BROKEN_HEART =

• RED_HEART =

• ORANGE_HEART =

• YELLOW_HEART =

• GREEN_HEART =

• BLUE_HEART =

• PURPLE_HEART =

• BROWN_HEART =

• BLACK_HEART =

• WHITE_HEART =

• HUNDRED_POINTS =

• ANGER_SYMBOL =

• COLLISION =

• DIZZY =

• SWEAT_DROPLETS =

• DASHING_AWAY =

• HOLE =

• BOMB =

• SPEECH_BALLOON =

• LEFT_SPEECH_BUBBLE =

• RIGHT_ANGER_BUBBLE =

• THOUGHT_BALLOON =

• ZZZ =

80 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• WAVING_HAND =

• RAISED_BACK_OF_HAND =

• HAND_WITH_FINGERS_SPLAYED =

• RAISED_HAND =

• VULCAN_SALUTE =

• OK_HAND =

• PINCHED_FINGERS =

• PINCHING_HAND =

• VICTORY_HAND =

• CROSSED_FINGERS =

• LOVE_YOU_GESTURE =

• SIGN_OF_THE_HORNS =

• CALL_ME_HAND =

• BACKHAND_INDEX_POINTING_LEFT =

• BACKHAND_INDEX_POINTING_RIGHT =

• BACKHAND_INDEX_POINTING_UP =

• MIDDLE_FINGER =

• BACKHAND_INDEX_POINTING_DOWN =

• INDEX_POINTING_UP =

• THUMBS_UP =

• THUMBS_DOWN =

• RAISED_FIST =

• ONCOMING_FIST =

• LEFT_FACING_FIST =

• RIGHT_FACING_FIST =

• CLAPPING_HANDS =

• RAISING_HANDS =

• OPEN_HANDS =

• PALMS_UP_TOGETHER =

• HANDSHAKE =

• FOLDED_HANDS =

• WRITING_HAND =

• NAIL_POLISH =

• SELFIE =

• FLEXED_BICEPS =

• MECHANICAL_ARM =

3.2. assets 81

pygamelib Documentation, Release 1.3.0

• MECHANICAL_LEG =

• LEG =

• FOOT =

• EAR =

• EAR_WITH_HEARING_AID =

• NOSE =

• BRAIN =

• ANATOMICAL_HEART =

• LUNGS =

• TOOTH =

• BONE =

• EYES =

• EYE =

• TONGUE =

• MOUTH =

• BABY =

• CHILD =

• BOY =

• GIRL =

• PERSON =

• PERSON_BLOND_HAIR =

• MAN =

• MAN_BEARD =

• WOMAN =

• OLDER_PERSON =

• OLD_MAN =

• OLD_WOMAN =

• PERSON_FROWNING =

• PERSON_POUTING =

• PERSON_GESTURING_NO =

• PERSON_GESTURING_OK =

• PERSON_TIPPING_HAND =

• PERSON_RAISING_HAND =

• DEAF_PERSON =

• PERSON_BOWING =

• PERSON_FACEPALMING =

82 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• PERSON_SHRUGGING =

• POLICE_OFFICER =

• DETECTIVE =

• GUARD =

• NINJA =

• CONSTRUCTION_WORKER =

• PRINCE =

• PRINCESS =

• PERSON_WEARING_TURBAN =

• PERSON_WITH_SKULLCAP =

• WOMAN_WITH_HEADSCARF =

• PERSON_IN_TUXEDO =

• PERSON_WITH_VEIL =

• PREGNANT_WOMAN =

• BREAST_FEEDING =

• BABY_ANGEL =

• SANTA_CLAUS =

• MRS_CLAUS =

• SUPERHERO =

• SUPERVILLAIN =

• MAGE =

• FAIRY =

• VAMPIRE =

• MERPERSON =

• ELF =

• GENIE =

• ZOMBIE =

• PERSON_GETTING_MASSAGE =

• PERSON_GETTING_HAIRCUT =

• PERSON_WALKING =

• PERSON_STANDING =

• PERSON_KNEELING =

• PERSON_RUNNING =

• WOMAN_DANCING =

• MAN_DANCING =

• PERSON_IN_SUIT_LEVITATING =

3.2. assets 83

pygamelib Documentation, Release 1.3.0

• PEOPLE_WITH_BUNNY_EARS =

• PERSON_IN_STEAMY_ROOM =

• PERSON_CLIMBING =

• PERSON_FENCING =

• HORSE_RACING =

• SKIER =

• SNOWBOARDER =

• PERSON_GOLFING =

• PERSON_SURFING =

• PERSON_ROWING_BOAT =

• PERSON_SWIMMING =

• PERSON_BOUNCING_BALL =

• PERSON_LIFTING_WEIGHTS =

• PERSON_BIKING =

• PERSON_MOUNTAIN_BIKING =

• PERSON_CARTWHEELING =

• PEOPLE_WRESTLING =

• PERSON_PLAYING_WATER_POLO =

• PERSON_PLAYING_HANDBALL =

• PERSON_JUGGLING =

• PERSON_IN_LOTUS_POSITION =

• PERSON_TAKING_BATH =

• PERSON_IN_BED =

• WOMEN_HOLDING_HANDS =

• WOMAN_AND_MAN_HOLDING_HANDS =

• MEN_HOLDING_HANDS =

• KISS =

• COUPLE_WITH_HEART =

• FAMILY =

• SPEAKING_HEAD =

• BUST_IN_SILHOUETTE =

• BUSTS_IN_SILHOUETTE =

• PEOPLE_HUGGING =

• FOOTPRINTS =

• LIGHT_SKIN_TONE =

• MEDIUM_LIGHT_SKIN_TONE =

84 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• MEDIUM_SKIN_TONE =

• MEDIUM_DARK_SKIN_TONE =

• DARK_SKIN_TONE =

• RED_HAIR =

• CURLY_HAIR =

• WHITE_HAIR =

• BALD =

• MONKEY_FACE =

• MONKEY =

• GORILLA =

• ORANGUTAN =

• DOG_FACE =

• DOG =

• GUIDE_DOG =

• POODLE =

• WOLF =

• FOX =

• RACCOON =

• CAT_FACE =

• CAT =

• LION =

• TIGER_FACE =

• TIGER =

• LEOPARD =

• HORSE_FACE =

• HORSE =

• UNICORN =

• ZEBRA =

• DEER =

• BISON =

• COW_FACE =

• OX =

• WATER_BUFFALO =

• COW =

• PIG_FACE =

• PIG =

3.2. assets 85

pygamelib Documentation, Release 1.3.0

• BOAR =

• PIG_NOSE =

• RAM =

• EWE =

• GOAT =

• CAMEL =

• TWO_HUMP_CAMEL =

• LLAMA =

• GIRAFFE =

• ELEPHANT =

• MAMMOTH =

• RHINOCEROS =

• HIPPOPOTAMUS =

• MOUSE_FACE =

• MOUSE =

• RAT =

• HAMSTER =

• RABBIT_FACE =

• RABBIT =

• CHIPMUNK =

• BEAVER =

• HEDGEHOG =

• BAT =

• BEAR =

• KOALA =

• PANDA =

• SLOTH =

• OTTER =

• SKUNK =

• KANGAROO =

• BADGER =

• PAW_PRINTS =

• TURKEY =

• CHICKEN =

• ROOSTER =

• HATCHING_CHICK =

86 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• BABY_CHICK =

• FRONT_FACING_BABY_CHICK =

• BIRD =

• PENGUIN =

• DOVE =

• EAGLE =

• DUCK =

• SWAN =

• OWL =

• DODO =

• FEATHER =

• FLAMINGO =

• PEACOCK =

• PARROT =

• FROG =

• CROCODILE =

• TURTLE =

• LIZARD =

• SNAKE =

• DRAGON_FACE =

• DRAGON =

• SAUROPOD =

• T_REX =

• SPOUTING_WHALE =

• WHALE =

• DOLPHIN =

• SEAL =

• FISH =

• TROPICAL_FISH =

• BLOWFISH =

• SHARK =

• OCTOPUS =

• SPIRAL_SHELL =

• SNAIL =

• BUTTERFLY =

• BUG =

3.2. assets 87

pygamelib Documentation, Release 1.3.0

• ANT =

• HONEYBEE =

• BEETLE =

• LADY_BEETLE =

• CRICKET =

• COCKROACH =

• SPIDER =

• SPIDER_WEB =

• SCORPION =

• MOSQUITO =

• FLY =

• WORM =

• MICROBE =

• BOUQUET =

• CHERRY_BLOSSOM =

• WHITE_FLOWER =

• ROSETTE =

• ROSE =

• WILTED_FLOWER =

• HIBISCUS =

• SUNFLOWER =

• BLOSSOM =

• TULIP =

• SEEDLING =

• POTTED_PLANT =

• EVERGREEN_TREE =

• DECIDUOUS_TREE =

• PALM_TREE =

• CACTUS =

• SHEAF_OF_RICE =

• HERB =

• SHAMROCK =

• FOUR_LEAF_CLOVER =

• MAPLE_LEAF =

• FALLEN_LEAF =

• LEAF_FLUTTERING_IN_WIND =

88 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• GRAPES =

• MELON =

• WATERMELON =

• TANGERINE =

• LEMON =

• BANANA =

• PINEAPPLE =

• MANGO =

• RED_APPLE =

• GREEN_APPLE =

• PEAR =

• PEACH =

• CHERRIES =

• STRAWBERRY =

• BLUEBERRIES =

• KIWI_FRUIT =

• TOMATO =

• OLIVE =

• COCONUT =

• AVOCADO =

• EGGPLANT =

• POTATO =

• CARROT =

• EAR_OF_CORN =

• HOT_PEPPER =

• BELL_PEPPER =

• CUCUMBER =

• LEAFY_GREEN =

• BROCCOLI =

• GARLIC =

• ONION =

• MUSHROOM =

• PEANUTS =

• CHESTNUT =

• BREAD =

• CROISSANT =

3.2. assets 89

pygamelib Documentation, Release 1.3.0

• BAGUETTE_BREAD =

• FLATBREAD =

• PRETZEL =

• BAGEL =

• PANCAKES =

• WAFFLE =

• CHEESE_WEDGE =

• MEAT_ON_BONE =

• POULTRY_LEG =

• CUT_OF_MEAT =

• BACON =

• HAMBURGER =

• FRENCH_FRIES =

• PIZZA =

• HOT_DOG =

• SANDWICH =

• TACO =

• BURRITO =

• TAMALE =

• STUFFED_FLATBREAD =

• FALAFEL =

• EGG =

• COOKING =

• SHALLOW_PAN_OF_FOOD =

• POT_OF_FOOD =

• FONDUE =

• BOWL_WITH_SPOON =

• GREEN_SALAD =

• POPCORN =

• BUTTER =

• SALT =

• CANNED_FOOD =

• BENTO_BOX =

• RICE_CRACKER =

• RICE_BALL =

• COOKED_RICE =

90 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• CURRY_RICE =

• STEAMING_BOWL =

• SPAGHETTI =

• ROASTED_SWEET_POTATO =

• ODEN =

• SUSHI =

• FRIED_SHRIMP =

• FISH_CAKE_WITH_SWIRL =

• MOON_CAKE =

• DANGO =

• DUMPLING =

• FORTUNE_COOKIE =

• TAKEOUT_BOX =

• CRAB =

• LOBSTER =

• SHRIMP =

• SQUID =

• OYSTER =

• SOFT_ICE_CREAM =

• SHAVED_ICE =

• ICE_CREAM =

• DOUGHNUT =

• COOKIE =

• BIRTHDAY_CAKE =

• SHORTCAKE =

• CUPCAKE =

• PIE =

• CHOCOLATE_BAR =

• CANDY =

• LOLLIPOP =

• CUSTARD =

• HONEY_POT =

• BABY_BOTTLE =

• GLASS_OF_MILK =

• HOT_BEVERAGE =

• TEAPOT =

3.2. assets 91

pygamelib Documentation, Release 1.3.0

• TEACUP_WITHOUT_HANDLE =

• SAKE =

• BOTTLE_WITH_POPPING_CORK =

• WINE_GLASS =

• COCKTAIL_GLASS =

• TROPICAL_DRINK =

• BEER_MUG =

• CLINKING_BEER_MUGS =

• CLINKING_GLASSES =

• TUMBLER_GLASS =

• CUP_WITH_STRAW =

• BUBBLE_TEA =

• BEVERAGE_BOX =

• MATE =

• ICE =

• CHOPSTICKS =

• FORK_AND_KNIFE_WITH_PLATE =

• FORK_AND_KNIFE =

• SPOON =

• KITCHEN_KNIFE =

• AMPHORA =

• GLOBE_SHOWING_EUROPE_AFRICA =

• GLOBE_SHOWING_AMERICAS =

• GLOBE_SHOWING_ASIA_AUSTRALIA =

• GLOBE_WITH_MERIDIANS =

• WORLD_MAP =

• MAP_OF_JAPAN =

• COMPASS =

• SNOW_CAPPED_MOUNTAIN =

• MOUNTAIN =

• VOLCANO =

• MOUNT_FUJI =

• CAMPING =

• BEACH_WITH_UMBRELLA =

• DESERT =

• DESERT_ISLAND =

92 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• NATIONAL_PARK =

• STADIUM =

• CLASSICAL_BUILDING =

• BUILDING_CONSTRUCTION =

• BRICK =

• ROCK =

• WOOD =

• HUT =

• HOUSES =

• DERELICT_HOUSE =

• HOUSE =

• HOUSE_WITH_GARDEN =

• OFFICE_BUILDING =

• JAPANESE_POST_OFFICE =

• POST_OFFICE =

• HOSPITAL =

• BANK =

• HOTEL =

• LOVE_HOTEL =

• CONVENIENCE_STORE =

• SCHOOL =

• DEPARTMENT_STORE =

• FACTORY =

• JAPANESE_CASTLE =

• CASTLE =

• WEDDING =

• TOKYO_TOWER =

• STATUE_OF_LIBERTY =

• CHURCH =

• MOSQUE =

• HINDU_TEMPLE =

• SYNAGOGUE =

• SHINTO_SHRINE =

• KAABA =

• FOUNTAIN =

• TENT =

3.2. assets 93

pygamelib Documentation, Release 1.3.0

• FOGGY =

• NIGHT_WITH_STARS =

• CITYSCAPE =

• SUNRISE_OVER_MOUNTAINS =

• SUNRISE =

• CITYSCAPE_AT_DUSK =

• SUNSET =

• BRIDGE_AT_NIGHT =

• HOT_SPRINGS =

• CAROUSEL_HORSE =

• FERRIS_WHEEL =

• ROLLER_COASTER =

• BARBER_POLE =

• CIRCUS_TENT =

• LOCOMOTIVE =

• RAILWAY_CAR =

• HIGH_SPEED_TRAIN =

• BULLET_TRAIN =

• TRAIN =

• METRO =

• LIGHT_RAIL =

• STATION =

• TRAM =

• MONORAIL =

• MOUNTAIN_RAILWAY =

• TRAM_CAR =

• BUS =

• ONCOMING_BUS =

• TROLLEYBUS =

• MINIBUS =

• AMBULANCE =

• FIRE_ENGINE =

• POLICE_CAR =

• ONCOMING_POLICE_CAR =

• TAXI =

• ONCOMING_TAXI =

94 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• AUTOMOBILE =

• ONCOMING_AUTOMOBILE =

• SPORT_UTILITY_VEHICLE =

• PICKUP_TRUCK =

• DELIVERY_TRUCK =

• ARTICULATED_LORRY =

• TRACTOR =

• RACING_CAR =

• MOTORCYCLE =

• MOTOR_SCOOTER =

• MANUAL_WHEELCHAIR =

• MOTORIZED_WHEELCHAIR =

• AUTO_RICKSHAW =

• BICYCLE =

• KICK_SCOOTER =

• SKATEBOARD =

• ROLLER_SKATE =

• BUS_STOP =

• MOTORWAY =

• RAILWAY_TRACK =

• OIL_DRUM =

• FUEL_PUMP =

• POLICE_CAR_LIGHT =

• HORIZONTAL_TRAFFIC_LIGHT =

• VERTICAL_TRAFFIC_LIGHT =

• STOP_SIGN =

• CONSTRUCTION =

• ANCHOR =

• SAILBOAT =

• CANOE =

• SPEEDBOAT =

• PASSENGER_SHIP =

• FERRY =

• MOTOR_BOAT =

• SHIP =

• AIRPLANE =

3.2. assets 95

pygamelib Documentation, Release 1.3.0

• SMALL_AIRPLANE =

• AIRPLANE_DEPARTURE =

• AIRPLANE_ARRIVAL =

• PARACHUTE =

• SEAT =

• HELICOPTER =

• SUSPENSION_RAILWAY =

• MOUNTAIN_CABLEWAY =

• AERIAL_TRAMWAY =

• SATELLITE =

• ROCKET =

• FLYING_SAUCER =

• BELLHOP_BELL =

• LUGGAGE =

• HOURGLASS_DONE =

• HOURGLASS_NOT_DONE =

• WATCH =

• ALARM_CLOCK =

• STOPWATCH =

• TIMER_CLOCK =

• MANTELPIECE_CLOCK =

• TWELVE_OCLOCK =

• TWELVE_THIRTY =

• ONE_OCLOCK =

• ONE_THIRTY =

• TWO_OCLOCK =

• TWO_THIRTY =

• THREE_OCLOCK =

• THREE_THIRTY =

• FOUR_OCLOCK =

• FOUR_THIRTY =

• FIVE_OCLOCK =

• FIVE_THIRTY =

• SIX_OCLOCK =

• SIX_THIRTY =

• SEVEN_OCLOCK =

96 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• SEVEN_THIRTY =

• EIGHT_OCLOCK =

• EIGHT_THIRTY =

• NINE_OCLOCK =

• NINE_THIRTY =

• TEN_OCLOCK =

• TEN_THIRTY =

• ELEVEN_OCLOCK =

• ELEVEN_THIRTY =

• NEW_MOON =

• WAXING_CRESCENT_MOON =

• FIRST_QUARTER_MOON =

• WAXING_GIBBOUS_MOON =

• FULL_MOON =

• WANING_GIBBOUS_MOON =

• LAST_QUARTER_MOON =

• WANING_CRESCENT_MOON =

• CRESCENT_MOON =

• NEW_MOON_FACE =

• FIRST_QUARTER_MOON_FACE =

• LAST_QUARTER_MOON_FACE =

• THERMOMETER =

• SUN =

• FULL_MOON_FACE =

• SUN_WITH_FACE =

• RINGED_PLANET =

• STAR =

• GLOWING_STAR =

• SHOOTING_STAR =

• MILKY_WAY =

• CLOUD =

• SUN_BEHIND_CLOUD =

• CLOUD_WITH_LIGHTNING_AND_RAIN =

• SUN_BEHIND_SMALL_CLOUD =

• SUN_BEHIND_LARGE_CLOUD =

• SUN_BEHIND_RAIN_CLOUD =

3.2. assets 97

pygamelib Documentation, Release 1.3.0

• CLOUD_WITH_RAIN =

• CLOUD_WITH_SNOW =

• CLOUD_WITH_LIGHTNING =

• TORNADO =

• FOG =

• WIND_FACE =

• CYCLONE =

• RAINBOW =

• CLOSED_UMBRELLA =

• UMBRELLA =

• UMBRELLA_WITH_RAIN_DROPS =

• UMBRELLA_ON_GROUND =

• HIGH_VOLTAGE =

• SNOWFLAKE =

• SNOWMAN =

• SNOWMAN_WITHOUT_SNOW =

• COMET =

• FIRE =

• DROPLET =

• WATER_WAVE =

• JACK_O_LANTERN =

• CHRISTMAS_TREE =

• FIREWORKS =

• SPARKLER =

• FIRECRACKER =

• SPARKLES =

• BALLOON =

• PARTY_POPPER =

• CONFETTI_BALL =

• TANABATA_TREE =

• PINE_DECORATION =

• JAPANESE_DOLLS =

• CARP_STREAMER =

• WIND_CHIME =

• MOON_VIEWING_CEREMONY =

• RED_ENVELOPE =

98 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• RIBBON =

• WRAPPED_GIFT =

• REMINDER_RIBBON =

• ADMISSION_TICKETS =

• TICKET =

• MILITARY_MEDAL =

• TROPHY =

• SPORTS_MEDAL =

• FIRST_PLACE_MEDAL =

• SECOND_PLACE_MEDAL =

• THIRD_PLACE_MEDAL =

• SOCCER_BALL =

• BASEBALL =

• SOFTBALL =

• BASKETBALL =

• VOLLEYBALL =

• AMERICAN_FOOTBALL =

• RUGBY_FOOTBALL =

• TENNIS =

• FLYING_DISC =

• BOWLING =

• CRICKET_GAME =

• FIELD_HOCKEY =

• ICE_HOCKEY =

• LACROSSE =

• PING_PONG =

• BADMINTON =

• BOXING_GLOVE =

• MARTIAL_ARTS_UNIFORM =

• GOAL_NET =

• FLAG_IN_HOLE =

• ICE_SKATE =

• FISHING_POLE =

• DIVING_MASK =

• RUNNING_SHIRT =

• SKIS =

3.2. assets 99

pygamelib Documentation, Release 1.3.0

• SLED =

• CURLING_STONE =

• DIRECT_HIT =

• YO_YO =

• KITE =

• BALL =

• CRYSTAL_BALL =

• MAGIC_WAND =

• NAZAR_AMULET =

• VIDEO_GAME =

• JOYSTICK =

• SLOT_MACHINE =

• GAME_DIE =

• PUZZLE_PIECE =

• TEDDY_BEAR =

• PIñATA =

• NESTING_DOLLS =

• SPADE_SUIT =

• HEART_SUIT =

• DIAMOND_SUIT =

• CLUB_SUIT =

• CHESS_PAWN =

• JOKER =

• MAHJONG_RED_DRAGON =

• FLOWER_PLAYING_CARDS =

• PERFORMING_ARTS =

• FRAMED_PICTURE =

• ARTIST_PALETTE =

• THREAD =

• SEWING_NEEDLE =

• YARN =

• KNOT =

• GLASSES =

• SUNGLASSES =

• GOGGLES =

• LAB_COAT =

100 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• SAFETY_VEST =

• NECKTIE =

• T_SHIRT =

• JEANS =

• SCARF =

• GLOVES =

• COAT =

• SOCKS =

• DRESS =

• KIMONO =

• SARI =

• ONE_PIECE_SWIMSUIT =

• BRIEFS =

• SHORTS =

• BIKINI =

• WOMANS_CLOTHES =

• PURSE =

• HANDBAG =

• CLUTCH_BAG =

• SHOPPING_BAGS =

• BACKPACK =

• THONG_SANDAL =

• MANS_SHOE =

• RUNNING_SHOE =

• HIKING_BOOT =

• FLAT_SHOE =

• HIGH_HEELED_SHOE =

• WOMANS_SANDAL =

• BALLET_SHOES =

• WOMANS_BOOT =

• CROWN =

• WOMANS_HAT =

• TOP_HAT =

• GRADUATION_CAP =

• BILLED_CAP =

• MILITARY_HELMET =

3.2. assets 101

pygamelib Documentation, Release 1.3.0

• RESCUE_WORKERS_HELMET =

• PRAYER_BEADS =

• LIPSTICK =

• RING =

• GEM_STONE =

• MUTED_SPEAKER =

• SPEAKER_LOW_VOLUME =

• SPEAKER_MEDIUM_VOLUME =

• SPEAKER_HIGH_VOLUME =

• LOUDSPEAKER =

• MEGAPHONE =

• POSTAL_HORN =

• BELL =

• BELL_WITH_SLASH =

• MUSICAL_SCORE =

• MUSICAL_NOTE =

• MUSICAL_NOTES =

• STUDIO_MICROPHONE =

• LEVEL_SLIDER =

• CONTROL_KNOBS =

• MICROPHONE =

• HEADPHONE =

• RADIO =

• SAXOPHONE =

• ACCORDION =

• GUITAR =

• MUSICAL_KEYBOARD =

• TRUMPET =

• VIOLIN =

• BANJO =

• DRUM =

• LONG_DRUM =

• MOBILE_PHONE =

• MOBILE_PHONE_WITH_ARROW =

• TELEPHONE =

• TELEPHONE_RECEIVER =

102 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• PAGER =

• FAX_MACHINE =

• BATTERY =

• ELECTRIC_PLUG =

• LAPTOP =

• DESKTOP_COMPUTER =

• PRINTER =

• KEYBOARD =

• COMPUTER_MOUSE =

• TRACKBALL =

• COMPUTER_DISK =

• FLOPPY_DISK =

• OPTICAL_DISK =

• DVD =

• ABACUS =

• MOVIE_CAMERA =

• FILM_FRAMES =

• FILM_PROJECTOR =

• CLAPPER_BOARD =

• TELEVISION =

• CAMERA =

• CAMERA_WITH_FLASH =

• VIDEO_CAMERA =

• VIDEOCASSETTE =

• MAGNIFYING_GLASS_TILTED_LEFT =

• MAGNIFYING_GLASS_TILTED_RIGHT =

• CANDLE =

• LIGHT_BULB =

• FLASHLIGHT =

• RED_PAPER_LANTERN =

• DIYA_LAMP =

• NOTEBOOK_WITH_DECORATIVE_COVER =

• CLOSED_BOOK =

• OPEN_BOOK =

• GREEN_BOOK =

• BLUE_BOOK =

3.2. assets 103

pygamelib Documentation, Release 1.3.0

• ORANGE_BOOK =

• BOOKS =

• NOTEBOOK =

• LEDGER =

• PAGE_WITH_CURL =

• SCROLL =

• PAGE_FACING_UP =

• NEWSPAPER =

• ROLLED_UP_NEWSPAPER =

• BOOKMARK_TABS =

• BOOKMARK =

• LABEL =

• MONEY_BAG =

• COIN =

• YEN_BANKNOTE =

• DOLLAR_BANKNOTE =

• EURO_BANKNOTE =

• POUND_BANKNOTE =

• MONEY_WITH_WINGS =

• CREDIT_CARD =

• RECEIPT =

• CHART_INCREASING_WITH_YEN =

• ENVELOPE =

• E_MAIL =

• INCOMING_ENVELOPE =

• ENVELOPE_WITH_ARROW =

• OUTBOX_TRAY =

• INBOX_TRAY =

• PACKAGE =

• CLOSED_MAILBOX_WITH_RAISED_FLAG =

• CLOSED_MAILBOX_WITH_LOWERED_FLAG =

• OPEN_MAILBOX_WITH_RAISED_FLAG =

• OPEN_MAILBOX_WITH_LOWERED_FLAG =

• POSTBOX =

• BALLOT_BOX_WITH_BALLOT =

• PENCIL =

104 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• BLACK_NIB =

• FOUNTAIN_PEN =

• PEN =

• PAINTBRUSH =

• CRAYON =

• MEMO =

• BRIEFCASE =

• FILE_FOLDER =

• OPEN_FILE_FOLDER =

• CARD_INDEX_DIVIDERS =

• CALENDAR =

• TEAR_OFF_CALENDAR =

• SPIRAL_NOTEPAD =

• SPIRAL_CALENDAR =

• CARD_INDEX =

• CHART_INCREASING =

• CHART_DECREASING =

• BAR_CHART =

• CLIPBOARD =

• PUSHPIN =

• ROUND_PUSHPIN =

• PAPERCLIP =

• LINKED_PAPERCLIPS =

• STRAIGHT_RULER =

• TRIANGULAR_RULER =

• SCISSORS =

• CARD_FILE_BOX =

• FILE_CABINET =

• WASTEBASKET =

• LOCKED =

• UNLOCKED =

• LOCKED_WITH_PEN =

• LOCKED_WITH_KEY =

• KEY =

• OLD_KEY =

• HAMMER =

3.2. assets 105

pygamelib Documentation, Release 1.3.0

• AXE =

• PICK =

• HAMMER_AND_PICK =

• HAMMER_AND_WRENCH =

• DAGGER =

• CROSSED_SWORDS =

• PISTOL =

• BOOMERANG =

• BOW_AND_ARROW =

• SHIELD =

• CARPENTRY_SAW =

• WRENCH =

• SCREWDRIVER =

• NUT_AND_BOLT =

• GEAR =

• CLAMP =

• BALANCE_SCALE =

• WHITE_CANE =

• LINK =

• CHAINS =

• HOOK =

• TOOLBOX =

• MAGNET =

• LADDER =

• ALEMBIC =

• TEST_TUBE =

• PETRI_DISH =

• DNA =

• MICROSCOPE =

• TELESCOPE =

• SATELLITE_ANTENNA =

• SYRINGE =

• DROP_OF_BLOOD =

• PILL =

• ADHESIVE_BANDAGE =

• STETHOSCOPE =

106 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• DOOR =

• ELEVATOR =

• MIRROR =

• WINDOW =

• BED =

• COUCH_AND_LAMP =

• CHAIR =

• TOILET =

• PLUNGER =

• SHOWER =

• BATHTUB =

• MOUSE_TRAP =

• RAZOR =

• LOTION_BOTTLE =

• SAFETY_PIN =

• BROOM =

• BASKET =

• ROLL_OF_PAPER =

• BUCKET =

• SOAP =

• TOOTHBRUSH =

• SPONGE =

• FIRE_EXTINGUISHER =

• SHOPPING_CART =

• CIGARETTE =

• COFFIN =

• HEADSTONE =

• FUNERAL_URN =

• MOAI =

• PLACARD =

• ATM_SIGN =

• LITTER_IN_BIN_SIGN =

• POTABLE_WATER =

• WHEELCHAIR_SYMBOL =

• MENS_ROOM =

• WOMENS_ROOM =

3.2. assets 107

pygamelib Documentation, Release 1.3.0

• RESTROOM =

• BABY_SYMBOL =

• WATER_CLOSET =

• PASSPORT_CONTROL =

• CUSTOMS =

• BAGGAGE_CLAIM =

• LEFT_LUGGAGE =

• WARNING =

• CHILDREN_CROSSING =

• NO_ENTRY =

• PROHIBITED =

• NO_BICYCLES =

• NO_SMOKING =

• NO_LITTERING =

• NON_POTABLE_WATER =

• NO_PEDESTRIANS =

• NO_MOBILE_PHONES =

• NO_ONE_UNDER_EIGHTEEN =

• RADIOACTIVE =

• BIOHAZARD =

• UP_ARROW =

• UP_RIGHT_ARROW =

• RIGHT_ARROW =

• DOWN_RIGHT_ARROW =

• DOWN_ARROW =

• DOWN_LEFT_ARROW =

• LEFT_ARROW =

• UP_LEFT_ARROW =

• UP_DOWN_ARROW =

• LEFT_RIGHT_ARROW =

• RIGHT_ARROW_CURVING_LEFT =

• LEFT_ARROW_CURVING_RIGHT =

• RIGHT_ARROW_CURVING_UP =

• RIGHT_ARROW_CURVING_DOWN =

• CLOCKWISE_VERTICAL_ARROWS =

• COUNTERCLOCKWISE_ARROWS_BUTTON =

108 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• BACK_ARROW =

• END_ARROW =

• ON_ARROW =

• SOON_ARROW =

• TOP_ARROW =

• PLACE_OF_WORSHIP =

• ATOM_SYMBOL =

• OM =

• STAR_OF_DAVID =

• WHEEL_OF_DHARMA =

• YIN_YANG =

• LATIN_CROSS =

• ORTHODOX_CROSS =

• STAR_AND_CRESCENT =

• PEACE_SYMBOL =

• MENORAH =

• DOTTED_SIX_POINTED_STAR =

• ARIES =

• TAURUS =

• GEMINI =

• CANCER =

• LEO =

• VIRGO =

• LIBRA =

• SCORPIO =

• SAGITTARIUS =

• CAPRICORN =

• AQUARIUS =

• PISCES =

• OPHIUCHUS =

• SHUFFLE_TRACKS_BUTTON =

• REPEAT_BUTTON =

• REPEAT_SINGLE_BUTTON =

• PLAY_BUTTON =

• FAST_FORWARD_BUTTON =

• NEXT_TRACK_BUTTON =

3.2. assets 109

pygamelib Documentation, Release 1.3.0

• PLAY_OR_PAUSE_BUTTON =

• REVERSE_BUTTON =

• FAST_REVERSE_BUTTON =

• LAST_TRACK_BUTTON =

• UPWARDS_BUTTON =

• FAST_UP_BUTTON =

• DOWNWARDS_BUTTON =

• FAST_DOWN_BUTTON =

• PAUSE_BUTTON =

• STOP_BUTTON =

• RECORD_BUTTON =

• EJECT_BUTTON =

• CINEMA =

• DIM_BUTTON =

• BRIGHT_BUTTON =

• ANTENNA_BARS =

• VIBRATION_MODE =

• MOBILE_PHONE_OFF =

• FEMALE_SIGN =

• MALE_SIGN =

• TRANSGENDER_SYMBOL =

• MULTIPLY =

• PLUS =

• MINUS =

• DIVIDE =

• INFINITY =

• DOUBLE_EXCLAMATION_MARK =

• EXCLAMATION_QUESTION_MARK =

• QUESTION_MARK =

• WHITE_QUESTION_MARK =

• WHITE_EXCLAMATION_MARK =

• EXCLAMATION_MARK =

• WAVY_DASH =

• CURRENCY_EXCHANGE =

• HEAVY_DOLLAR_SIGN =

• MEDICAL_SYMBOL =

110 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• RECYCLING_SYMBOL =

• FLEUR_DE_LIS =

• TRIDENT_EMBLEM =

• NAME_BADGE =

• JAPANESE_SYMBOL_FOR_BEGINNER =

• HOLLOW_RED_CIRCLE =

• CHECK_MARK_BUTTON =

• CHECK_BOX_WITH_CHECK =

• CHECK_MARK = XXX

• CROSS_MARK =

• CROSS_MARK_BUTTON =

• CURLY_LOOP =

• DOUBLE_CURLY_LOOP =

• PART_ALTERNATION_MARK =

• EIGHT_SPOKED_ASTERISK =

• EIGHT_POINTED_STAR =

• SPARKLE =

• COPYRIGHT = ©

• REGISTERED = ®

• TRADE_MARK = ™

• INPUT_LATIN_UPPERCASE =

• INPUT_LATIN_LOWERCASE =

• INPUT_NUMBERS =

• INPUT_SYMBOLS =

• INPUT_LATIN_LETTERS =

• A_BUTTON_BLOOD_TYPE =

• AB_BUTTON_BLOOD_TYPE =

• B_BUTTON_BLOOD_TYPE =

• CL_BUTTON =

• COOL_BUTTON =

• FREE_BUTTON =

• INFORMATION =

• ID_BUTTON =

• CIRCLED_M =

• NEW_BUTTON =

• NG_BUTTON =

3.2. assets 111

pygamelib Documentation, Release 1.3.0

• O_BUTTON_BLOOD_TYPE =

• OK_BUTTON =

• P_BUTTON =

• SOS_BUTTON =

• UP_BUTTON =

• VS_BUTTON =

• JAPANESE_HERE_BUTTON =

• JAPANESE_SERVICE_CHARGE_BUTTON =

• JAPANESE_MONTHLY_AMOUNT_BUTTON =

• JAPANESE_NOT_FREE_OF_CHARGE_BUTTON =

• JAPANESE_RESERVED_BUTTON =

• JAPANESE_BARGAIN_BUTTON =

• JAPANESE_DISCOUNT_BUTTON =

• JAPANESE_FREE_OF_CHARGE_BUTTON =

• JAPANESE_PROHIBITED_BUTTON =

• JAPANESE_ACCEPTABLE_BUTTON =

• JAPANESE_APPLICATION_BUTTON =

• JAPANESE_PASSING_GRADE_BUTTON =

• JAPANESE_VACANCY_BUTTON =

• JAPANESE_CONGRATULATIONS_BUTTON =

• JAPANESE_SECRET_BUTTON =

• JAPANESE_OPEN_FOR_BUSINESS_BUTTON =

• JAPANESE_NO_VACANCY_BUTTON =

• RED_CIRCLE =

• ORANGE_CIRCLE =

• YELLOW_CIRCLE =

• GREEN_CIRCLE =

• BLUE_CIRCLE =

• PURPLE_CIRCLE =

• BROWN_CIRCLE =

• BLACK_CIRCLE =

• WHITE_CIRCLE =

• RED_SQUARE =

• ORANGE_SQUARE =

• YELLOW_SQUARE =

• GREEN_SQUARE =

112 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• BLUE_SQUARE =

• PURPLE_SQUARE =

• BROWN_SQUARE =

• BLACK_LARGE_SQUARE =

• WHITE_LARGE_SQUARE =

• BLACK_MEDIUM_SQUARE =

• WHITE_MEDIUM_SQUARE =

• BLACK_MEDIUM_SMALL_SQUARE =

• WHITE_MEDIUM_SMALL_SQUARE =

• BLACK_SMALL_SQUARE =

• WHITE_SMALL_SQUARE =

• LARGE_ORANGE_DIAMOND =

• LARGE_BLUE_DIAMOND =

• SMALL_ORANGE_DIAMOND =

• SMALL_BLUE_DIAMOND =

• RED_TRIANGLE_POINTED_UP =

• RED_TRIANGLE_POINTED_DOWN =

• DIAMOND_WITH_A_DOT =

• RADIO_BUTTON =

• WHITE_SQUARE_BUTTON =

• BLACK_SQUARE_BUTTON =

• CHEQUERED_FLAG =

• TRIANGULAR_FLAG =

• CROSSED_FLAGS =

• BLACK_FLAG =

• WHITE_FLAG =

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__ Initialize self.

Attributes

ABACUS
AB_BUTTON_BLOOD_TYPE

Continued on next page

3.2. assets 113

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
ACCORDION
ADHESIVE_BANDAGE
ADMISSION_TICKETS
AERIAL_TRAMWAY
AIRPLANE
AIRPLANE_ARRIVAL
AIRPLANE_DEPARTURE
ALARM_CLOCK
ALEMBIC
ALIEN
ALIEN_MONSTER
AMBULANCE
AMERICAN_FOOTBALL
AMPHORA
ANATOMICAL_HEART
ANCHOR
ANGER_SYMBOL
ANGRY_FACE
ANGRY_FACE_WITH_HORNS
ANGUISHED_FACE
ANT
ANTENNA_BARS
ANXIOUS_FACE_WITH_SWEAT
AQUARIUS
ARIES
ARTICULATED_LORRY
ARTIST_PALETTE
ASTONISHED_FACE
ATM_SIGN
ATOM_SYMBOL
AUTOMOBILE
AUTO_RICKSHAW
AVOCADO
AXE
A_BUTTON_BLOOD_TYPE
BABY
BABY_ANGEL
BABY_BOTTLE
BABY_CHICK
BABY_SYMBOL
BACKHAND_INDEX_POINTING_DOWN
BACKHAND_INDEX_POINTING_LEFT
BACKHAND_INDEX_POINTING_RIGHT
BACKHAND_INDEX_POINTING_UP
BACKPACK
BACK_ARROW
BACON
BADGER
BADMINTON
BAGEL

Continued on next page

114 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
BAGGAGE_CLAIM
BAGUETTE_BREAD
BALANCE_SCALE
BALD
BALL
BALLET_SHOES
BALLOON
BALLOT_BOX_WITH_BALLOT
BANANA
BANJO
BANK
BARBER_POLE
BAR_CHART
BASEBALL
BASKET
BASKETBALL
BAT
BATHTUB
BATTERY
BEACH_WITH_UMBRELLA
BEAMING_FACE_WITH_SMILING_EYES
BEAR
BEATING_HEART
BEAVER
BED
BEER_MUG
BEETLE
BELL
BELLHOP_BELL
BELL_PEPPER
BELL_WITH_SLASH
BENTO_BOX
BEVERAGE_BOX
BICYCLE
BIKINI
BILLED_CAP
BIOHAZARD
BIRD
BIRTHDAY_CAKE
BISON
BLACK_CIRCLE
BLACK_FLAG
BLACK_HEART
BLACK_LARGE_SQUARE
BLACK_MEDIUM_SMALL_SQUARE
BLACK_MEDIUM_SQUARE
BLACK_NIB
BLACK_SMALL_SQUARE
BLACK_SQUARE_BUTTON
BLOSSOM

Continued on next page

3.2. assets 115

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
BLOWFISH
BLUEBERRIES
BLUE_BOOK
BLUE_CIRCLE
BLUE_HEART
BLUE_SQUARE
BOAR
BOMB
BONE
BOOKMARK
BOOKMARK_TABS
BOOKS
BOOMERANG
BOTTLE_WITH_POPPING_CORK
BOUQUET
BOWLING
BOWL_WITH_SPOON
BOW_AND_ARROW
BOXING_GLOVE
BOY
BRAIN
BREAD
BREAST_FEEDING
BRICK
BRIDGE_AT_NIGHT
BRIEFCASE
BRIEFS
BRIGHT_BUTTON
BROCCOLI
BROKEN_HEART
BROOM
BROWN_CIRCLE
BROWN_HEART
BROWN_SQUARE
BUBBLE_TEA
BUCKET
BUG
BUILDING_CONSTRUCTION
BULLET_TRAIN
BURRITO
BUS
BUSTS_IN_SILHOUETTE
BUST_IN_SILHOUETTE
BUS_STOP
BUTTER
BUTTERFLY
B_BUTTON_BLOOD_TYPE
CACTUS
CALENDAR
CALL_ME_HAND

Continued on next page

116 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
CAMEL
CAMERA
CAMERA_WITH_FLASH
CAMPING
CANCER
CANDLE
CANDY
CANNED_FOOD
CANOE
CAPRICORN
CARD_FILE_BOX
CARD_INDEX
CARD_INDEX_DIVIDERS
CAROUSEL_HORSE
CARPENTRY_SAW
CARP_STREAMER
CARROT
CASTLE
CAT
CAT_FACE
CAT_WITH_TEARS_OF_JOY
CAT_WITH_WRY_SMILE
CHAINS
CHAIR
CHART_DECREASING
CHART_INCREASING
CHART_INCREASING_WITH_YEN
CHECK_BOX_WITH_CHECK
CHECK_MARK
CHECK_MARK_BUTTON
CHEESE_WEDGE
CHEQUERED_FLAG
CHERRIES
CHERRY_BLOSSOM
CHESS_PAWN
CHESTNUT
CHICKEN
CHILD
CHILDREN_CROSSING
CHIPMUNK
CHOCOLATE_BAR
CHOPSTICKS
CHRISTMAS_TREE
CHURCH
CIGARETTE
CINEMA
CIRCLED_M
CIRCUS_TENT
CITYSCAPE
CITYSCAPE_AT_DUSK

Continued on next page

3.2. assets 117

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
CLAMP
CLAPPER_BOARD
CLAPPING_HANDS
CLASSICAL_BUILDING
CLINKING_BEER_MUGS
CLINKING_GLASSES
CLIPBOARD
CLOCKWISE_VERTICAL_ARROWS
CLOSED_BOOK
CLOSED_MAILBOX_WITH_LOWERED_FLAG
CLOSED_MAILBOX_WITH_RAISED_FLAG
CLOSED_UMBRELLA
CLOUD
CLOUD_WITH_LIGHTNING
CLOUD_WITH_LIGHTNING_AND_RAIN
CLOUD_WITH_RAIN
CLOUD_WITH_SNOW
CLOWN_FACE
CLUB_SUIT
CLUTCH_BAG
CL_BUTTON
COAT
COCKROACH
COCKTAIL_GLASS
COCONUT
COFFIN
COIN
COLD_FACE
COLLISION
COMET
COMPASS
COMPUTER_DISK
COMPUTER_MOUSE
CONFETTI_BALL
CONFOUNDED_FACE
CONFUSED_FACE
CONSTRUCTION
CONSTRUCTION_WORKER
CONTROL_KNOBS
CONVENIENCE_STORE
COOKED_RICE
COOKIE
COOKING
COOL_BUTTON
COPYRIGHT
COUCH_AND_LAMP
COUNTERCLOCKWISE_ARROWS_BUTTON
COUPLE_WITH_HEART
COW
COWBOY_HAT_FACE

Continued on next page

118 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
COW_FACE
CRAB
CRAYON
CREDIT_CARD
CRESCENT_MOON
CRICKET
CRICKET_GAME
CROCODILE
CROISSANT
CROSSED_FINGERS
CROSSED_FLAGS
CROSSED_SWORDS
CROSS_MARK
CROSS_MARK_BUTTON
CROWN
CRYING_CAT
CRYING_FACE
CRYSTAL_BALL
CUCUMBER
CUPCAKE
CUP_WITH_STRAW
CURLING_STONE
CURLY_HAIR
CURLY_LOOP
CURRENCY_EXCHANGE
CURRY_RICE
CUSTARD
CUSTOMS
CUT_OF_MEAT
CYCLONE
DAGGER
DANGO
DARK_SKIN_TONE
DASHING_AWAY
DEAF_PERSON
DECIDUOUS_TREE
DEER
DELIVERY_TRUCK
DEPARTMENT_STORE
DERELICT_HOUSE
DESERT
DESERT_ISLAND
DESKTOP_COMPUTER
DETECTIVE
DIAMOND_SUIT
DIAMOND_WITH_A_DOT
DIM_BUTTON
DIRECT_HIT
DISAPPOINTED_FACE
DISGUISED_FACE

Continued on next page

3.2. assets 119

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
DIVIDE
DIVING_MASK
DIYA_LAMP
DIZZY
DIZZY_FACE
DNA
DODO
DOG
DOG_FACE
DOLLAR_BANKNOTE
DOLPHIN
DOOR
DOTTED_SIX_POINTED_STAR
DOUBLE_CURLY_LOOP
DOUBLE_EXCLAMATION_MARK
DOUGHNUT
DOVE
DOWNCAST_FACE_WITH_SWEAT
DOWNWARDS_BUTTON
DOWN_ARROW
DOWN_LEFT_ARROW
DOWN_RIGHT_ARROW
DRAGON
DRAGON_FACE
DRESS
DROOLING_FACE
DROPLET
DROP_OF_BLOOD
DRUM
DUCK
DUMPLING
DVD
EAGLE
EAR
EAR_OF_CORN
EAR_WITH_HEARING_AID
EGG
EGGPLANT
EIGHT_OCLOCK
EIGHT_POINTED_STAR
EIGHT_SPOKED_ASTERISK
EIGHT_THIRTY
EJECT_BUTTON
ELECTRIC_PLUG
ELEPHANT
ELEVATOR
ELEVEN_OCLOCK
ELEVEN_THIRTY
ELF
END_ARROW

Continued on next page

120 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
ENVELOPE
ENVELOPE_WITH_ARROW
EURO_BANKNOTE
EVERGREEN_TREE
EWE
EXCLAMATION_MARK
EXCLAMATION_QUESTION_MARK
EXPLODING_HEAD
EXPRESSIONLESS_FACE
EYE
EYES
E_MAIL
FACE_BLOWING_A_KISS
FACE_SAVORING_FOOD
FACE_SCREAMING_IN_FEAR
FACE_VOMITING
FACE_WITHOUT_MOUTH
FACE_WITH_HAND_OVER_MOUTH
FACE_WITH_HEAD_BANDAGE
FACE_WITH_MEDICAL_MASK
FACE_WITH_MONOCLE
FACE_WITH_OPEN_MOUTH
FACE_WITH_RAISED_EYEBROW
FACE_WITH_ROLLING_EYES
FACE_WITH_STEAM_FROM_NOSE
FACE_WITH_SYMBOLS_ON_MOUTH
FACE_WITH_TEARS_OF_JOY
FACE_WITH_THERMOMETER
FACE_WITH_TONGUE
FACTORY
FAIRY
FALAFEL
FALLEN_LEAF
FAMILY
FAST_DOWN_BUTTON
FAST_FORWARD_BUTTON
FAST_REVERSE_BUTTON
FAST_UP_BUTTON
FAX_MACHINE
FEARFUL_FACE
FEATHER
FEMALE_SIGN
FERRIS_WHEEL
FERRY
FIELD_HOCKEY
FILE_CABINET
FILE_FOLDER
FILM_FRAMES
FILM_PROJECTOR
FIRE

Continued on next page

3.2. assets 121

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
FIRECRACKER
FIREWORKS
FIRE_ENGINE
FIRE_EXTINGUISHER
FIRST_PLACE_MEDAL
FIRST_QUARTER_MOON
FIRST_QUARTER_MOON_FACE
FISH
FISHING_POLE
FISH_CAKE_WITH_SWIRL
FIVE_OCLOCK
FIVE_THIRTY
FLAG_IN_HOLE
FLAMINGO
FLASHLIGHT
FLATBREAD
FLAT_SHOE
FLEUR_DE_LIS
FLEXED_BICEPS
FLOPPY_DISK
FLOWER_PLAYING_CARDS
FLUSHED_FACE
FLY
FLYING_DISC
FLYING_SAUCER
FOG
FOGGY
FOLDED_HANDS
FONDUE
FOOT
FOOTPRINTS
FORK_AND_KNIFE
FORK_AND_KNIFE_WITH_PLATE
FORTUNE_COOKIE
FOUNTAIN
FOUNTAIN_PEN
FOUR_LEAF_CLOVER
FOUR_OCLOCK
FOUR_THIRTY
FOX
FRAMED_PICTURE
FREE_BUTTON
FRENCH_FRIES
FRIED_SHRIMP
FROG
FRONT_FACING_BABY_CHICK
FROWNING_FACE
FROWNING_FACE_WITH_OPEN_MOUTH
FUEL_PUMP
FULL_MOON

Continued on next page

122 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
FULL_MOON_FACE
FUNERAL_URN
GAME_DIE
GARLIC
GEAR
GEMINI
GEM_STONE
GENIE
GHOST
GIRAFFE
GIRL
GLASSES
GLASS_OF_MILK
GLOBE_SHOWING_AMERICAS
GLOBE_SHOWING_ASIA_AUSTRALIA
GLOBE_SHOWING_EUROPE_AFRICA
GLOBE_WITH_MERIDIANS
GLOVES
GLOWING_STAR
GOAL_NET
GOAT
GOBLIN
GOGGLES
GORILLA
GRADUATION_CAP
GRAPES
GREEN_APPLE
GREEN_BOOK
GREEN_CIRCLE
GREEN_HEART
GREEN_SALAD
GREEN_SQUARE
GRIMACING_FACE
GRINNING_CAT
GRINNING_CAT_WITH_SMILING_EYES
GRINNING_FACE
GRINNING_FACE_WITH_BIG_EYES
GRINNING_FACE_WITH_SMILING_EYES
GRINNING_FACE_WITH_SWEAT
GRINNING_SQUINTING_FACE
GROWING_HEART
GUARD
GUIDE_DOG
GUITAR
HAMBURGER
HAMMER
HAMMER_AND_PICK
HAMMER_AND_WRENCH
HAMSTER
HANDBAG

Continued on next page

3.2. assets 123

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
HANDSHAKE
HAND_WITH_FINGERS_SPLAYED
HATCHING_CHICK
HEADPHONE
HEADSTONE
HEART_DECORATION
HEART_EXCLAMATION
HEART_SUIT
HEART_WITH_ARROW
HEART_WITH_RIBBON
HEAR_NO_EVIL_MONKEY
HEAVY_DOLLAR_SIGN
HEDGEHOG
HELICOPTER
HERB
HIBISCUS
HIGH_HEELED_SHOE
HIGH_SPEED_TRAIN
HIGH_VOLTAGE
HIKING_BOOT
HINDU_TEMPLE
HIPPOPOTAMUS
HOLE
HOLLOW_RED_CIRCLE
HONEYBEE
HONEY_POT
HOOK
HORIZONTAL_TRAFFIC_LIGHT
HORSE
HORSE_FACE
HORSE_RACING
HOSPITAL
HOTEL
HOT_BEVERAGE
HOT_DOG
HOT_FACE
HOT_PEPPER
HOT_SPRINGS
HOURGLASS_DONE
HOURGLASS_NOT_DONE
HOUSE
HOUSES
HOUSE_WITH_GARDEN
HUGGING_FACE
HUNDRED_POINTS
HUSHED_FACE
HUT
ICE
ICE_CREAM
ICE_HOCKEY

Continued on next page

124 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
ICE_SKATE
ID_BUTTON
INBOX_TRAY
INCOMING_ENVELOPE
INDEX_POINTING_UP
INFINITY
INFORMATION
INPUT_LATIN_LETTERS
INPUT_LATIN_LOWERCASE
INPUT_LATIN_UPPERCASE
INPUT_NUMBERS
INPUT_SYMBOLS
JACK_O_LANTERN
JAPANESE_ACCEPTABLE_BUTTON
JAPANESE_APPLICATION_BUTTON
JAPANESE_BARGAIN_BUTTON
JAPANESE_CASTLE
JAPANESE_CONGRATULATIONS_BUTTON
JAPANESE_DISCOUNT_BUTTON
JAPANESE_DOLLS
JAPANESE_FREE_OF_CHARGE_BUTTON
JAPANESE_HERE_BUTTON
JAPANESE_MONTHLY_AMOUNT_BUTTON
JAPANESE_NOT_FREE_OF_CHARGE_BUTTON
JAPANESE_NO_VACANCY_BUTTON
JAPANESE_OPEN_FOR_BUSINESS_BUTTON
JAPANESE_PASSING_GRADE_BUTTON
JAPANESE_POST_OFFICE
JAPANESE_PROHIBITED_BUTTON
JAPANESE_RESERVED_BUTTON
JAPANESE_SECRET_BUTTON
JAPANESE_SERVICE_CHARGE_BUTTON
JAPANESE_SYMBOL_FOR_BEGINNER
JAPANESE_VACANCY_BUTTON
JEANS
JOKER
JOYSTICK
KAABA
KANGAROO
KEY
KEYBOARD
KICK_SCOOTER
KIMONO
KISS
KISSING_CAT
KISSING_FACE
KISSING_FACE_WITH_CLOSED_EYES
KISSING_FACE_WITH_SMILING_EYES
KISS_MARK
KITCHEN_KNIFE

Continued on next page

3.2. assets 125

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
KITE
KIWI_FRUIT
KNOT
KOALA
LABEL
LAB_COAT
LACROSSE
LADDER
LADY_BEETLE
LAPTOP
LARGE_BLUE_DIAMOND
LARGE_ORANGE_DIAMOND
LAST_QUARTER_MOON
LAST_QUARTER_MOON_FACE
LAST_TRACK_BUTTON
LATIN_CROSS
LEAFY_GREEN
LEAF_FLUTTERING_IN_WIND
LEDGER
LEFT_ARROW
LEFT_ARROW_CURVING_RIGHT
LEFT_FACING_FIST
LEFT_LUGGAGE
LEFT_RIGHT_ARROW
LEFT_SPEECH_BUBBLE
LEG
LEMON
LEO
LEOPARD
LEVEL_SLIDER
LIBRA
LIGHT_BULB
LIGHT_RAIL
LIGHT_SKIN_TONE
LINK
LINKED_PAPERCLIPS
LION
LIPSTICK
LITTER_IN_BIN_SIGN
LIZARD
LLAMA
LOBSTER
LOCKED
LOCKED_WITH_KEY
LOCKED_WITH_PEN
LOCOMOTIVE
LOLLIPOP
LONG_DRUM
LOTION_BOTTLE
LOUDLY_CRYING_FACE

Continued on next page

126 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
LOUDSPEAKER
LOVE_HOTEL
LOVE_LETTER
LOVE_YOU_GESTURE
LUGGAGE
LUNGS
LYING_FACE
MAGE
MAGIC_WAND
MAGNET
MAGNIFYING_GLASS_TILTED_LEFT
MAGNIFYING_GLASS_TILTED_RIGHT
MAHJONG_RED_DRAGON
MALE_SIGN
MAMMOTH
MAN
MANGO
MANS_SHOE
MANTELPIECE_CLOCK
MANUAL_WHEELCHAIR
MAN_BEARD
MAN_DANCING
MAPLE_LEAF
MAP_OF_JAPAN
MARTIAL_ARTS_UNIFORM
MATE
MEAT_ON_BONE
MECHANICAL_ARM
MECHANICAL_LEG
MEDICAL_SYMBOL
MEDIUM_DARK_SKIN_TONE
MEDIUM_LIGHT_SKIN_TONE
MEDIUM_SKIN_TONE
MEGAPHONE
MELON
MEMO
MENORAH
MENS_ROOM
MEN_HOLDING_HANDS
MERPERSON
METRO
MICROBE
MICROPHONE
MICROSCOPE
MIDDLE_FINGER
MILITARY_HELMET
MILITARY_MEDAL
MILKY_WAY
MINIBUS
MINUS

Continued on next page

3.2. assets 127

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
MIRROR
MOAI
MOBILE_PHONE
MOBILE_PHONE_OFF
MOBILE_PHONE_WITH_ARROW
MONEY_BAG
MONEY_MOUTH_FACE
MONEY_WITH_WINGS
MONKEY
MONKEY_FACE
MONORAIL
MOON_CAKE
MOON_VIEWING_CEREMONY
MOSQUE
MOSQUITO
MOTORCYCLE
MOTORIZED_WHEELCHAIR
MOTORWAY
MOTOR_BOAT
MOTOR_SCOOTER
MOUNTAIN
MOUNTAIN_CABLEWAY
MOUNTAIN_RAILWAY
MOUNT_FUJI
MOUSE
MOUSE_FACE
MOUSE_TRAP
MOUTH
MOVIE_CAMERA
MRS_CLAUS
MULTIPLY
MUSHROOM
MUSICAL_KEYBOARD
MUSICAL_NOTE
MUSICAL_NOTES
MUSICAL_SCORE
MUTED_SPEAKER
NAIL_POLISH
NAME_BADGE
NATIONAL_PARK
NAUSEATED_FACE
NAZAR_AMULET
NECKTIE
NERD_FACE
NESTING_DOLLS
NEUTRAL_FACE
NEWSPAPER
NEW_BUTTON
NEW_MOON
NEW_MOON_FACE

Continued on next page

128 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
NEXT_TRACK_BUTTON
NG_BUTTON
NIGHT_WITH_STARS
NINE_OCLOCK
NINE_THIRTY
NINJA
NON_POTABLE_WATER
NOSE
NOTEBOOK
NOTEBOOK_WITH_DECORATIVE_COVER
NO_BICYCLES
NO_ENTRY
NO_LITTERING
NO_MOBILE_PHONES
NO_ONE_UNDER_EIGHTEEN
NO_PEDESTRIANS
NO_SMOKING
NUT_AND_BOLT
OCTOPUS
ODEN
OFFICE_BUILDING
OGRE
OIL_DRUM
OK_BUTTON
OK_HAND
OLDER_PERSON
OLD_KEY
OLD_MAN
OLD_WOMAN
OLIVE
OM
ONCOMING_AUTOMOBILE
ONCOMING_BUS
ONCOMING_FIST
ONCOMING_POLICE_CAR
ONCOMING_TAXI
ONE_OCLOCK
ONE_PIECE_SWIMSUIT
ONE_THIRTY
ONION
ON_ARROW
OPEN_BOOK
OPEN_FILE_FOLDER
OPEN_HANDS
OPEN_MAILBOX_WITH_LOWERED_FLAG
OPEN_MAILBOX_WITH_RAISED_FLAG
OPHIUCHUS
OPTICAL_DISK
ORANGE_BOOK
ORANGE_CIRCLE

Continued on next page

3.2. assets 129

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
ORANGE_HEART
ORANGE_SQUARE
ORANGUTAN
ORTHODOX_CROSS
OTTER
OUTBOX_TRAY
OWL
OX
OYSTER
O_BUTTON_BLOOD_TYPE
PACKAGE
PAGER
PAGE_FACING_UP
PAGE_WITH_CURL
PAINTBRUSH
PALMS_UP_TOGETHER
PALM_TREE
PANCAKES
PANDA
PAPERCLIP
PARACHUTE
PARROT
PARTYING_FACE
PARTY_POPPER
PART_ALTERNATION_MARK
PASSENGER_SHIP
PASSPORT_CONTROL
PAUSE_BUTTON
PAW_PRINTS
PEACE_SYMBOL
PEACH
PEACOCK
PEANUTS
PEAR
PEN
PENCIL
PENGUIN
PENSIVE_FACE
PEOPLE_HUGGING
PEOPLE_WITH_BUNNY_EARS
PEOPLE_WRESTLING
PERFORMING_ARTS
PERSEVERING_FACE
PERSON
PERSON_BIKING
PERSON_BLOND_HAIR
PERSON_BOUNCING_BALL
PERSON_BOWING
PERSON_CARTWHEELING
PERSON_CLIMBING

Continued on next page

130 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
PERSON_FACEPALMING
PERSON_FENCING
PERSON_FROWNING
PERSON_GESTURING_NO
PERSON_GESTURING_OK
PERSON_GETTING_HAIRCUT
PERSON_GETTING_MASSAGE
PERSON_GOLFING
PERSON_IN_BED
PERSON_IN_LOTUS_POSITION
PERSON_IN_STEAMY_ROOM
PERSON_IN_SUIT_LEVITATING
PERSON_IN_TUXEDO
PERSON_JUGGLING
PERSON_KNEELING
PERSON_LIFTING_WEIGHTS
PERSON_MOUNTAIN_BIKING
PERSON_PLAYING_HANDBALL
PERSON_PLAYING_WATER_POLO
PERSON_POUTING
PERSON_RAISING_HAND
PERSON_ROWING_BOAT
PERSON_RUNNING
PERSON_SHRUGGING
PERSON_STANDING
PERSON_SURFING
PERSON_SWIMMING
PERSON_TAKING_BATH
PERSON_TIPPING_HAND
PERSON_WALKING
PERSON_WEARING_TURBAN
PERSON_WITH_SKULLCAP
PERSON_WITH_VEIL
PETRI_DISH
PICK
PICKUP_TRUCK
PIE
PIG
PIG_FACE
PIG_NOSE
PILE_OF_POO
PILL
PINCHED_FINGERS
PINCHING_HAND
PINEAPPLE
PINE_DECORATION
PING_PONG
PISCES
PISTOL
PIZZA

Continued on next page

3.2. assets 131

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
PIñATA
PLACARD
PLACE_OF_WORSHIP
PLAY_BUTTON
PLAY_OR_PAUSE_BUTTON
PLEADING_FACE
PLUNGER
PLUS
POLICE_CAR
POLICE_CAR_LIGHT
POLICE_OFFICER
POODLE
POPCORN
POSTAL_HORN
POSTBOX
POST_OFFICE
POTABLE_WATER
POTATO
POTTED_PLANT
POT_OF_FOOD
POULTRY_LEG
POUND_BANKNOTE
POUTING_CAT
POUTING_FACE
PRAYER_BEADS
PREGNANT_WOMAN
PRETZEL
PRINCE
PRINCESS
PRINTER
PROHIBITED
PURPLE_CIRCLE
PURPLE_HEART
PURPLE_SQUARE
PURSE
PUSHPIN
PUZZLE_PIECE
P_BUTTON
QUESTION_MARK
RABBIT
RABBIT_FACE
RACCOON
RACING_CAR
RADIO
RADIOACTIVE
RADIO_BUTTON
RAILWAY_CAR
RAILWAY_TRACK
RAINBOW
RAISED_BACK_OF_HAND

Continued on next page

132 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
RAISED_FIST
RAISED_HAND
RAISING_HANDS
RAM
RAT
RAZOR
RECEIPT
RECORD_BUTTON
RECYCLING_SYMBOL
RED_APPLE
RED_CIRCLE
RED_ENVELOPE
RED_HAIR
RED_HEART
RED_PAPER_LANTERN
RED_SQUARE
RED_TRIANGLE_POINTED_DOWN
RED_TRIANGLE_POINTED_UP
REGISTERED
RELIEVED_FACE
REMINDER_RIBBON
REPEAT_BUTTON
REPEAT_SINGLE_BUTTON
RESCUE_WORKERS_HELMET
RESTROOM
REVERSE_BUTTON
REVOLVING_HEARTS
RHINOCEROS
RIBBON
RICE_BALL
RICE_CRACKER
RIGHT_ANGER_BUBBLE
RIGHT_ARROW
RIGHT_ARROW_CURVING_DOWN
RIGHT_ARROW_CURVING_LEFT
RIGHT_ARROW_CURVING_UP
RIGHT_FACING_FIST
RING
RINGED_PLANET
ROASTED_SWEET_POTATO
ROBOT
ROCK
ROCKET
ROLLED_UP_NEWSPAPER
ROLLER_COASTER
ROLLER_SKATE
ROLLING_ON_THE_FLOOR_LAUGHING
ROLL_OF_PAPER
ROOSTER
ROSE

Continued on next page

3.2. assets 133

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
ROSETTE
ROUND_PUSHPIN
RUGBY_FOOTBALL
RUNNING_SHIRT
RUNNING_SHOE
SAD_BUT_RELIEVED_FACE
SAFETY_PIN
SAFETY_VEST
SAGITTARIUS
SAILBOAT
SAKE
SALT
SANDWICH
SANTA_CLAUS
SARI
SATELLITE
SATELLITE_ANTENNA
SAUROPOD
SAXOPHONE
SCARF
SCHOOL
SCISSORS
SCORPIO
SCORPION
SCREWDRIVER
SCROLL
SEAL
SEAT
SECOND_PLACE_MEDAL
SEEDLING
SEE_NO_EVIL_MONKEY
SELFIE
SEVEN_OCLOCK
SEVEN_THIRTY
SEWING_NEEDLE
SHALLOW_PAN_OF_FOOD
SHAMROCK
SHARK
SHAVED_ICE
SHEAF_OF_RICE
SHIELD
SHINTO_SHRINE
SHIP
SHOOTING_STAR
SHOPPING_BAGS
SHOPPING_CART
SHORTCAKE
SHORTS
SHOWER
SHRIMP

Continued on next page

134 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
SHUFFLE_TRACKS_BUTTON
SHUSHING_FACE
SIGN_OF_THE_HORNS
SIX_OCLOCK
SIX_THIRTY
SKATEBOARD
SKIER
SKIS
SKULL
SKULL_AND_CROSSBONES
SKUNK
SLED
SLEEPING_FACE
SLEEPY_FACE
SLIGHTLY_FROWNING_FACE
SLIGHTLY_SMILING_FACE
SLOTH
SLOT_MACHINE
SMALL_AIRPLANE
SMALL_BLUE_DIAMOND
SMALL_ORANGE_DIAMOND
SMILING_CAT_WITH_HEART_EYES
SMILING_FACE
SMILING_FACE_WITH_HALO
SMILING_FACE_WITH_HEARTS
SMILING_FACE_WITH_HEART_EYES
SMILING_FACE_WITH_HORNS
SMILING_FACE_WITH_SMILING_EYES
SMILING_FACE_WITH_SUNGLASSES
SMILING_FACE_WITH_TEAR
SMIRKING_FACE
SNAIL
SNAKE
SNEEZING_FACE
SNOWBOARDER
SNOWFLAKE
SNOWMAN
SNOWMAN_WITHOUT_SNOW
SNOW_CAPPED_MOUNTAIN
SOAP
SOCCER_BALL
SOCKS
SOFTBALL
SOFT_ICE_CREAM
SOON_ARROW
SOS_BUTTON
SPADE_SUIT
SPAGHETTI
SPARKLE
SPARKLER

Continued on next page

3.2. assets 135

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
SPARKLES
SPARKLING_HEART
SPEAKER_HIGH_VOLUME
SPEAKER_LOW_VOLUME
SPEAKER_MEDIUM_VOLUME
SPEAKING_HEAD
SPEAK_NO_EVIL_MONKEY
SPEECH_BALLOON
SPEEDBOAT
SPIDER
SPIDER_WEB
SPIRAL_CALENDAR
SPIRAL_NOTEPAD
SPIRAL_SHELL
SPONGE
SPOON
SPORTS_MEDAL
SPORT_UTILITY_VEHICLE
SPOUTING_WHALE
SQUID
SQUINTING_FACE_WITH_TONGUE
STADIUM
STAR
STAR_AND_CRESCENT
STAR_OF_DAVID
STAR_STRUCK
STATION
STATUE_OF_LIBERTY
STEAMING_BOWL
STETHOSCOPE
STOPWATCH
STOP_BUTTON
STOP_SIGN
STRAIGHT_RULER
STRAWBERRY
STUDIO_MICROPHONE
STUFFED_FLATBREAD
SUN
SUNFLOWER
SUNGLASSES
SUNRISE
SUNRISE_OVER_MOUNTAINS
SUNSET
SUN_BEHIND_CLOUD
SUN_BEHIND_LARGE_CLOUD
SUN_BEHIND_RAIN_CLOUD
SUN_BEHIND_SMALL_CLOUD
SUN_WITH_FACE
SUPERHERO
SUPERVILLAIN

Continued on next page

136 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
SUSHI
SUSPENSION_RAILWAY
SWAN
SWEAT_DROPLETS
SYNAGOGUE
SYRINGE
TACO
TAKEOUT_BOX
TAMALE
TANABATA_TREE
TANGERINE
TAURUS
TAXI
TEACUP_WITHOUT_HANDLE
TEAPOT
TEAR_OFF_CALENDAR
TEDDY_BEAR
TELEPHONE
TELEPHONE_RECEIVER
TELESCOPE
TELEVISION
TENNIS
TENT
TEN_OCLOCK
TEN_THIRTY
TEST_TUBE
THERMOMETER
THINKING_FACE
THIRD_PLACE_MEDAL
THONG_SANDAL
THOUGHT_BALLOON
THREAD
THREE_OCLOCK
THREE_THIRTY
THUMBS_DOWN
THUMBS_UP
TICKET
TIGER
TIGER_FACE
TIMER_CLOCK
TIRED_FACE
TOILET
TOKYO_TOWER
TOMATO
TONGUE
TOOLBOX
TOOTH
TOOTHBRUSH
TOP_ARROW
TOP_HAT

Continued on next page

3.2. assets 137

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
TORNADO
TRACKBALL
TRACTOR
TRADE_MARK
TRAIN
TRAM
TRAM_CAR
TRANSGENDER_SYMBOL
TRIANGULAR_FLAG
TRIANGULAR_RULER
TRIDENT_EMBLEM
TROLLEYBUS
TROPHY
TROPICAL_DRINK
TROPICAL_FISH
TRUMPET
TULIP
TUMBLER_GLASS
TURKEY
TURTLE
TWELVE_OCLOCK
TWELVE_THIRTY
TWO_HEARTS
TWO_HUMP_CAMEL
TWO_OCLOCK
TWO_THIRTY
T_REX
T_SHIRT
UMBRELLA
UMBRELLA_ON_GROUND
UMBRELLA_WITH_RAIN_DROPS
UNAMUSED_FACE
UNICORN
UNLOCKED
UPSIDE_DOWN_FACE
UPWARDS_BUTTON
UP_ARROW
UP_BUTTON
UP_DOWN_ARROW
UP_LEFT_ARROW
UP_RIGHT_ARROW
VAMPIRE
VERTICAL_TRAFFIC_LIGHT
VIBRATION_MODE
VICTORY_HAND
VIDEOCASSETTE
VIDEO_CAMERA
VIDEO_GAME
VIOLIN
VIRGO

Continued on next page

138 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
VOLCANO
VOLLEYBALL
VS_BUTTON
VULCAN_SALUTE
WAFFLE
WANING_CRESCENT_MOON
WANING_GIBBOUS_MOON
WARNING
WASTEBASKET
WATCH
WATERMELON
WATER_BUFFALO
WATER_CLOSET
WATER_WAVE
WAVING_HAND
WAVY_DASH
WAXING_CRESCENT_MOON
WAXING_GIBBOUS_MOON
WEARY_CAT
WEARY_FACE
WEDDING
WHALE
WHEELCHAIR_SYMBOL
WHEEL_OF_DHARMA
WHITE_CANE
WHITE_CIRCLE
WHITE_EXCLAMATION_MARK
WHITE_FLAG
WHITE_FLOWER
WHITE_HAIR
WHITE_HEART
WHITE_LARGE_SQUARE
WHITE_MEDIUM_SMALL_SQUARE
WHITE_MEDIUM_SQUARE
WHITE_QUESTION_MARK
WHITE_SMALL_SQUARE
WHITE_SQUARE_BUTTON
WILTED_FLOWER
WINDOW
WIND_CHIME
WIND_FACE
WINE_GLASS
WINKING_FACE
WINKING_FACE_WITH_TONGUE
WOLF
WOMAN
WOMANS_BOOT
WOMANS_CLOTHES
WOMANS_HAT
WOMANS_SANDAL

Continued on next page

3.2. assets 139

pygamelib Documentation, Release 1.3.0

Table 23 – continued from previous page
WOMAN_AND_MAN_HOLDING_HANDS
WOMAN_DANCING
WOMAN_WITH_HEADSCARF
WOMENS_ROOM
WOMEN_HOLDING_HANDS
WOOD
WOOZY_FACE
WORLD_MAP
WORM
WORRIED_FACE
WRAPPED_GIFT
WRENCH
WRITING_HAND
YARN
YAWNING_FACE
YELLOW_CIRCLE
YELLOW_HEART
YELLOW_SQUARE
YEN_BANKNOTE
YIN_YANG
YO_YO
ZANY_FACE
ZEBRA
ZIPPER_MOUTH_FACE
ZOMBIE
ZZZ

ABACUS = ''

AB_BUTTON_BLOOD_TYPE = ''

ACCORDION = '\U0001fa97'

ADHESIVE_BANDAGE = '\U0001fa79'

ADMISSION_TICKETS = ''

AERIAL_TRAMWAY = ''

AIRPLANE = ''

AIRPLANE_ARRIVAL = ''

AIRPLANE_DEPARTURE = ''

ALARM_CLOCK = ''

ALEMBIC = ''

ALIEN = ''

ALIEN_MONSTER = ''

AMBULANCE = ''

AMERICAN_FOOTBALL = ''

AMPHORA = ''

ANATOMICAL_HEART = '\U0001fac0'

140 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

ANCHOR = ''

ANGER_SYMBOL = ''

ANGRY_FACE = ''

ANGRY_FACE_WITH_HORNS = ''

ANGUISHED_FACE = ''

ANT = ''

ANTENNA_BARS = ''

ANXIOUS_FACE_WITH_SWEAT = ''

AQUARIUS = ''

ARIES = ''

ARTICULATED_LORRY = ''

ARTIST_PALETTE = ''

ASTONISHED_FACE = ''

ATM_SIGN = ''

ATOM_SYMBOL = ''

AUTOMOBILE = ''

AUTO_RICKSHAW = '\U0001f6fa'

AVOCADO = ''

AXE = '\U0001fa93'

A_BUTTON_BLOOD_TYPE = ''

BABY = ''

BABY_ANGEL = ''

BABY_BOTTLE = ''

BABY_CHICK = ''

BABY_SYMBOL = ''

BACKHAND_INDEX_POINTING_DOWN = ''

BACKHAND_INDEX_POINTING_LEFT = ''

BACKHAND_INDEX_POINTING_RIGHT = ''

BACKHAND_INDEX_POINTING_UP = ''

BACKPACK = ''

BACK_ARROW = ''

BACON = ''

BADGER = ''

BADMINTON = ''

BAGEL = ''

BAGGAGE_CLAIM = ''

3.2. assets 141

pygamelib Documentation, Release 1.3.0

BAGUETTE_BREAD = ''

BALANCE_SCALE = ''

BALD = ''

BALL = ''

BALLET_SHOES = '\U0001fa70'

BALLOON = ''

BALLOT_BOX_WITH_BALLOT = ''

BANANA = ''

BANJO = '\U0001fa95'

BANK = ''

BARBER_POLE = ''

BAR_CHART = ''

BASEBALL = ''

BASKET = ''

BASKETBALL = ''

BAT = ''

BATHTUB = ''

BATTERY = ''

BEACH_WITH_UMBRELLA = ''

BEAMING_FACE_WITH_SMILING_EYES = ''

BEAR = ''

BEATING_HEART = ''

BEAVER = '\U0001f9ab'

BED = ''

BEER_MUG = ''

BEETLE = '\U0001fab2'

BELL = ''

BELLHOP_BELL = ''

BELL_PEPPER = '\U0001fad1'

BELL_WITH_SLASH = ''

BENTO_BOX = ''

BEVERAGE_BOX = '\U0001f9c3'

BICYCLE = ''

BIKINI = ''

BILLED_CAP = ''

BIOHAZARD = ''

142 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

BIRD = ''

BIRTHDAY_CAKE = ''

BISON = '\U0001f9ac'

BLACK_CIRCLE = ''

BLACK_FLAG = ''

BLACK_HEART = ''

BLACK_LARGE_SQUARE = ''

BLACK_MEDIUM_SMALL_SQUARE = ''

BLACK_MEDIUM_SQUARE = ''

BLACK_NIB = ''

BLACK_SMALL_SQUARE = ''

BLACK_SQUARE_BUTTON = ''

BLOSSOM = ''

BLOWFISH = ''

BLUEBERRIES = '\U0001fad0'

BLUE_BOOK = ''

BLUE_CIRCLE = ''

BLUE_HEART = ''

BLUE_SQUARE = '\U0001f7e6'

BOAR = ''

BOMB = ''

BONE = ''

BOOKMARK = ''

BOOKMARK_TABS = ''

BOOKS = ''

BOOMERANG = '\U0001fa83'

BOTTLE_WITH_POPPING_CORK = ''

BOUQUET = ''

BOWLING = ''

BOWL_WITH_SPOON = ''

BOW_AND_ARROW = ''

BOXING_GLOVE = ''

BOY = ''

BRAIN = ''

BREAD = ''

BREAST_FEEDING = ''

3.2. assets 143

pygamelib Documentation, Release 1.3.0

BRICK = ''

BRIDGE_AT_NIGHT = ''

BRIEFCASE = ''

BRIEFS = '\U0001fa72'

BRIGHT_BUTTON = ''

BROCCOLI = ''

BROKEN_HEART = ''

BROOM = ''

BROWN_CIRCLE = '\U0001f7e4'

BROWN_HEART = '\U0001f90e'

BROWN_SQUARE = '\U0001f7eb'

BUBBLE_TEA = '\U0001f9cb'

BUCKET = '\U0001faa3'

BUG = ''

BUILDING_CONSTRUCTION = ''

BULLET_TRAIN = ''

BURRITO = ''

BUS = ''

BUSTS_IN_SILHOUETTE = ''

BUST_IN_SILHOUETTE = ''

BUS_STOP = ''

BUTTER = '\U0001f9c8'

BUTTERFLY = ''

B_BUTTON_BLOOD_TYPE = ''

CACTUS = ''

CALENDAR = ''

CALL_ME_HAND = ''

CAMEL = ''

CAMERA = ''

CAMERA_WITH_FLASH = ''

CAMPING = ''

CANCER = ''

CANDLE = ''

CANDY = ''

CANNED_FOOD = ''

CANOE = ''

144 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

CAPRICORN = ''

CARD_FILE_BOX = ''

CARD_INDEX = ''

CARD_INDEX_DIVIDERS = ''

CAROUSEL_HORSE = ''

CARPENTRY_SAW = '\U0001fa9a'

CARP_STREAMER = ''

CARROT = ''

CASTLE = ''

CAT = ''

CAT_FACE = ''

CAT_WITH_TEARS_OF_JOY = ''

CAT_WITH_WRY_SMILE = ''

CHAINS = ''

CHAIR = '\U0001fa91'

CHART_DECREASING = ''

CHART_INCREASING = ''

CHART_INCREASING_WITH_YEN = ''

CHECK_BOX_WITH_CHECK = ''

CHECK_MARK = 'XXX'

CHECK_MARK_BUTTON = ''

CHEESE_WEDGE = ''

CHEQUERED_FLAG = ''

CHERRIES = ''

CHERRY_BLOSSOM = ''

CHESS_PAWN = ''

CHESTNUT = ''

CHICKEN = ''

CHILD = ''

CHILDREN_CROSSING = ''

CHIPMUNK = ''

CHOCOLATE_BAR = ''

CHOPSTICKS = ''

CHRISTMAS_TREE = ''

CHURCH = ''

CIGARETTE = ''

3.2. assets 145

pygamelib Documentation, Release 1.3.0

CINEMA = ''

CIRCLED_M = ''

CIRCUS_TENT = ''

CITYSCAPE = ''

CITYSCAPE_AT_DUSK = ''

CLAMP = ''

CLAPPER_BOARD = ''

CLAPPING_HANDS = ''

CLASSICAL_BUILDING = ''

CLINKING_BEER_MUGS = ''

CLINKING_GLASSES = ''

CLIPBOARD = ''

CLOCKWISE_VERTICAL_ARROWS = ''

CLOSED_BOOK = ''

CLOSED_MAILBOX_WITH_LOWERED_FLAG = ''

CLOSED_MAILBOX_WITH_RAISED_FLAG = ''

CLOSED_UMBRELLA = ''

CLOUD = ''

CLOUD_WITH_LIGHTNING = ''

CLOUD_WITH_LIGHTNING_AND_RAIN = ''

CLOUD_WITH_RAIN = ''

CLOUD_WITH_SNOW = ''

CLOWN_FACE = ''

CLUB_SUIT = ''

CLUTCH_BAG = ''

CL_BUTTON = ''

COAT = ''

COCKROACH = '\U0001fab3'

COCKTAIL_GLASS = ''

COCONUT = ''

COFFIN = ''

COIN = '\U0001fa99'

COLD_FACE = ''

COLLISION = ''

COMET = ''

COMPASS = ''

146 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

COMPUTER_DISK = ''

COMPUTER_MOUSE = ''

CONFETTI_BALL = ''

CONFOUNDED_FACE = ''

CONFUSED_FACE = ''

CONSTRUCTION = ''

CONSTRUCTION_WORKER = ''

CONTROL_KNOBS = ''

CONVENIENCE_STORE = ''

COOKED_RICE = ''

COOKIE = ''

COOKING = ''

COOL_BUTTON = ''

COPYRIGHT = '©'

COUCH_AND_LAMP = ''

COUNTERCLOCKWISE_ARROWS_BUTTON = ''

COUPLE_WITH_HEART = ''

COW = ''

COWBOY_HAT_FACE = ''

COW_FACE = ''

CRAB = ''

CRAYON = ''

CREDIT_CARD = ''

CRESCENT_MOON = ''

CRICKET = ''

CRICKET_GAME = ''

CROCODILE = ''

CROISSANT = ''

CROSSED_FINGERS = ''

CROSSED_FLAGS = ''

CROSSED_SWORDS = ''

CROSS_MARK = ''

CROSS_MARK_BUTTON = ''

CROWN = ''

CRYING_CAT = ''

CRYING_FACE = ''

3.2. assets 147

pygamelib Documentation, Release 1.3.0

CRYSTAL_BALL = ''

CUCUMBER = ''

CUPCAKE = ''

CUP_WITH_STRAW = ''

CURLING_STONE = ''

CURLY_HAIR = ''

CURLY_LOOP = ''

CURRENCY_EXCHANGE = ''

CURRY_RICE = ''

CUSTARD = ''

CUSTOMS = ''

CUT_OF_MEAT = ''

CYCLONE = ''

DAGGER = ''

DANGO = ''

DARK_SKIN_TONE = ''

DASHING_AWAY = ''

DEAF_PERSON = '\U0001f9cf'

DECIDUOUS_TREE = ''

DEER = ''

DELIVERY_TRUCK = ''

DEPARTMENT_STORE = ''

DERELICT_HOUSE = ''

DESERT = ''

DESERT_ISLAND = ''

DESKTOP_COMPUTER = ''

DETECTIVE = ''

DIAMOND_SUIT = ''

DIAMOND_WITH_A_DOT = ''

DIM_BUTTON = ''

DIRECT_HIT = ''

DISAPPOINTED_FACE = ''

DISGUISED_FACE = '\U0001f978'

DIVIDE = ''

DIVING_MASK = '\U0001f93f'

DIYA_LAMP = '\U0001fa94'

148 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

DIZZY = ''

DIZZY_FACE = ''

DNA = ''

DODO = '\U0001f9a4'

DOG = ''

DOG_FACE = ''

DOLLAR_BANKNOTE = ''

DOLPHIN = ''

DOOR = ''

DOTTED_SIX_POINTED_STAR = ''

DOUBLE_CURLY_LOOP = ''

DOUBLE_EXCLAMATION_MARK = ''

DOUGHNUT = ''

DOVE = ''

DOWNCAST_FACE_WITH_SWEAT = ''

DOWNWARDS_BUTTON = ''

DOWN_ARROW = ''

DOWN_LEFT_ARROW = ''

DOWN_RIGHT_ARROW = ''

DRAGON = ''

DRAGON_FACE = ''

DRESS = ''

DROOLING_FACE = ''

DROPLET = ''

DROP_OF_BLOOD = '\U0001fa78'

DRUM = ''

DUCK = ''

DUMPLING = ''

DVD = ''

EAGLE = ''

EAR = ''

EAR_OF_CORN = ''

EAR_WITH_HEARING_AID = '\U0001f9bb'

EGG = ''

EGGPLANT = ''

EIGHT_OCLOCK = ''

3.2. assets 149

pygamelib Documentation, Release 1.3.0

EIGHT_POINTED_STAR = ''

EIGHT_SPOKED_ASTERISK = ''

EIGHT_THIRTY = ''

EJECT_BUTTON = ''

ELECTRIC_PLUG = ''

ELEPHANT = ''

ELEVATOR = '\U0001f6d7'

ELEVEN_OCLOCK = ''

ELEVEN_THIRTY = ''

ELF = ''

END_ARROW = ''

ENVELOPE = ''

ENVELOPE_WITH_ARROW = ''

EURO_BANKNOTE = ''

EVERGREEN_TREE = ''

EWE = ''

EXCLAMATION_MARK = ''

EXCLAMATION_QUESTION_MARK = ''

EXPLODING_HEAD = ''

EXPRESSIONLESS_FACE = ''

EYE = ''

EYES = ''

E_MAIL = ''

FACE_BLOWING_A_KISS = ''

FACE_SAVORING_FOOD = ''

FACE_SCREAMING_IN_FEAR = ''

FACE_VOMITING = ''

FACE_WITHOUT_MOUTH = ''

FACE_WITH_HAND_OVER_MOUTH = ''

FACE_WITH_HEAD_BANDAGE = ''

FACE_WITH_MEDICAL_MASK = ''

FACE_WITH_MONOCLE = ''

FACE_WITH_OPEN_MOUTH = ''

FACE_WITH_RAISED_EYEBROW = ''

FACE_WITH_ROLLING_EYES = ''

FACE_WITH_STEAM_FROM_NOSE = ''

150 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

FACE_WITH_SYMBOLS_ON_MOUTH = ''

FACE_WITH_TEARS_OF_JOY = ''

FACE_WITH_THERMOMETER = ''

FACE_WITH_TONGUE = ''

FACTORY = ''

FAIRY = ''

FALAFEL = '\U0001f9c6'

FALLEN_LEAF = ''

FAMILY = ''

FAST_DOWN_BUTTON = ''

FAST_FORWARD_BUTTON = ''

FAST_REVERSE_BUTTON = ''

FAST_UP_BUTTON = ''

FAX_MACHINE = ''

FEARFUL_FACE = ''

FEATHER = '\U0001fab6'

FEMALE_SIGN = ''

FERRIS_WHEEL = ''

FERRY = ''

FIELD_HOCKEY = ''

FILE_CABINET = ''

FILE_FOLDER = ''

FILM_FRAMES = ''

FILM_PROJECTOR = ''

FIRE = ''

FIRECRACKER = ''

FIREWORKS = ''

FIRE_ENGINE = ''

FIRE_EXTINGUISHER = ''

FIRST_PLACE_MEDAL = ''

FIRST_QUARTER_MOON = ''

FIRST_QUARTER_MOON_FACE = ''

FISH = ''

FISHING_POLE = ''

FISH_CAKE_WITH_SWIRL = ''

FIVE_OCLOCK = ''

3.2. assets 151

pygamelib Documentation, Release 1.3.0

FIVE_THIRTY = ''

FLAG_IN_HOLE = ''

FLAMINGO = '\U0001f9a9'

FLASHLIGHT = ''

FLATBREAD = '\U0001fad3'

FLAT_SHOE = ''

FLEUR_DE_LIS = ''

FLEXED_BICEPS = ''

FLOPPY_DISK = ''

FLOWER_PLAYING_CARDS = ''

FLUSHED_FACE = ''

FLY = '\U0001fab0'

FLYING_DISC = ''

FLYING_SAUCER = ''

FOG = ''

FOGGY = ''

FOLDED_HANDS = ''

FONDUE = '\U0001fad5'

FOOT = ''

FOOTPRINTS = ''

FORK_AND_KNIFE = ''

FORK_AND_KNIFE_WITH_PLATE = ''

FORTUNE_COOKIE = ''

FOUNTAIN = ''

FOUNTAIN_PEN = ''

FOUR_LEAF_CLOVER = ''

FOUR_OCLOCK = ''

FOUR_THIRTY = ''

FOX = ''

FRAMED_PICTURE = ''

FREE_BUTTON = ''

FRENCH_FRIES = ''

FRIED_SHRIMP = ''

FROG = ''

FRONT_FACING_BABY_CHICK = ''

FROWNING_FACE = ''

152 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

FROWNING_FACE_WITH_OPEN_MOUTH = ''

FUEL_PUMP = ''

FULL_MOON = ''

FULL_MOON_FACE = ''

FUNERAL_URN = ''

GAME_DIE = ''

GARLIC = '\U0001f9c4'

GEAR = ''

GEMINI = ''

GEM_STONE = ''

GENIE = ''

GHOST = ''

GIRAFFE = ''

GIRL = ''

GLASSES = ''

GLASS_OF_MILK = ''

GLOBE_SHOWING_AMERICAS = ''

GLOBE_SHOWING_ASIA_AUSTRALIA = ''

GLOBE_SHOWING_EUROPE_AFRICA = ''

GLOBE_WITH_MERIDIANS = ''

GLOVES = ''

GLOWING_STAR = ''

GOAL_NET = ''

GOAT = ''

GOBLIN = ''

GOGGLES = ''

GORILLA = ''

GRADUATION_CAP = ''

GRAPES = ''

GREEN_APPLE = ''

GREEN_BOOK = ''

GREEN_CIRCLE = '\U0001f7e2'

GREEN_HEART = ''

GREEN_SALAD = ''

GREEN_SQUARE = '\U0001f7e9'

GRIMACING_FACE = ''

3.2. assets 153

pygamelib Documentation, Release 1.3.0

GRINNING_CAT = ''

GRINNING_CAT_WITH_SMILING_EYES = ''

GRINNING_FACE = ''

GRINNING_FACE_WITH_BIG_EYES = ''

GRINNING_FACE_WITH_SMILING_EYES = ''

GRINNING_FACE_WITH_SWEAT = ''

GRINNING_SQUINTING_FACE = ''

GROWING_HEART = ''

GUARD = ''

GUIDE_DOG = '\U0001f9ae'

GUITAR = ''

HAMBURGER = ''

HAMMER = ''

HAMMER_AND_PICK = ''

HAMMER_AND_WRENCH = ''

HAMSTER = ''

HANDBAG = ''

HANDSHAKE = ''

HAND_WITH_FINGERS_SPLAYED = ''

HATCHING_CHICK = ''

HEADPHONE = ''

HEADSTONE = '\U0001faa6'

HEART_DECORATION = ''

HEART_EXCLAMATION = ''

HEART_SUIT = ''

HEART_WITH_ARROW = ''

HEART_WITH_RIBBON = ''

HEAR_NO_EVIL_MONKEY = ''

HEAVY_DOLLAR_SIGN = ''

HEDGEHOG = ''

HELICOPTER = ''

HERB = ''

HIBISCUS = ''

HIGH_HEELED_SHOE = ''

HIGH_SPEED_TRAIN = ''

HIGH_VOLTAGE = ''

154 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

HIKING_BOOT = ''

HINDU_TEMPLE = '\U0001f6d5'

HIPPOPOTAMUS = ''

HOLE = ''

HOLLOW_RED_CIRCLE = ''

HONEYBEE = ''

HONEY_POT = ''

HOOK = '\U0001fa9d'

HORIZONTAL_TRAFFIC_LIGHT = ''

HORSE = ''

HORSE_FACE = ''

HORSE_RACING = ''

HOSPITAL = ''

HOTEL = ''

HOT_BEVERAGE = ''

HOT_DOG = ''

HOT_FACE = ''

HOT_PEPPER = ''

HOT_SPRINGS = ''

HOURGLASS_DONE = ''

HOURGLASS_NOT_DONE = ''

HOUSE = ''

HOUSES = ''

HOUSE_WITH_GARDEN = ''

HUGGING_FACE = ''

HUNDRED_POINTS = ''

HUSHED_FACE = ''

HUT = '\U0001f6d6'

ICE = '\U0001f9ca'

ICE_CREAM = ''

ICE_HOCKEY = ''

ICE_SKATE = ''

ID_BUTTON = ''

INBOX_TRAY = ''

INCOMING_ENVELOPE = ''

INDEX_POINTING_UP = ''

3.2. assets 155

pygamelib Documentation, Release 1.3.0

INFINITY = ''

INFORMATION = ''

INPUT_LATIN_LETTERS = ''

INPUT_LATIN_LOWERCASE = ''

INPUT_LATIN_UPPERCASE = ''

INPUT_NUMBERS = ''

INPUT_SYMBOLS = ''

JACK_O_LANTERN = ''

JAPANESE_ACCEPTABLE_BUTTON = ''

JAPANESE_APPLICATION_BUTTON = ''

JAPANESE_BARGAIN_BUTTON = ''

JAPANESE_CASTLE = ''

JAPANESE_CONGRATULATIONS_BUTTON = ''

JAPANESE_DISCOUNT_BUTTON = ''

JAPANESE_DOLLS = ''

JAPANESE_FREE_OF_CHARGE_BUTTON = ''

JAPANESE_HERE_BUTTON = ''

JAPANESE_MONTHLY_AMOUNT_BUTTON = ''

JAPANESE_NOT_FREE_OF_CHARGE_BUTTON = ''

JAPANESE_NO_VACANCY_BUTTON = ''

JAPANESE_OPEN_FOR_BUSINESS_BUTTON = ''

JAPANESE_PASSING_GRADE_BUTTON = ''

JAPANESE_POST_OFFICE = ''

JAPANESE_PROHIBITED_BUTTON = ''

JAPANESE_RESERVED_BUTTON = ''

JAPANESE_SECRET_BUTTON = ''

JAPANESE_SERVICE_CHARGE_BUTTON = ''

JAPANESE_SYMBOL_FOR_BEGINNER = ''

JAPANESE_VACANCY_BUTTON = ''

JEANS = ''

JOKER = ''

JOYSTICK = ''

KAABA = ''

KANGAROO = ''

KEY = ''

KEYBOARD = ''

156 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

KICK_SCOOTER = ''

KIMONO = ''

KISS = ''

KISSING_CAT = ''

KISSING_FACE = ''

KISSING_FACE_WITH_CLOSED_EYES = ''

KISSING_FACE_WITH_SMILING_EYES = ''

KISS_MARK = ''

KITCHEN_KNIFE = ''

KITE = '\U0001fa81'

KIWI_FRUIT = ''

KNOT = '\U0001faa2'

KOALA = ''

LABEL = ''

LAB_COAT = ''

LACROSSE = ''

LADDER = '\U0001fa9c'

LADY_BEETLE = ''

LAPTOP = ''

LARGE_BLUE_DIAMOND = ''

LARGE_ORANGE_DIAMOND = ''

LAST_QUARTER_MOON = ''

LAST_QUARTER_MOON_FACE = ''

LAST_TRACK_BUTTON = ''

LATIN_CROSS = ''

LEAFY_GREEN = ''

LEAF_FLUTTERING_IN_WIND = ''

LEDGER = ''

LEFT_ARROW = ''

LEFT_ARROW_CURVING_RIGHT = ''

LEFT_FACING_FIST = ''

LEFT_LUGGAGE = ''

LEFT_RIGHT_ARROW = ''

LEFT_SPEECH_BUBBLE = ''

LEG = ''

LEMON = ''

3.2. assets 157

pygamelib Documentation, Release 1.3.0

LEO = ''

LEOPARD = ''

LEVEL_SLIDER = ''

LIBRA = ''

LIGHT_BULB = ''

LIGHT_RAIL = ''

LIGHT_SKIN_TONE = ''

LINK = ''

LINKED_PAPERCLIPS = ''

LION = ''

LIPSTICK = ''

LITTER_IN_BIN_SIGN = ''

LIZARD = ''

LLAMA = ''

LOBSTER = ''

LOCKED = ''

LOCKED_WITH_KEY = ''

LOCKED_WITH_PEN = ''

LOCOMOTIVE = ''

LOLLIPOP = ''

LONG_DRUM = '\U0001fa98'

LOTION_BOTTLE = ''

LOUDLY_CRYING_FACE = ''

LOUDSPEAKER = ''

LOVE_HOTEL = ''

LOVE_LETTER = ''

LOVE_YOU_GESTURE = ''

LUGGAGE = ''

LUNGS = '\U0001fac1'

LYING_FACE = ''

MAGE = ''

MAGIC_WAND = '\U0001fa84'

MAGNET = ''

MAGNIFYING_GLASS_TILTED_LEFT = ''

MAGNIFYING_GLASS_TILTED_RIGHT = ''

MAHJONG_RED_DRAGON = ''

158 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

MALE_SIGN = ''

MAMMOTH = '\U0001f9a3'

MAN = ''

MANGO = ''

MANS_SHOE = ''

MANTELPIECE_CLOCK = ''

MANUAL_WHEELCHAIR = '\U0001f9bd'

MAN_BEARD = ''

MAN_DANCING = ''

MAPLE_LEAF = ''

MAP_OF_JAPAN = ''

MARTIAL_ARTS_UNIFORM = ''

MATE = '\U0001f9c9'

MEAT_ON_BONE = ''

MECHANICAL_ARM = '\U0001f9be'

MECHANICAL_LEG = '\U0001f9bf'

MEDICAL_SYMBOL = ''

MEDIUM_DARK_SKIN_TONE = ''

MEDIUM_LIGHT_SKIN_TONE = ''

MEDIUM_SKIN_TONE = ''

MEGAPHONE = ''

MELON = ''

MEMO = ''

MENORAH = ''

MENS_ROOM = ''

MEN_HOLDING_HANDS = ''

MERPERSON = ''

METRO = ''

MICROBE = ''

MICROPHONE = ''

MICROSCOPE = ''

MIDDLE_FINGER = ''

MILITARY_HELMET = '\U0001fa96'

MILITARY_MEDAL = ''

MILKY_WAY = ''

MINIBUS = ''

3.2. assets 159

pygamelib Documentation, Release 1.3.0

MINUS = ''

MIRROR = '\U0001fa9e'

MOAI = ''

MOBILE_PHONE = ''

MOBILE_PHONE_OFF = ''

MOBILE_PHONE_WITH_ARROW = ''

MONEY_BAG = ''

MONEY_MOUTH_FACE = ''

MONEY_WITH_WINGS = ''

MONKEY = ''

MONKEY_FACE = ''

MONORAIL = ''

MOON_CAKE = ''

MOON_VIEWING_CEREMONY = ''

MOSQUE = ''

MOSQUITO = ''

MOTORCYCLE = ''

MOTORIZED_WHEELCHAIR = '\U0001f9bc'

MOTORWAY = ''

MOTOR_BOAT = ''

MOTOR_SCOOTER = ''

MOUNTAIN = ''

MOUNTAIN_CABLEWAY = ''

MOUNTAIN_RAILWAY = ''

MOUNT_FUJI = ''

MOUSE = ''

MOUSE_FACE = ''

MOUSE_TRAP = '\U0001faa4'

MOUTH = ''

MOVIE_CAMERA = ''

MRS_CLAUS = ''

MULTIPLY = ''

MUSHROOM = ''

MUSICAL_KEYBOARD = ''

MUSICAL_NOTE = ''

MUSICAL_NOTES = ''

160 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

MUSICAL_SCORE = ''

MUTED_SPEAKER = ''

NAIL_POLISH = ''

NAME_BADGE = ''

NATIONAL_PARK = ''

NAUSEATED_FACE = ''

NAZAR_AMULET = ''

NECKTIE = ''

NERD_FACE = ''

NESTING_DOLLS = '\U0001fa86'

NEUTRAL_FACE = ''

NEWSPAPER = ''

NEW_BUTTON = ''

NEW_MOON = ''

NEW_MOON_FACE = ''

NEXT_TRACK_BUTTON = ''

NG_BUTTON = ''

NIGHT_WITH_STARS = ''

NINE_OCLOCK = ''

NINE_THIRTY = ''

NINJA = '\U0001f977'

NON_POTABLE_WATER = ''

NOSE = ''

NOTEBOOK = ''

NOTEBOOK_WITH_DECORATIVE_COVER = ''

NO_BICYCLES = ''

NO_ENTRY = ''

NO_LITTERING = ''

NO_MOBILE_PHONES = ''

NO_ONE_UNDER_EIGHTEEN = ''

NO_PEDESTRIANS = ''

NO_SMOKING = ''

NUT_AND_BOLT = ''

OCTOPUS = ''

ODEN = ''

OFFICE_BUILDING = ''

3.2. assets 161

pygamelib Documentation, Release 1.3.0

OGRE = ''

OIL_DRUM = ''

OK_BUTTON = ''

OK_HAND = ''

OLDER_PERSON = ''

OLD_KEY = ''

OLD_MAN = ''

OLD_WOMAN = ''

OLIVE = '\U0001fad2'

OM = ''

ONCOMING_AUTOMOBILE = ''

ONCOMING_BUS = ''

ONCOMING_FIST = ''

ONCOMING_POLICE_CAR = ''

ONCOMING_TAXI = ''

ONE_OCLOCK = ''

ONE_PIECE_SWIMSUIT = '\U0001fa71'

ONE_THIRTY = ''

ONION = '\U0001f9c5'

ON_ARROW = ''

OPEN_BOOK = ''

OPEN_FILE_FOLDER = ''

OPEN_HANDS = ''

OPEN_MAILBOX_WITH_LOWERED_FLAG = ''

OPEN_MAILBOX_WITH_RAISED_FLAG = ''

OPHIUCHUS = ''

OPTICAL_DISK = ''

ORANGE_BOOK = ''

ORANGE_CIRCLE = '\U0001f7e0'

ORANGE_HEART = ''

ORANGE_SQUARE = '\U0001f7e7'

ORANGUTAN = '\U0001f9a7'

ORTHODOX_CROSS = ''

OTTER = '\U0001f9a6'

OUTBOX_TRAY = ''

OWL = ''

162 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

OX = ''

OYSTER = '\U0001f9aa'

O_BUTTON_BLOOD_TYPE = ''

PACKAGE = ''

PAGER = ''

PAGE_FACING_UP = ''

PAGE_WITH_CURL = ''

PAINTBRUSH = ''

PALMS_UP_TOGETHER = ''

PALM_TREE = ''

PANCAKES = ''

PANDA = ''

PAPERCLIP = ''

PARACHUTE = '\U0001fa82'

PARROT = ''

PARTYING_FACE = ''

PARTY_POPPER = ''

PART_ALTERNATION_MARK = ''

PASSENGER_SHIP = ''

PASSPORT_CONTROL = ''

PAUSE_BUTTON = ''

PAW_PRINTS = ''

PEACE_SYMBOL = ''

PEACH = ''

PEACOCK = ''

PEANUTS = ''

PEAR = ''

PEN = ''

PENCIL = ''

PENGUIN = ''

PENSIVE_FACE = ''

PEOPLE_HUGGING = '\U0001fac2'

PEOPLE_WITH_BUNNY_EARS = ''

PEOPLE_WRESTLING = ''

PERFORMING_ARTS = ''

PERSEVERING_FACE = ''

3.2. assets 163

pygamelib Documentation, Release 1.3.0

PERSON = ''

PERSON_BIKING = ''

PERSON_BLOND_HAIR = ''

PERSON_BOUNCING_BALL = ''

PERSON_BOWING = ''

PERSON_CARTWHEELING = ''

PERSON_CLIMBING = ''

PERSON_FACEPALMING = ''

PERSON_FENCING = ''

PERSON_FROWNING = ''

PERSON_GESTURING_NO = ''

PERSON_GESTURING_OK = ''

PERSON_GETTING_HAIRCUT = ''

PERSON_GETTING_MASSAGE = ''

PERSON_GOLFING = ''

PERSON_IN_BED = ''

PERSON_IN_LOTUS_POSITION = ''

PERSON_IN_STEAMY_ROOM = ''

PERSON_IN_SUIT_LEVITATING = ''

PERSON_IN_TUXEDO = ''

PERSON_JUGGLING = ''

PERSON_KNEELING = '\U0001f9ce'

PERSON_LIFTING_WEIGHTS = ''

PERSON_MOUNTAIN_BIKING = ''

PERSON_PLAYING_HANDBALL = ''

PERSON_PLAYING_WATER_POLO = ''

PERSON_POUTING = ''

PERSON_RAISING_HAND = ''

PERSON_ROWING_BOAT = ''

PERSON_RUNNING = ''

PERSON_SHRUGGING = ''

PERSON_STANDING = '\U0001f9cd'

PERSON_SURFING = ''

PERSON_SWIMMING = ''

PERSON_TAKING_BATH = ''

PERSON_TIPPING_HAND = ''

164 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

PERSON_WALKING = ''

PERSON_WEARING_TURBAN = ''

PERSON_WITH_SKULLCAP = ''

PERSON_WITH_VEIL = ''

PETRI_DISH = ''

PICK = ''

PICKUP_TRUCK = '\U0001f6fb'

PIE = ''

PIG = ''

PIG_FACE = ''

PIG_NOSE = ''

PILE_OF_POO = ''

PILL = ''

PINCHED_FINGERS = '\U0001f90c'

PINCHING_HAND = '\U0001f90f'

PINEAPPLE = ''

PINE_DECORATION = ''

PING_PONG = ''

PISCES = ''

PISTOL = ''

PIZZA = ''

PIñATA = '\U0001fa85'

PLACARD = '\U0001faa7'

PLACE_OF_WORSHIP = ''

PLAY_BUTTON = ''

PLAY_OR_PAUSE_BUTTON = ''

PLEADING_FACE = ''

PLUNGER = '\U0001faa0'

PLUS = ''

POLICE_CAR = ''

POLICE_CAR_LIGHT = ''

POLICE_OFFICER = ''

POODLE = ''

POPCORN = ''

POSTAL_HORN = ''

POSTBOX = ''

3.2. assets 165

pygamelib Documentation, Release 1.3.0

POST_OFFICE = ''

POTABLE_WATER = ''

POTATO = ''

POTTED_PLANT = '\U0001fab4'

POT_OF_FOOD = ''

POULTRY_LEG = ''

POUND_BANKNOTE = ''

POUTING_CAT = ''

POUTING_FACE = ''

PRAYER_BEADS = ''

PREGNANT_WOMAN = ''

PRETZEL = ''

PRINCE = ''

PRINCESS = ''

PRINTER = ''

PROHIBITED = ''

PURPLE_CIRCLE = '\U0001f7e3'

PURPLE_HEART = ''

PURPLE_SQUARE = '\U0001f7ea'

PURSE = ''

PUSHPIN = ''

PUZZLE_PIECE = ''

P_BUTTON = ''

QUESTION_MARK = ''

RABBIT = ''

RABBIT_FACE = ''

RACCOON = ''

RACING_CAR = ''

RADIO = ''

RADIOACTIVE = ''

RADIO_BUTTON = ''

RAILWAY_CAR = ''

RAILWAY_TRACK = ''

RAINBOW = ''

RAISED_BACK_OF_HAND = ''

RAISED_FIST = ''

166 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

RAISED_HAND = ''

RAISING_HANDS = ''

RAM = ''

RAT = ''

RAZOR = '\U0001fa92'

RECEIPT = ''

RECORD_BUTTON = ''

RECYCLING_SYMBOL = ''

RED_APPLE = ''

RED_CIRCLE = ''

RED_ENVELOPE = ''

RED_HAIR = ''

RED_HEART = ''

RED_PAPER_LANTERN = ''

RED_SQUARE = '\U0001f7e5'

RED_TRIANGLE_POINTED_DOWN = ''

RED_TRIANGLE_POINTED_UP = ''

REGISTERED = '®'

RELIEVED_FACE = ''

REMINDER_RIBBON = ''

REPEAT_BUTTON = ''

REPEAT_SINGLE_BUTTON = ''

RESCUE_WORKERS_HELMET = ''

RESTROOM = ''

REVERSE_BUTTON = ''

REVOLVING_HEARTS = ''

RHINOCEROS = ''

RIBBON = ''

RICE_BALL = ''

RICE_CRACKER = ''

RIGHT_ANGER_BUBBLE = ''

RIGHT_ARROW = ''

RIGHT_ARROW_CURVING_DOWN = ''

RIGHT_ARROW_CURVING_LEFT = ''

RIGHT_ARROW_CURVING_UP = ''

RIGHT_FACING_FIST = ''

3.2. assets 167

pygamelib Documentation, Release 1.3.0

RING = ''

RINGED_PLANET = '\U0001fa90'

ROASTED_SWEET_POTATO = ''

ROBOT = ''

ROCK = '\U0001faa8'

ROCKET = ''

ROLLED_UP_NEWSPAPER = ''

ROLLER_COASTER = ''

ROLLER_SKATE = '\U0001f6fc'

ROLLING_ON_THE_FLOOR_LAUGHING = ''

ROLL_OF_PAPER = ''

ROOSTER = ''

ROSE = ''

ROSETTE = ''

ROUND_PUSHPIN = ''

RUGBY_FOOTBALL = ''

RUNNING_SHIRT = ''

RUNNING_SHOE = ''

SAD_BUT_RELIEVED_FACE = ''

SAFETY_PIN = ''

SAFETY_VEST = '\U0001f9ba'

SAGITTARIUS = ''

SAILBOAT = ''

SAKE = ''

SALT = ''

SANDWICH = ''

SANTA_CLAUS = ''

SARI = '\U0001f97b'

SATELLITE = ''

SATELLITE_ANTENNA = ''

SAUROPOD = ''

SAXOPHONE = ''

SCARF = ''

SCHOOL = ''

SCISSORS = ''

SCORPIO = ''

168 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

SCORPION = ''

SCREWDRIVER = '\U0001fa9b'

SCROLL = ''

SEAL = '\U0001f9ad'

SEAT = ''

SECOND_PLACE_MEDAL = ''

SEEDLING = ''

SEE_NO_EVIL_MONKEY = ''

SELFIE = ''

SEVEN_OCLOCK = ''

SEVEN_THIRTY = ''

SEWING_NEEDLE = '\U0001faa1'

SHALLOW_PAN_OF_FOOD = ''

SHAMROCK = ''

SHARK = ''

SHAVED_ICE = ''

SHEAF_OF_RICE = ''

SHIELD = ''

SHINTO_SHRINE = ''

SHIP = ''

SHOOTING_STAR = ''

SHOPPING_BAGS = ''

SHOPPING_CART = ''

SHORTCAKE = ''

SHORTS = '\U0001fa73'

SHOWER = ''

SHRIMP = ''

SHUFFLE_TRACKS_BUTTON = ''

SHUSHING_FACE = ''

SIGN_OF_THE_HORNS = ''

SIX_OCLOCK = ''

SIX_THIRTY = ''

SKATEBOARD = ''

SKIER = ''

SKIS = ''

SKULL = ''

3.2. assets 169

pygamelib Documentation, Release 1.3.0

SKULL_AND_CROSSBONES = ''

SKUNK = '\U0001f9a8'

SLED = ''

SLEEPING_FACE = ''

SLEEPY_FACE = ''

SLIGHTLY_FROWNING_FACE = ''

SLIGHTLY_SMILING_FACE = ''

SLOTH = '\U0001f9a5'

SLOT_MACHINE = ''

SMALL_AIRPLANE = ''

SMALL_BLUE_DIAMOND = ''

SMALL_ORANGE_DIAMOND = ''

SMILING_CAT_WITH_HEART_EYES = ''

SMILING_FACE = ''

SMILING_FACE_WITH_HALO = ''

SMILING_FACE_WITH_HEARTS = ''

SMILING_FACE_WITH_HEART_EYES = ''

SMILING_FACE_WITH_HORNS = ''

SMILING_FACE_WITH_SMILING_EYES = ''

SMILING_FACE_WITH_SUNGLASSES = ''

SMILING_FACE_WITH_TEAR = '\U0001f972'

SMIRKING_FACE = ''

SNAIL = ''

SNAKE = ''

SNEEZING_FACE = ''

SNOWBOARDER = ''

SNOWFLAKE = ''

SNOWMAN = ''

SNOWMAN_WITHOUT_SNOW = ''

SNOW_CAPPED_MOUNTAIN = ''

SOAP = ''

SOCCER_BALL = ''

SOCKS = ''

SOFTBALL = ''

SOFT_ICE_CREAM = ''

SOON_ARROW = ''

170 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

SOS_BUTTON = ''

SPADE_SUIT = ''

SPAGHETTI = ''

SPARKLE = ''

SPARKLER = ''

SPARKLES = ''

SPARKLING_HEART = ''

SPEAKER_HIGH_VOLUME = ''

SPEAKER_LOW_VOLUME = ''

SPEAKER_MEDIUM_VOLUME = ''

SPEAKING_HEAD = ''

SPEAK_NO_EVIL_MONKEY = ''

SPEECH_BALLOON = ''

SPEEDBOAT = ''

SPIDER = ''

SPIDER_WEB = ''

SPIRAL_CALENDAR = ''

SPIRAL_NOTEPAD = ''

SPIRAL_SHELL = ''

SPONGE = ''

SPOON = ''

SPORTS_MEDAL = ''

SPORT_UTILITY_VEHICLE = ''

SPOUTING_WHALE = ''

SQUID = ''

SQUINTING_FACE_WITH_TONGUE = ''

STADIUM = ''

STAR = ''

STAR_AND_CRESCENT = ''

STAR_OF_DAVID = ''

STAR_STRUCK = ''

STATION = ''

STATUE_OF_LIBERTY = ''

STEAMING_BOWL = ''

STETHOSCOPE = '\U0001fa7a'

STOPWATCH = ''

3.2. assets 171

pygamelib Documentation, Release 1.3.0

STOP_BUTTON = ''

STOP_SIGN = ''

STRAIGHT_RULER = ''

STRAWBERRY = ''

STUDIO_MICROPHONE = ''

STUFFED_FLATBREAD = ''

SUN = ''

SUNFLOWER = ''

SUNGLASSES = ''

SUNRISE = ''

SUNRISE_OVER_MOUNTAINS = ''

SUNSET = ''

SUN_BEHIND_CLOUD = ''

SUN_BEHIND_LARGE_CLOUD = ''

SUN_BEHIND_RAIN_CLOUD = ''

SUN_BEHIND_SMALL_CLOUD = ''

SUN_WITH_FACE = ''

SUPERHERO = ''

SUPERVILLAIN = ''

SUSHI = ''

SUSPENSION_RAILWAY = ''

SWAN = ''

SWEAT_DROPLETS = ''

SYNAGOGUE = ''

SYRINGE = ''

TACO = ''

TAKEOUT_BOX = ''

TAMALE = '\U0001fad4'

TANABATA_TREE = ''

TANGERINE = ''

TAURUS = ''

TAXI = ''

TEACUP_WITHOUT_HANDLE = ''

TEAPOT = '\U0001fad6'

TEAR_OFF_CALENDAR = ''

TEDDY_BEAR = ''

172 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

TELEPHONE = ''

TELEPHONE_RECEIVER = ''

TELESCOPE = ''

TELEVISION = ''

TENNIS = ''

TENT = ''

TEN_OCLOCK = ''

TEN_THIRTY = ''

TEST_TUBE = ''

THERMOMETER = ''

THINKING_FACE = ''

THIRD_PLACE_MEDAL = ''

THONG_SANDAL = '\U0001fa74'

THOUGHT_BALLOON = ''

THREAD = ''

THREE_OCLOCK = ''

THREE_THIRTY = ''

THUMBS_DOWN = ''

THUMBS_UP = ''

TICKET = ''

TIGER = ''

TIGER_FACE = ''

TIMER_CLOCK = ''

TIRED_FACE = ''

TOILET = ''

TOKYO_TOWER = ''

TOMATO = ''

TONGUE = ''

TOOLBOX = ''

TOOTH = ''

TOOTHBRUSH = '\U0001faa5'

TOP_ARROW = ''

TOP_HAT = ''

TORNADO = ''

TRACKBALL = ''

TRACTOR = ''

3.2. assets 173

pygamelib Documentation, Release 1.3.0

TRADE_MARK = '™'

TRAIN = ''

TRAM = ''

TRAM_CAR = ''

TRANSGENDER_SYMBOL = ''

TRIANGULAR_FLAG = ''

TRIANGULAR_RULER = ''

TRIDENT_EMBLEM = ''

TROLLEYBUS = ''

TROPHY = ''

TROPICAL_DRINK = ''

TROPICAL_FISH = ''

TRUMPET = ''

TULIP = ''

TUMBLER_GLASS = ''

TURKEY = ''

TURTLE = ''

TWELVE_OCLOCK = ''

TWELVE_THIRTY = ''

TWO_HEARTS = ''

TWO_HUMP_CAMEL = ''

TWO_OCLOCK = ''

TWO_THIRTY = ''

T_REX = ''

T_SHIRT = ''

UMBRELLA = ''

UMBRELLA_ON_GROUND = ''

UMBRELLA_WITH_RAIN_DROPS = ''

UNAMUSED_FACE = ''

UNICORN = ''

UNLOCKED = ''

UPSIDE_DOWN_FACE = ''

UPWARDS_BUTTON = ''

UP_ARROW = ''

UP_BUTTON = ''

UP_DOWN_ARROW = ''

174 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

UP_LEFT_ARROW = ''

UP_RIGHT_ARROW = ''

VAMPIRE = ''

VERTICAL_TRAFFIC_LIGHT = ''

VIBRATION_MODE = ''

VICTORY_HAND = ''

VIDEOCASSETTE = ''

VIDEO_CAMERA = ''

VIDEO_GAME = ''

VIOLIN = ''

VIRGO = ''

VOLCANO = ''

VOLLEYBALL = ''

VS_BUTTON = ''

VULCAN_SALUTE = ''

WAFFLE = '\U0001f9c7'

WANING_CRESCENT_MOON = ''

WANING_GIBBOUS_MOON = ''

WARNING = ''

WASTEBASKET = ''

WATCH = ''

WATERMELON = ''

WATER_BUFFALO = ''

WATER_CLOSET = ''

WATER_WAVE = ''

WAVING_HAND = ''

WAVY_DASH = ''

WAXING_CRESCENT_MOON = ''

WAXING_GIBBOUS_MOON = ''

WEARY_CAT = ''

WEARY_FACE = ''

WEDDING = ''

WHALE = ''

WHEELCHAIR_SYMBOL = ''

WHEEL_OF_DHARMA = ''

WHITE_CANE = '\U0001f9af'

3.2. assets 175

pygamelib Documentation, Release 1.3.0

WHITE_CIRCLE = ''

WHITE_EXCLAMATION_MARK = ''

WHITE_FLAG = ''

WHITE_FLOWER = ''

WHITE_HAIR = ''

WHITE_HEART = '\U0001f90d'

WHITE_LARGE_SQUARE = ''

WHITE_MEDIUM_SMALL_SQUARE = ''

WHITE_MEDIUM_SQUARE = ''

WHITE_QUESTION_MARK = ''

WHITE_SMALL_SQUARE = ''

WHITE_SQUARE_BUTTON = ''

WILTED_FLOWER = ''

WINDOW = '\U0001fa9f'

WIND_CHIME = ''

WIND_FACE = ''

WINE_GLASS = ''

WINKING_FACE = ''

WINKING_FACE_WITH_TONGUE = ''

WOLF = ''

WOMAN = ''

WOMANS_BOOT = ''

WOMANS_CLOTHES = ''

WOMANS_HAT = ''

WOMANS_SANDAL = ''

WOMAN_AND_MAN_HOLDING_HANDS = ''

WOMAN_DANCING = ''

WOMAN_WITH_HEADSCARF = ''

WOMENS_ROOM = ''

WOMEN_HOLDING_HANDS = ''

WOOD = '\U0001fab5'

WOOZY_FACE = ''

WORLD_MAP = ''

WORM = '\U0001fab1'

WORRIED_FACE = ''

WRAPPED_GIFT = ''

176 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

WRENCH = ''

WRITING_HAND = ''

YARN = ''

YAWNING_FACE = '\U0001f971'

YELLOW_CIRCLE = '\U0001f7e1'

YELLOW_HEART = ''

YELLOW_SQUARE = '\U0001f7e8'

YEN_BANKNOTE = ''

YIN_YANG = ''

YO_YO = '\U0001fa80'

ZANY_FACE = ''

ZEBRA = ''

ZIPPER_MOUTH_FACE = ''

ZOMBIE = ''

ZZZ = ''

3.2.2 Fonts

Fonts in the pygamelib are nothing more than a specially organized sprite collection.

The way to use it is extremely simple: you instantiate a Font object and ask it to load the data from a specific font.

For example to load the 8bits font, you do:

Example:: from pygamelib.gfx import core

my_font = core.Font(‘8bits’)

That’s it! The you can use it to format Text objects.

8bits

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("8bits")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

3.2. assets 177

pygamelib Documentation, Release 1.3.0

What does it look like?

figlet-caligraphy

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-caligraphy")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

178 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

What does it look like?

More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

3.2. assets 179

http://www.figlet.org/
https://github.com/pygamelib/figlet-to-pygamelib

pygamelib Documentation, Release 1.3.0

figlet-doom

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-doom")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

More

Please visit the FIGlet project: http://www.figlet.org/

180 Chapter 3. Tutorials

http://www.figlet.org/

pygamelib Documentation, Release 1.3.0

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

figlet-graffiti

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-graffiti")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

3.2. assets 181

https://github.com/pygamelib/figlet-to-pygamelib
http://www.figlet.org/
https://github.com/pygamelib/figlet-to-pygamelib

pygamelib Documentation, Release 1.3.0

figlet-mirror

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-mirror")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

182 Chapter 3. Tutorials

http://www.figlet.org/
https://github.com/pygamelib/figlet-to-pygamelib

pygamelib Documentation, Release 1.3.0

figlet-pepper

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-pepper")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

figlet-poison

New in version 1.3.0.

3.2. assets 183

http://www.figlet.org/
https://github.com/pygamelib/figlet-to-pygamelib

pygamelib Documentation, Release 1.3.0

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-poison")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

184 Chapter 3. Tutorials

http://www.figlet.org/
https://github.com/pygamelib/figlet-to-pygamelib

pygamelib Documentation, Release 1.3.0

figlet-puffy

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-puffy")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

3.2. assets 185

http://www.figlet.org/
https://github.com/pygamelib/figlet-to-pygamelib

pygamelib Documentation, Release 1.3.0

figlet-rounded

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-rounded")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

186 Chapter 3. Tutorials

http://www.figlet.org/
https://github.com/pygamelib/figlet-to-pygamelib

pygamelib Documentation, Release 1.3.0

figlet-stampatello

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-stampatello")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

3.2. assets 187

pygamelib Documentation, Release 1.3.0

More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

figlet-univers

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-univers")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

188 Chapter 3. Tutorials

http://www.figlet.org/
https://github.com/pygamelib/figlet-to-pygamelib

pygamelib Documentation, Release 1.3.0

More

Please visit the FIGlet project: http://www.figlet.org/

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

figlet-wavy

New in version 1.3.0.

How to use?

Example:

from pygamelib.gfx.core import Font
from pygamelib.base import Text

my_font = Font("figlet-wavy")
my_text = Text("Lorem Ipsum", font=my_font)
my_text.print_formatted()

What does it look like?

More

Please visit the FIGlet project: http://www.figlet.org/

3.2. assets 189

http://www.figlet.org/
https://github.com/pygamelib/figlet-to-pygamelib
http://www.figlet.org/

pygamelib Documentation, Release 1.3.0

The fonts prefixed by “figlet-” are but a small portion of what’s available here.

To easily convert FIGlet fonts to the pygamelib’s format you can you the figlet-to-pygamelib script available here:
https://github.com/pygamelib/figlet-to-pygamelib

3.3 base

The base module provide basic objects and exceptions that are used by the entire library.

3.3.1 Console

class pygamelib.base.Console
Bases: object

The Console class is a singleton wrapper around the blessed.Terminal() class. Since the library is
using Terminal a lot, it is both useful and efficient to have a quick access to a single instance of the
class.

This class only expose one method: instance() that returns the singleton instance.

Methods

instance() Returns the instance of the blessed.Terminal object.

classmethod instance()
Returns the instance of the blessed.Terminal object.

New in version 1.3.0.

The pygamelib extensively use the Terminal object from the blessed module. However we find ourselves
in need of a Terminal instance a lot, so to help with memory and execution time we just encapsulate the
Terminal object in a singleton so any object can use it without instantiating it many times (and messing up
with the contexts).

Returns Instance of blessed.Terminal object

Example:

term = Console.instance()

3.3.2 Math

class pygamelib.base.Math
Bases: object

The math class regroup math functions required for game development.

New in version 1.2.0.

For the moment there is only static methods in that class but it will evolve in the future.

__init__()
Initialize self. See help(type(self)) for accurate signature.

190 Chapter 3. Tutorials

https://github.com/pygamelib/figlet-to-pygamelib

pygamelib Documentation, Release 1.3.0

Methods

__init__() Initialize self.
distance(row1, column1, row2, column2) Return the euclidean distance between to points.
intersect(row1, column1, width1, height1, . . .) This function check if 2 rectangles intersect.
lerp(a, b, t) Return the linear interpolation between 2 values rel-

ative to a third value.

static distance(row1: int, column1: int, row2: int, column2: int)→ float
Return the euclidean distance between to points.

Points are identified by their row and column. If you want the distance in number of cells, you need to
round the result (see example).

Parameters

• row1 (int) – the row number (coordinate) of the first point.

• column1 (int) – the column number (coordinate) of the first point.

• row2 (int) – the row number (coordinate) of the second point.

• column2 (int) – the column number (coordinate) of the second point.

Returns The distance between the 2 points.

Return type float

Example:

distance = round(base.Math.distance(player.row,
player.column,
npc.row,
npc.column)

)

static intersect(row1: int, column1: int, width1: int, height1: int, row2: int, column2: int,
width2: int, height2: int)→ bool

This function check if 2 rectangles intersect.

The 2 rectangles are defined by their positions (row, column) and dimension (width and height).

Parameters

• row1 (int) – The row of the first rectangle

• column1 (int) – The column of the first rectangle

• width1 (int) – The width of the first rectangle

• height1 (int) – The height of the first rectangle

• row2 (int) – The row of the second rectangle

• column2 – The column of the second rectangle

• width2 (int) – The width of the second rectangle

• height2 (int) – The height of the second rectangle

Returns A boolean, True if the rectangles intersect False, otherwise.

Example:

3.3. base 191

pygamelib Documentation, Release 1.3.0

if intersect(projectile.row, projectile.column, projectile.width,
projectile.height, bady.row, bady.column, bady.width,
bady.height):

projectile.hit([bady])

static lerp(a: float, b: float, t: float)→ float
Return the linear interpolation between 2 values relative to a third value.

New in version 1.3.0.

Parameters

• a (float) – Start value of the interpolation. Returned if t is 0.

• b (float) – End value of the interpolation. Returned if t is 1.

• t (float) – A value between 0 and 1 used to interpolate between a and b.

Example:

value = lerp(0, 100, 0.5) # 50

3.3.3 PglBaseObject

class pygamelib.base.PglBaseObject
Bases: object

The base object of most of the pygamelib’s classes.

New in version 1.3.0.

The PglBaseObject has 2 goals:

• Store the object’s screen position.

• Implements a modified observer design pattern.

It is “modified” as it acts both as the observer and the client. The idea behind it is that any object can observe
and be observed by any other objects.

The base logic of the pattern is already implemented and probably does not require re-implementation on the
child object. However, the handle_notification() method needs to be implemented in each client. The
actual processing of the notification is indeed specific to each object.

Storing the screen position is particularly useful for BoardItem subclasses as they only know their position
relative to the Board but might need to know their absolute screen coordinates.

This is a lightweight solution to that issue. It is not foolproof however! The screen_row and screen_column
attributes are not wrapped properties and can be modified to mess up things. It shouldn’t be done lightly. You
have been warned!

__init__()→ None
Like the object class, this class constructor takes no parameter.

Methods

__init__() Like the object class, this class constructor takes no
parameter.

Continued on next page

192 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 26 – continued from previous page
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

notify([modifier]) Notify all the observers that a change occurred.
store_screen_position(row, column) Store the screen position of the object.

Attributes

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

3.3. base 193

pygamelib Documentation, Release 1.3.0

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.3.4 PglException

exception pygamelib.base.PglException(error, message)
Exception raised for non specific errors in the pygamelib.

194 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

3.3.5 PglInvalidLevelException

exception pygamelib.base.PglInvalidLevelException(message)
Exception raised if a level is not associated to a board in Game().

3.3.6 PglInvalidTypeException

exception pygamelib.base.PglInvalidTypeException(message)
Exception raised for invalid types.

3.3.7 PglInventoryException

exception pygamelib.base.PglInventoryException(error, message)
Exception raised for issue related to the inventory. The error is an explicit string, and the message explains the
error.

3.3.8 PglObjectIsNotMovableException

exception pygamelib.base.PglObjectIsNotMovableException(message)
Exception raised if the object that is being moved is not a subclass of Movable.

3.3.9 PglOutOfBoardBoundException

exception pygamelib.base.PglOutOfBoardBoundException(message)
Exception for out of the board’s boundaries operations.

3.3.10 Text

class pygamelib.base.Text(text=”, fg_color=None, bg_color=None, style=”, font=None)
Bases: pygamelib.base.PglBaseObject

An object to manipulate and display text in multiple contexts.

New in version 1.2.0.

The Text class is a collection of text formatting and display static methods.

You can either instantiate an object or use the static methods.

The Text object allow for easy text manipulation through its collection of independent attributes. They help to
set the text, its style and the foreground and background colors.

The Text object can be converted to a Sprite through the Sprite.from_text() method. This is particularly useful
to the place text on the game Board.

__init__(text=”, fg_color=None, bg_color=None, style=”, font=None)

Parameters

• text (str) – The text to manipulate

• fg_color (Color) – The foreground color for the text.

• bg_color (Color) – The background color for the text.

• style (str) – The style for the text.

3.3. base 195

pygamelib Documentation, Release 1.3.0

• font (Font) – The font in which the text is going to be displayed (only works when
using Screen.place() and Screen.update())

Methods

__init__([text, fg_color, bg_color, style, font])
param text The text to manipulate

attach(observer) Attach an observer to this instance.
handle_notification(target[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

black(message) This method works exactly the way green_bright()
work with different color.

black_bright(message) This method works exactly the way green_bright()
work with different color.

black_dim(message) This method works exactly the way green_bright()
work with different color.

blue(message) This method works exactly the way green_bright()
work with different color.

blue_bright(message) This method works exactly the way green_bright()
work with different color.

blue_dim(message) This method works exactly the way green_bright()
work with different color.

cyan(message) This method works exactly the way green_bright()
work with different color.

cyan_bright(message) This method works exactly the way green_bright()
work with different color.

cyan_dim(message) This method works exactly the way green_bright()
work with different color.

debug(message) Print a debug message.
detach(observer) Detach an observer from this instance.
fatal(message) Print a fatal message.
green(message) This method works exactly the way green_bright()

work with different color.
green_bright(message) Return a string formatted to be bright green
green_dim(message) This method works exactly the way green_bright()

work with different color.
info(message) Print an informative message.
magenta(message) This method works exactly the way green_bright()

work with different color.
magenta_bright(message) This method works exactly the way green_bright()

work with different color.
magenta_dim(message) This method works exactly the way green_bright()

work with different color.
notify([modifier]) Notify all the observers that a change occurred.
print_white_on_red(message) Print a white message over a red background.
red(message) This method works exactly the way green_bright()

work with different color.
red_bright(message) This method works exactly the way green_bright()

work with different color.
Continued on next page

196 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 28 – continued from previous page
red_dim(message) This method works exactly the way green_bright()

work with different color.
render_to_buffer(buffer, row, column, . . .) Render the Text object from the display buffer to the

frame buffer.
warn(message) Print a warning message.
white(message) This method works exactly the way green_bright()

work with different color.
white_bright(message) This method works exactly the way green_bright()

work with different color.
white_dim(message) This method works exactly the way green_bright()

work with different color.
yellow(message) This method works exactly the way green_bright()

work with different color.
yellow_bright(message) This method works exactly the way green_bright()

work with different color.
yellow_dim(message) This method works exactly the way green_bright()

work with different color.

Attributes

bg_color The bg_color attribute sets the background color.
fg_color The fg_color attribute sets the foreground color.
length Return the true length of the text.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
text The text attribute.
Text.style
Text.parent

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

bg_color
The bg_color attribute sets the background color. It needs to be a Color.

New in version 1.3.0.

When the background color is changed, the observers are notified of the change with the
pygamelib.base.Text.bg_color:changed event. The new color is passed as the value parameter.

3.3. base 197

pygamelib Documentation, Release 1.3.0

static black(message)
This method works exactly the way green_bright() work with different color.

static black_bright(message)
This method works exactly the way green_bright() work with different color.

static black_dim(message)
This method works exactly the way green_bright() work with different color.

static blue(message)
This method works exactly the way green_bright() work with different color.

static blue_bright(message)
This method works exactly the way green_bright() work with different color.

static blue_dim(message)
This method works exactly the way green_bright() work with different color.

static cyan(message)
This method works exactly the way green_bright() work with different color.

static cyan_bright(message)
This method works exactly the way green_bright() work with different color.

static cyan_dim(message)
This method works exactly the way green_bright() work with different color.

static debug(message)
Print a debug message.

The debug message is a regular message prefixed by INFO in blue on a green background.

Parameters message (str) – The message to print.

Example:

base.Text.debug("This is probably going to success, eventually...")

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

static fatal(message)
Print a fatal message.

The fatal message is a regular message prefixed by FATAL in white on a red background.

Parameters message (str) – The message to print.

Example:

base.Text.fatal("|x_x|")

198 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

fg_color
The fg_color attribute sets the foreground color. It needs to be a Color.

New in version 1.3.0.

When the foreground color is changed, the observers are notified of the change with the
pygamelib.base.Text.fg_color:changed event. The new color is passed as the value parameter.

static green(message)
This method works exactly the way green_bright() work with different color.

static green_bright(message)
Return a string formatted to be bright green

Parameters message (str) – The message to format.

Returns The formatted string

Return type str

Example:

print(Text.green_bright("This is a formatted message"))

static green_dim(message)
This method works exactly the way green_bright() work with different color.

handle_notification(target, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

static info(message)
Print an informative message.

The info is a regular message prefixed by INFO in white on a blue background.

Parameters message (str) – The message to print.

Example:

base.Text.info("This is a very informative message.")

length
Return the true length of the text.

New in version 1.3.0.

With UTF8 and emojis the length of a string as returned by python’s len() function is often very wrong.
For example, the len(“x1b[48;2;139;22;19mx1b[38;2;160;26;23mx1b[0m”) returns 39 when it should re-
turn 1.

3.3. base 199

pygamelib Documentation, Release 1.3.0

This method returns the actual printing/display size of the text.

Note: This is a read only value. It is automatically updated when the text property is changed.

Example:

game.screen.place(my_text, 0, game.screen.width - my_text.length)

classmethod load(data: dict = None)
Load data and create a new Text object out of it.

New in version 1.3.0.

Parameters data (dict) – Data to create a new actuator (usually generated by
serialize())

Returns A new Text object.

Return type Text

Example:

title = base.Text.load(previous_title.serialize())

static magenta(message)
This method works exactly the way green_bright() work with different color.

static magenta_bright(message)
This method works exactly the way green_bright() work with different color.

static magenta_dim(message)
This method works exactly the way green_bright() work with different color.

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

parent = None
This object’s parent. It needs to be a BoardItem.

print_formatted()
Print the text with the current font activated.

New in version 1.3.0.

If the font is not set, it is strictly equivalent to use Python’s print(text_object).

200 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

static print_white_on_red(message)
Print a white message over a red background.

Parameters message (str) – The message to print.

Example:

base.Text.print_white_on_red("This is bright!")

static red(message)
This method works exactly the way green_bright() work with different color.

static red_bright(message)
This method works exactly the way green_bright() work with different color.

static red_dim(message)
This method works exactly the way green_bright() work with different color.

render_to_buffer(buffer, row, column, buffer_height, buffer_width)
Render the Text object from the display buffer to the frame buffer.

New in version 1.3.0.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Return a dictionary with all the attributes of this object.

New in version 1.3.0.

Returns A dictionary with all the attributes of this object.

Return type dict

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

3.3. base 201

pygamelib Documentation, Release 1.3.0

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

style = None
The style attribute sets the style of the text. It needs to be a str.

text
The text attribute. It needs to be a str.

New in version 1.3.0.

When the text is changed, the observers are notified of the change with the
pygamelib.base.Text.text:changed event. The new text is passed as the value parameter.

static warn(message)
Print a warning message.

The warning is a regular message prefixed by WARNING in black on a yellow background.

Parameters message (str) – The message to print.

Example:

base.Text.warn("This is a warning.")

static white(message)
This method works exactly the way green_bright() work with different color.

static white_bright(message)
This method works exactly the way green_bright() work with different color.

static white_dim(message)
This method works exactly the way green_bright() work with different color.

static yellow(message)
This method works exactly the way green_bright() work with different color.

static yellow_bright(message)
This method works exactly the way green_bright() work with different color.

static yellow_dim(message)
This method works exactly the way green_bright() work with different color.

3.3.11 Vector2D

class pygamelib.base.Vector2D(row=0.0, column=0.0)
Bases: object

A 2D vector class.

New in version 1.2.0.

Contrary to the rest of the library Vector2D uses floating point numbers for its coordinates/direction/orientation.
However since the rest of the library uses integers, the numbers are rounded to 2 decimals. You can alter that
behavior by increasing or decreasing the rounding_precision parameter (if you want integer for example).

Vector2D use the row/column internal naming convention as it is easier to visualize for developers that are still
learning python or the pygamelib. If it is a concept that you already understand and are more familiar with the
x/y coordinate system you can also use x and y.

202 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• x is equivalent to column

• y is equivalent to row

Everything else is the same.

Vectors can be printed and supports basic operations:

• addition

• substraction

• multiplication

Let’s elaborate a bit more on the multiplication. The product behaves in 2 different ways:

If you multiply a vector with a scalar (int or float), the return value is a Vector2D with each vector component
multiplied by said scalar.

If you multiply a Vector2D with another Vector2D you ask for the the cross product of vectors. This is an
undefined mathematical operation in 2D as the cross product is supposed to be perpendicular to the 2 other
vectors (along the z axis in our case). Since we don’t have depth (z) in 2D, this will return the magnitude of the
signed cross product of the 2 vectors.

Example of products:

v1 = base.Vector2D(1,2)
v2 = base.Vector2D(3,4)
This returns -2
mag = v1 * v2
This returns a Vector2D with values (-1, -2)
inv = v1 * -1
This return a Vector2D with values (2.85, 3.8) or 95% of v2
dim = v2 * 0.95

Parameters

• row (int) – The row/y parameter.

• column (int) – The column/x parameter.

Example:

gravity = Vector2D(9.81, 0)
Remember that minus on row is up.
speed = Vector2D(-0.123, 0.456)
In that case you might want to increase the rounding precision
speed.rounding_precision = 3

__init__(row=0.0, column=0.0)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([row, column]) Initialize self.
from_direction(direction, step) Build and return a Vector2D from a direction.
length() Returns the length of a vector.
load(data) Loads a vector from a dictionary.

Continued on next page

3.3. base 203

pygamelib Documentation, Release 1.3.0

Table 30 – continued from previous page
serialize() Returns a dictionary with the attributes of the vector.
unit() Returns a normalized unit vector.

Attributes

column The column component of the vector.
row The row component of the vector.
x x is an alias for column.
y y is an alias for row.
Vector2D.rounding_precision

column
The column component of the vector.

classmethod from_direction(direction, step)
Build and return a Vector2D from a direction.

Directions are from the constants module.

Parameters

• direction (int) – A direction from the constants module.

• step (int) – The number of cell to cross in one movement.

Example:

v2d_up = Vector2D.from_direction(constants.UP, 1)

length()
Returns the length of a vector.

Return type float

Example:

if speed.length() == 0.0:
print('We are not moving... at all...')

classmethod load(data)
Loads a vector from a dictionary.

New in version 1.3.0.

Parameters data (dict) – A dictionary with the attributes of the vector.

Returns A vector.

Return type Vector2D

Example:

gravity_dict = {"row": 9.81, "column": 0}
gravity = Vector2D.load(gravity_dict)

rounding_precision = None
The rounding_precision attributes is used when vectors values are calculated and the result rounded for
convenience. It can be changed anytime to increase or decrease the precision anytime.

204 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

row
The row component of the vector.

serialize()
Returns a dictionary with the attributes of the vector.

New in version 1.3.0.

Returns A dictionary with the attributes of the vector.

Return type dict

Example:

gravity = Vector2D(9.81, 0)
gravity_dict = gravity.serialize()
print(gravity_dict)

unit()
Returns a normalized unit vector.

Returns A unit vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

x
x is an alias for column.

y
y is an alias for row.

3.3.12 Deprecated objects

These are the deprecated objects of the pygamelib.base module. They should not be used as they are going to be
removed in future versions.

HacException

exception pygamelib.base.HacException(error, message)
A simple forward to PglException

Deprecated since version 1.3.0.

HacInvalidLevelException

exception pygamelib.base.HacInvalidLevelException(message)
Forward to PglInvalidLevelException

Deprecated since version 1.3.0.

3.3. base 205

pygamelib Documentation, Release 1.3.0

HacInvalidTypeException

exception pygamelib.base.HacInvalidTypeException(message)
A simple forward to PglInvalidTypeException

Deprecated since version 1.3.0.

HacObjectIsNotMovableException

exception pygamelib.base.HacObjectIsNotMovableException(message)
Simple forward to PglObjectIsNotMovableException

Deprecated since version 1.3.0.

HacOutOfBoardBoundException

exception pygamelib.base.HacOutOfBoardBoundException(message)
Simple forward to PglOutOfBoardBoundException

Deprecated since version 1.3.0.

3.4 board_items

3.4.1 Actionable

class pygamelib.board_items.Actionable(action=None, action_parameters=None,
perm=None, **kwargs)

Bases: pygamelib.board_items.Immovable

This class derives Immovable. It adds the ability to an Immovable BoardItem to be triggered and execute
some code.

If an actionable board item is activated by an item (this mechanism is taken care of by the Board class), the func-
tion passed as the action parameter is called with action_parameters as parameters. Subclass may implement a
different mechanism for activation so please read their documentations.

Parameters

• action (function) – the reference to a function (Attention: no parentheses at the end
of the function name). It needs to be callable.

• action_parameters (list) – the parameters to the action function.

• perm (constants) – The permission that defines what types of items can actually activate
the actionable. The permission has to be one of the permissions defined in constants.
By default it is set to constants.PLAYER_AUTHORIZED.

On top of these parameters Actionable accepts all parameters from Immovable and therefor from
BoardItem.

Note: The common way to use this class is to use GenericActionableStructure. Please refer to
GenericActionableStructure for more details.

206 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Important: There’s a complete tutorial about Actionable items on the pygamelib wiki

__init__(action=None, action_parameters=None, perm=None, **kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__([action, action_parameters, perm]) Like the object class, this class constructor takes no
parameter.

activate() This function is calling the action function with the
action_parameters.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.

Continued on next page

3.4. board_items 207

https://github.com/pygamelib/pygamelib/wiki/Actionable-Items

pygamelib Documentation, Release 1.3.0

Table 33 – continued from previous page
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

activate()
This function is calling the action function with the action_parameters.

The action callback function should therefor have a signature like:

def my_callback_function(actionable, action_parameters)

With actionable being the Actionable current reference to self.

Usually it’s automatically called by move() when a Player or NPC (see board_items)

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

208 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

3.4. board_items 209

pygamelib Documentation, Release 1.3.0

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

210 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

3.4. board_items 211

pygamelib Documentation, Release 1.3.0

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

212 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

3.4. board_items 213

pygamelib Documentation, Release 1.3.0

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.2 ActionableTile

class pygamelib.board_items.ActionableTile(**kwargs)
Bases: pygamelib.board_items.Actionable, pygamelib.board_items.Tile

214 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

The ActionableTile is the complex (i.e: multi-cells items) version of the GenericActionableStructure.
It allows you to create any type of in game object that is represented with more than one character in the terminal
and that is Actionable. Actionable object have a callback system that is automatically called when the player
collide with the object.

Important: There’s a complete tutorial about Actionable items on the pygamelib wiki

__init__(**kwargs)
Please have a look at the documentation for Tile and Actionable for the list of possible constructor’s
parameters.

Methods

__init__(**kwargs) Please have a look at the documentation for Tile
and Actionable for the list of possible construc-
tor’s parameters.

activate() This function is calling the action function with the
action_parameters.

attach(observer) Attach an observer to this instance.
can_move() A Tile cannot move.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

item(row, column) Return the item component at the row, column posi-
tion if it is within the complex item’s boundaries.

load(data) Load data and create a new Tile out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the complex board item from the display

buffer to the frame buffer.
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.
update_sprite() Update the complex item with the current sprite.

3.4. board_items 215

https://github.com/pygamelib/pygamelib/wiki/Actionable-Items

pygamelib Documentation, Release 1.3.0

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
sprite A property to easily access and update a complex

item’s sprite.
width Convenience method to get the width of the item.

activate()
This function is calling the action function with the action_parameters.

The action callback function should therefor have a signature like:

def my_callback_function(actionable, action_parameters)

With actionable being the Actionable current reference to self.

Usually it’s automatically called by move() when a Player or NPC (see board_items)

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen

(continues on next page)

216 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

(continued from previous page)

screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
A Tile cannot move.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

3.4. board_items 217

pygamelib Documentation, Release 1.3.0

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

218 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

item(row, column)
Return the item component at the row, column position if it is within the complex item’s boundaries.

Return type ~pygamelib.board_items.BoardItem

Raises PglOutOfBoardBoundException – if row or column are out of bound.

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new Tile out of it.

Parameters data (dict) – Data to create a new tile (usually generated by serialize())

Returns A new complex npc.

Return type ~pygamelib.board_items.Tile

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

3.4. board_items 219

pygamelib Documentation, Release 1.3.0

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

220 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

3.4. board_items 221

pygamelib Documentation, Release 1.3.0

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

sprite
A property to easily access and update a complex item’s sprite.

Parameters new_sprite (Sprite) – The sprite to set

Example:

npc1 = board_items.ComplexNpc(
sprite=npc_sprite_collection['npc1_idle']

)
to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:

game.screen.place(
base.Text(

'Big boi detected!!!',
core.Color(255,0,0),
style=constants.BOLD,

),
notifications.row,
notifications.column,

)
And to set it:
if game.player in game.neighbors(3, npc1):

npc1.sprite = npc_sprite_collection['npc1_fight']

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

222 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

update_sprite()
Update the complex item with the current sprite.

Note: This method use to need to be called every time the sprite was changed. Starting with version
1.3.0, it is no longer a requirement as BoardComplexItem.sprite was turned into a property that takes care
of calling update_sprite().

Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:

This is not only no longer required but also wasteful as
update_sprite() is called twice here.
item.sprite = s
item.update_sprite()
board.move(item, constants.RIGHT, 1)
time.sleep(0.2)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4. board_items 223

pygamelib Documentation, Release 1.3.0

3.4.3 BoardComplexItem

class pygamelib.board_items.BoardComplexItem(sprite=None, size=None,
null_sprixel=None, base_item_type=None,
**kwargs)

Bases: pygamelib.board_items.BoardItem

New in version 1.2.0.

A BoardComplexItem is the base item for multi cells elements. It inherits from BoardItem and accepts all its
parameters.

The main difference is that a complex item can use Sprite as representation.

You can see a complex item as a collection of other items that are ruled by the same laws. They behave as one
but a complex item is actually made of complex components. At first it is not important but you may want to
exploit that as a feature for your game.

On top of BoardItem the constructor accepts the following parameters:

Parameters

• sprite (Sprite) – A sprite representing the item.

• size (array[int]) – The size of the item as [WIDTH, HEIGHT]. It impact movement
and collision detection amongst other things. If it is left empty the Sprite size is used. If no
sprite is given to the constructor the default size is 2x2.

• base_item_type (BoardItemComplexComponent) – the building block of the
complex item. The complex item is built from a 2D array of base items.

Null_sprixel The null_sprixel is a bit of a special parameter: during construction a null sprixel
is replaced by a BoardItemVoid. This is a trick to show the background (i.e transparency).
A sprixel can take the color of the background but a complex item with a null_sprixel that
correspond to transparent zone of a sprite will really be transparent and show the background.

Null_sprixel Sprixel

__init__(sprite=None, size=None, null_sprixel=None, base_item_type=None, **kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__([sprite, size, null_sprixel, . . .]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Returns True if the item can move, False otherwise.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

item(row, column) Return the item component at the row, column posi-
tion if it is within the complex item’s boundaries.

Continued on next page

224 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 36 – continued from previous page
load(data) Load data and create a new BoardComplexItem out

of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the complex board item from the display

buffer to the frame buffer.
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.
update_sprite() Update the complex item with the current sprite.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
sprite A property to easily access and update a complex

item’s sprite.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

3.4. board_items 225

pygamelib Documentation, Release 1.3.0

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
print('The item can move')

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

226 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

3.4. board_items 227

pygamelib Documentation, Release 1.3.0

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

item(row, column)
Return the item component at the row, column position if it is within the complex item’s boundaries.

Return type ~pygamelib.board_items.BoardItem

Raises PglOutOfBoardBoundException – if row or column are out of bound.

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

228 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

classmethod load(data)
Load data and create a new BoardComplexItem out of it.

Parameters data (dict) – Data to create a new complex item (usually generated by
serialize())

Returns A new complex item.

Return type ~pygamelib.board_items.BoardComplexItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

3.4. board_items 229

pygamelib Documentation, Release 1.3.0

render_to_buffer(buffer, row, column, height, width)
Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

230 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

sprite
A property to easily access and update a complex item’s sprite.

Parameters new_sprite (Sprite) – The sprite to set

Example:

npc1 = board_items.ComplexNpc(
sprite=npc_sprite_collection['npc1_idle']

)
to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:

game.screen.place(
base.Text(

(continues on next page)

3.4. board_items 231

pygamelib Documentation, Release 1.3.0

(continued from previous page)

'Big boi detected!!!',
core.Color(255,0,0),
style=constants.BOLD,

),
notifications.row,
notifications.column,

)
And to set it:
if game.player in game.neighbors(3, npc1):

npc1.sprite = npc_sprite_collection['npc1_fight']

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

update_sprite()
Update the complex item with the current sprite.

Note: This method use to need to be called every time the sprite was changed. Starting with version
1.3.0, it is no longer a requirement as BoardComplexItem.sprite was turned into a property that takes care
of calling update_sprite().

Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:

This is not only no longer required but also wasteful as
update_sprite() is called twice here.
item.sprite = s

(continues on next page)

232 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

(continued from previous page)

item.update_sprite()
board.move(item, constants.RIGHT, 1)
time.sleep(0.2)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.4 BoardItemComplexComponent

class pygamelib.board_items.BoardItemComplexComponent(**kwargs)
Bases: pygamelib.board_items.BoardItem

The default component of a complex item.

It is literally just a BoardItem but is subclassed for easier identification.

It is however scanning its parent for the item’s basic properties (overlappable, restorable, etc.)

A component can never be pickable by itself.

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Returns True if the item can move, False otherwise.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns False.

Continued on next page

3.4. board_items 233

pygamelib Documentation, Release 1.3.0

Table 38 – continued from previous page
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

234 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
print('The item can move')

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

3.4. board_items 235

pygamelib Documentation, Release 1.3.0

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

236 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

3.4. board_items 237

pygamelib Documentation, Release 1.3.0

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns False. A component is never pickable by itself (either the whole complex item is pickable or not,
but not partially)

Example:

if item.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

238 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

3.4. board_items 239

pygamelib Documentation, Release 1.3.0

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

240 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.5 BoardItem

class pygamelib.board_items.BoardItem(sprixel=None, model=None, name=None,
item_type=None, parent=None, pickable=False, over-
lappable=False, restorable=False, can_move=False,
pos=None, value=None, inventory_space=1, an-
imation: pygamelib.gfx.core.Animation = None,
particle_emitter=None)

Bases: pygamelib.base.PglBaseObject

Base class for any item that will be placed on a Board.

Parameters

• type (str) – A type you want to give your item. It can be any string. You can then use
the type for sorting or grouping for example.

• name (str) – A name for this item. For identification purpose.

• pos (list) – the position of this item. When the item is managed by the Board and Game
engine this member hold the last updated position of the item. It is not updated if you
manually move the item. It must be an array of 2 integers [row,column]

• model (str) – The model to use to display this item on the Board. Be mindful of the space
it will require. Default value is ‘*’. This parameter is now deprecated in favor of “sprixel”.
If both “sprixel” and “model” are specified, “model” is ignored.

• parent – The parent object of the board item. Usually a Board or Game object.

• sprixel (Sprixel) – The sprixel that will represent the item on the Board.

• pickable (bool) – Represent the capacity for a BoardItem to be pick-up by player or
NPC. This parameter is True or False. If sets to None, it’ll be set to False.

• overlappable (bool) – Represent to be overlapped by another BoardItem. This param-
eter is True or False. If sets to None, it’ll be set to False.

• restorable (bool) – Represent the capacity for an Immovable BoardItem to be restored
by the board if the item is overlappable and has been overlapped by another BoardItem. This
parameter is True or False. If sets to None, it’ll be set to False.

• can_move (bool) – Represent the ability of the BoardItem to move on the Board. If
this parameter is False, the Board.move() method will not allow the item to move. This
parameter is True or False. If sets to None, it’ll be set to False.

• pos – The position of the BoardItem on a Board. Please make sure that you understand
what you do before changing that parameter. The position of an item is managed by the

3.4. board_items 241

pygamelib Documentation, Release 1.3.0

Board object and will be updated. In most cases you don’t need to use that parameter. The
position is a list of 2 or 3 int: [row, column, layer].

• value (int | float) – The value of an item. It can be used for any game purpose: a
score indicator, a trade value, the amount of XP to grant to a player on a kill, etc.

• inventory_space (int) – The space that the item takes in the pygamelib.
engine.Inventory . This parameter used to be available only for Immovable items
but since 1.3.0, every BoardItem can be configured to be pickable, so every BoardItem can
now take space in the inventory. Default value is 1.

• animation (Animation) – An animation to animate the item sprixel.

• particle_emitter (ParticleEmitter) – A particle emitter that is attached to this
item.

Note: Starting with version 1.2.0 and introduction of complex items, BoardItems have a size. That size
CANNOT be set. It is always 1x1. This is because a BoardItem always takes 1 cell, regardless of its actual
number of characters. The size is a read-only property.

Important: In version 1.3.0 the BoardItem object has been reworked to make sure that the pickable, restorable,
overlappable and can_move properties are configurable for all items independently of their type. This fixes an
issue with restorable: only Immovable objects could be restorable. Now all items can be any combination of
these properties. As a developer you are now encouraged to use the corresponding functions to determine the
abilities of an item.

Warning: An item cannot be restorable and pickable at the same time. If it’s pickable, it’s put into the
inventory of the item overlapping it. Therefor, it cannot be restored. If both restorable and pickable are set
to True, one of the 2 is set to False depending on the value of overlappable: if True restorable is set to True
and pickable to False and the contrary if overlappable is False.

__init__(sprixel=None, model=None, name=None, item_type=None, parent=None, pickable=False,
overlappable=False, restorable=False, can_move=False, pos=None, value=None, inven-
tory_space=1, animation: pygamelib.gfx.core.Animation = None, particle_emitter=None)

Like the object class, this class constructor takes no parameter.

Methods

__init__([sprixel, model, name, item_type, . . .]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Returns True if the item can move, False otherwise.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.

Continued on next page

242 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 40 – continued from previous page
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a

3.4. board_items 243

pygamelib Documentation, Release 1.3.0

notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
print('The item can move')

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

244 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

3.4. board_items 245

pygamelib Documentation, Release 1.3.0

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

246 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

3.4. board_items 247

pygamelib Documentation, Release 1.3.0

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

248 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

3.4. board_items 249

pygamelib Documentation, Release 1.3.0

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.6 BoardItemVoid

class pygamelib.board_items.BoardItemVoid(**kwargs)
Bases: pygamelib.board_items.BoardItem

A class that represent a void cell.

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Returns True if the item can move, False otherwise.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() A BoardItemVoid is obviously overlappable (so

player and NPC can walk over).
pickable() A BoardItemVoid is not pickable, therefor this

method return false.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
Continued on next page

250 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 42 – continued from previous page
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen

(continues on next page)

3.4. board_items 251

pygamelib Documentation, Release 1.3.0

(continued from previous page)

screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
print('The item can move')

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

252 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

3.4. board_items 253

pygamelib Documentation, Release 1.3.0

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

254 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
A BoardItemVoid is obviously overlappable (so player and NPC can walk over).

Returns True

particle_emitter

pickable()
A BoardItemVoid is not pickable, therefor this method return false.

Returns False

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

3.4. board_items 255

pygamelib Documentation, Release 1.3.0

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

256 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4. board_items 257

pygamelib Documentation, Release 1.3.0

3.4.7 Camera

class pygamelib.board_items.Camera(actuator=None, **kwargs)
Bases: pygamelib.board_items.Movable

New in version 1.3.0.

A Camera is a special item: it does not appear on the Board and actually is not even registered on it. It is only
an item that you can center the board on (when using partial display). It helps for cut scenes for example.

The main difference with a regular BoardItem is that the row and column properties are writable. This means
that you can directly manipulate its coordinates and partially render a huge board around that focal point.

The Screen buffer rendering system introduced in version 1.3.0 require a board item to be declared as the
focus point of the board if partial display is enabled.

The Camera object inherits from Movable and can accept an actuator parameter. However, it is up to the
developer to activate the actuators mechanics as the Camera object does not register as a NPC or a Player. The
support for actuators is mainly thought for pre-scripted cut-scenes.

Example:

This example leverage the Screen buffer system introduced in v1.3.0.
It pans the camera over a huge map. The Screen.update() method automatically
uses the Board.partial_display_focus coordinates to adjust the displayed area.
camera = Camera()
huge_board.partial_display_focus = camera
while camera.column < huge_board.width:

camera.column += 1
game.screen.update()

__init__(actuator=None, **kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__([actuator]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Movable implements can_move().
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

has_inventory() This is a virtual method that must be implemented in
deriving class.

load(data) Load data and create a new Movable out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.

Continued on next page

258 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 44 – continued from previous page
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Serialize the Immovable object.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

dtmove
heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

3.4. board_items 259

pygamelib Documentation, Release 1.3.0

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()→ bool
Movable implements can_move().

Returns True

Return type Boolean

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

260 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

dtmove

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

has_inventory()→ bool
This is a virtual method that must be implemented in deriving class. This method has to return True or
False. This represent the capacity for a Movable to have an inventory.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

3.4. board_items 261

pygamelib Documentation, Release 1.3.0

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new Movable out of it.

Parameters data (dict) – Data to create a new movable item (usually generated by
serialize())

Returns A new complex item.

Return type ~pygamelib.board_items.Movable

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

262 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

3.4. board_items 263

pygamelib Documentation, Release 1.3.0

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Serialize the Immovable object.

This returns a dictionary that contains all the key/value pairs that makes up the object.

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

264 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.4. board_items 265

pygamelib Documentation, Release 1.3.0

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.8 Character

class pygamelib.board_items.Character(max_hp=None, hp=None, max_mp=None, mp=None,
remaining_lives=None, attack_power=None,
defense_power=None, strength=None, intelli-
gence=None, agility=None, **kwargs)

Bases: pygamelib.board_items.Movable

A base class for a character (playable or not)

Parameters

• agility (int) – Represent the agility of the character

• attack_power (int) – Represent the attack power of the character.

• defense_power (int) – Represent the defense_power of the character

• hp (int) – Represent the hp (Health Point) of the character

• intelligence (int) – Represent the intelligence of the character

• max_hp (int) – Represent the max_hp of the character

• max_mp (int) – Represent the max_mp of the character

• mp (int) – Represent the mp (Mana/Magic Point) of the character

• remaining_lives (int) – Represent the remaining_lives of the character. For a NPC
it is generally a good idea to set that to 1. Unless the NPC is a multi phased boss.

• strength (int) – Represent the strength of the character

These characteristics are here to be used by the game logic but very few of them are actually used by the Game
(pygamelib.engine) engine.

__init__(max_hp=None, hp=None, max_mp=None, mp=None, remaining_lives=None, at-
tack_power=None, defense_power=None, strength=None, intelligence=None,
agility=None, **kwargs)

Like the object class, this class constructor takes no parameter.

Methods

__init__([max_hp, hp, max_mp, mp, . . .]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
Continued on next page

266 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 46 – continued from previous page
can_move() Movable implements can_move().
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

has_inventory() This is a virtual method that must be implemented in
deriving class.

load(data) Load data and create a new Character out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Serialize the Character object.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

dtmove
heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
Continued on next page

3.4. board_items 267

pygamelib Documentation, Release 1.3.0

Table 47 – continued from previous page
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()→ bool
Movable implements can_move().

Returns True

Return type Boolean

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

268 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

dtmove

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

3.4. board_items 269

pygamelib Documentation, Release 1.3.0

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

has_inventory()→ bool
This is a virtual method that must be implemented in deriving class. This method has to return True or
False. This represent the capacity for a Movable to have an inventory.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

270 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new Character out of it.

Parameters data (dict) – Data to create a new character item (usually generated by
serialize())

Returns A new character item.

Return type ~pygamelib.board_items.Character

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

3.4. board_items 271

pygamelib Documentation, Release 1.3.0

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Serialize the Character object.

This returns a dictionary that contains all the key/value pairs that makes up the object.

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

272 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

3.4. board_items 273

pygamelib Documentation, Release 1.3.0

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.9 ComplexDoor

class pygamelib.board_items.ComplexDoor(**kwargs)
Bases: pygamelib.board_items.Door, pygamelib.board_items.BoardComplexItem

New in version 1.2.0.

A complex door is nothing more than a Door mashed with a BoardComplexItem.

It supports all parameters of both with inheritance going first to Door and second to BoardComplexItem.

The main interest is of course the multiple cell representation and the Sprites support.

Example:

castle_door = ComplexDoor(
sprite=sprite_castle_door

)

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
Continued on next page

274 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 48 – continued from previous page
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

item(row, column) Return the item component at the row, column posi-
tion if it is within the complex item’s boundaries.

load(data) Load data and create a new ComplexDoor out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the complex board item from the display

buffer to the frame buffer.
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.
update_sprite() Update the complex item with the current sprite.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

Continued on next page

3.4. board_items 275

pygamelib Documentation, Release 1.3.0

Table 49 – continued from previous page
size A read-only property that gives the size of the item

as a 2 dimensions list.
sprite A property to easily access and update a complex

item’s sprite.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

276 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

3.4. board_items 277

pygamelib Documentation, Release 1.3.0

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

item(row, column)
Return the item component at the row, column position if it is within the complex item’s boundaries.

Return type ~pygamelib.board_items.BoardItem

Raises PglOutOfBoardBoundException – if row or column are out of bound.

278 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new ComplexDoor out of it.

Parameters data (dict) – Data to create a new complex door (usually generated by
serialize())

Returns A new complex npc.

Return type ~pygamelib.board_items.ComplexDoor

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

3.4. board_items 279

pygamelib Documentation, Release 1.3.0

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

280 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

sprite
A property to easily access and update a complex item’s sprite.

3.4. board_items 281

pygamelib Documentation, Release 1.3.0

Parameters new_sprite (Sprite) – The sprite to set

Example:

npc1 = board_items.ComplexNpc(
sprite=npc_sprite_collection['npc1_idle']

)
to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:

game.screen.place(
base.Text(

'Big boi detected!!!',
core.Color(255,0,0),
style=constants.BOLD,

),
notifications.row,
notifications.column,

)
And to set it:
if game.player in game.neighbors(3, npc1):

npc1.sprite = npc_sprite_collection['npc1_fight']

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

update_sprite()
Update the complex item with the current sprite.

Note: This method use to need to be called every time the sprite was changed. Starting with version
1.3.0, it is no longer a requirement as BoardComplexItem.sprite was turned into a property that takes care
of calling update_sprite().

282 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:

This is not only no longer required but also wasteful as
update_sprite() is called twice here.
item.sprite = s
item.update_sprite()
board.move(item, constants.RIGHT, 1)
time.sleep(0.2)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.10 ComplexNPC

class pygamelib.board_items.ComplexNPC(**kwargs)
Bases: pygamelib.board_items.NPC, pygamelib.board_items.BoardComplexItem

New in version 1.2.0.

A complex NPC is nothing more than a NPC mashed with a BoardComplexItem.

It supports all parameters of both with inheritance going first to NPC and second to BoardComplexItem.

The main interest is of course the multiple cell representation and the Sprites support.

Example:

player = ComplexNPC(
name='Idiot McComplexStupid',
sprite=npc_sprite_collection['troll_licking_stones']

)

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Movable implements can_move().
collides_with(other, projection_offset) Tells if this item collides with another item.

Continued on next page

3.4. board_items 283

pygamelib Documentation, Release 1.3.0

Table 50 – continued from previous page
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

has_inventory() Define if the NPC has an inventory.
item(row, column) Return the item component at the row, column posi-

tion if it is within the complex item’s boundaries.
load(data) Load data and create a new ComplexNPC out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Define if the NPC is pickable.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the complex board item from the display

buffer to the frame buffer.
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Serialize the NPC object.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.
update_sprite() Update the complex item with the current sprite.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

dtmove
heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
Continued on next page

284 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 51 – continued from previous page
sprite A property to easily access and update a complex

item’s sprite.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()→ bool
Movable implements can_move().

Returns True

Return type Boolean

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

3.4. board_items 285

pygamelib Documentation, Release 1.3.0

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

dtmove

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

286 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

has_inventory()
Define if the NPC has an inventory.

This method returns false because the game engine doesn’t manage NPC inventory yet but it could be in
the future. It’s a good habit to check the value returned by this function.

Returns False

Return type Boolean

Example:

if mynpc.has_inventory():
print("Cool: we can pickpocket that NPC!")

else:
print("No pickpocketing XP for us today :(")

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

3.4. board_items 287

pygamelib Documentation, Release 1.3.0

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

item(row, column)
Return the item component at the row, column position if it is within the complex item’s boundaries.

Return type ~pygamelib.board_items.BoardItem

Raises PglOutOfBoardBoundException – if row or column are out of bound.

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new ComplexNPC out of it.

Parameters data (dict) – Data to create a new complex npc (usually generated by
serialize())

Returns A new complex npc.

Return type ~pygamelib.board_items.ComplexNPC

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

288 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Define if the NPC is pickable.

Obviously this method always return False.

Returns False

Return type Boolean

Example:

if mynpc.pickable():
Utils.warn("Something is fishy, that NPC is pickable"

"but is not a Pokemon...")

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

3.4. board_items 289

pygamelib Documentation, Release 1.3.0

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Serialize the NPC object.

This returns a dictionary that contains all the key/value pairs that makes up the object.

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

290 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

sprite
A property to easily access and update a complex item’s sprite.

Parameters new_sprite (Sprite) – The sprite to set

Example:

npc1 = board_items.ComplexNpc(
sprite=npc_sprite_collection['npc1_idle']

)
to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:

game.screen.place(
base.Text(

'Big boi detected!!!',
core.Color(255,0,0),
style=constants.BOLD,

),
notifications.row,
notifications.column,

)
And to set it:
if game.player in game.neighbors(3, npc1):

npc1.sprite = npc_sprite_collection['npc1_fight']

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

3.4. board_items 291

pygamelib Documentation, Release 1.3.0

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

update_sprite()
Update the complex item with the current sprite.

Note: This method use to need to be called every time the sprite was changed. Starting with version
1.3.0, it is no longer a requirement as BoardComplexItem.sprite was turned into a property that takes care
of calling update_sprite().

Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:

This is not only no longer required but also wasteful as
update_sprite() is called twice here.
item.sprite = s
item.update_sprite()
board.move(item, constants.RIGHT, 1)
time.sleep(0.2)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.11 ComplexPlayer

class pygamelib.board_items.ComplexPlayer(**kwargs)
Bases: pygamelib.board_items.Player, pygamelib.board_items.BoardComplexItem

New in version 1.2.0.

A complex player is nothing more than a Player mashed with a BoardComplexItem.

It supports all parameters of both with inheritance going first to Player and second to BoardComplexItem.

292 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

The main interest is of course the multiple cell representation and the Sprites support.

Example:

player = ComplexPlayer(
name='Mighty Wizard',
sprite=sprite_collection['wizard_idle']

)

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Movable implements can_move().
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

has_inventory() This method returns True (a player has an inventory).
item(row, column) Return the item component at the row, column posi-

tion if it is within the complex item’s boundaries.
load(data) Load data and create a new ComplexPlayer out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() This method returns False (a player is obviously not

pickable).
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the complex board item from the display

buffer to the frame buffer.
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Serialize the Character object.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.
update_sprite() Update the complex item with the current sprite.

Attributes

3.4. board_items 293

pygamelib Documentation, Release 1.3.0

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

dtmove
heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
sprite A property to easily access and update a complex

item’s sprite.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()→ bool
Movable implements can_move().

Returns True

Return type Boolean

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

294 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

3.4. board_items 295

pygamelib Documentation, Release 1.3.0

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

dtmove

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

has_inventory()
This method returns True (a player has an inventory).

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

296 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

item(row, column)
Return the item component at the row, column position if it is within the complex item’s boundaries.

Return type ~pygamelib.board_items.BoardItem

Raises PglOutOfBoardBoundException – if row or column are out of bound.

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new ComplexPlayer out of it.

Parameters data (dict) – Data to create a new complex player (usually generated by
serialize())

Returns A new complex npc.

Return type ~pygamelib.board_items.ComplexPlayer

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

3.4. board_items 297

pygamelib Documentation, Release 1.3.0

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
This method returns False (a player is obviously not pickable).

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

298 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Serialize the Character object.

This returns a dictionary that contains all the key/value pairs that makes up the object.

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

3.4. board_items 299

pygamelib Documentation, Release 1.3.0

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

sprite
A property to easily access and update a complex item’s sprite.

Parameters new_sprite (Sprite) – The sprite to set

Example:

npc1 = board_items.ComplexNpc(
sprite=npc_sprite_collection['npc1_idle']

)
to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:

game.screen.place(
base.Text(

'Big boi detected!!!',
core.Color(255,0,0),
style=constants.BOLD,

),
notifications.row,
notifications.column,

)
And to set it:
if game.player in game.neighbors(3, npc1):

npc1.sprite = npc_sprite_collection['npc1_fight']

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

300 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

update_sprite()
Update the complex item with the current sprite.

Note: This method use to need to be called every time the sprite was changed. Starting with version
1.3.0, it is no longer a requirement as BoardComplexItem.sprite was turned into a property that takes care
of calling update_sprite().

Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:

This is not only no longer required but also wasteful as
update_sprite() is called twice here.
item.sprite = s
item.update_sprite()
board.move(item, constants.RIGHT, 1)
time.sleep(0.2)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.12 ComplexTreasure

class pygamelib.board_items.ComplexTreasure(**kwargs)
Bases: pygamelib.board_items.Treasure, pygamelib.board_items.BoardComplexItem

New in version 1.2.0.

A complex treasure is nothing more than a Treasure mashed with a BoardComplexItem.

It supports all parameters of both with inheritance going first to Treasure and second to BoardComplexItem.

The main interest is of course the multiple cell representation and the Sprites support.

Example:

chest = ComplexTreasure(
sprite=sprite_chest

)

3.4. board_items 301

pygamelib Documentation, Release 1.3.0

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

item(row, column) Return the item component at the row, column posi-
tion if it is within the complex item’s boundaries.

load(data) Load data and create a new ComplexTreasure out of
it.

notify([modifier]) Notify all the observers that a change occurred.
overlappable() This represent the capacity for a Treasure to be over-

lapped by player or NPC.
pickable() This represent the capacity for a Treasure to be

picked-up by player or NPC.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the complex board item from the display

buffer to the frame buffer.
restorable() This represent the capacity for a Treasure to be re-

stored after being overlapped.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.
update_sprite() Update the complex item with the current sprite.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.

Continued on next page

302 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 55 – continued from previous page
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
sprite A property to easily access and update a complex

item’s sprite.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on

3.4. board_items 303

pygamelib Documentation, Release 1.3.0

different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

304 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

3.4. board_items 305

pygamelib Documentation, Release 1.3.0

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

item(row, column)
Return the item component at the row, column position if it is within the complex item’s boundaries.

Return type ~pygamelib.board_items.BoardItem

Raises PglOutOfBoardBoundException – if row or column are out of bound.

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new ComplexTreasure out of it.

Parameters data (dict) – Data to create a new complex treasure (usually generated by
serialize())

Returns A new complex npc.

Return type ~pygamelib.board_items.ComplexTreasure

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
This represent the capacity for a Treasure to be overlapped by player or NPC.

A treasure is not overlappable.

Returns False

306 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Return type bool

particle_emitter

pickable()
This represent the capacity for a Treasure to be picked-up by player or NPC.

A treasure is obviously pickable by the player and potentially NPCs. Board puts the Treasure in the
Inventory if the picker implements has_inventory()

Returns True

Return type bool

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
This represent the capacity for a Treasure to be restored after being overlapped.

A treasure is not overlappable, therefor is not restorable.

Returns False

Return type bool

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

3.4. board_items 307

pygamelib Documentation, Release 1.3.0

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

308 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

sprite
A property to easily access and update a complex item’s sprite.

Parameters new_sprite (Sprite) – The sprite to set

Example:

npc1 = board_items.ComplexNpc(
sprite=npc_sprite_collection['npc1_idle']

)
to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:

game.screen.place(
base.Text(

'Big boi detected!!!',
core.Color(255,0,0),
style=constants.BOLD,

),
notifications.row,
notifications.column,

)
And to set it:
if game.player in game.neighbors(3, npc1):

npc1.sprite = npc_sprite_collection['npc1_fight']

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

3.4. board_items 309

pygamelib Documentation, Release 1.3.0

Example:

an_object.store_screen_coordinate(3,8)

update_sprite()
Update the complex item with the current sprite.

Note: This method use to need to be called every time the sprite was changed. Starting with version
1.3.0, it is no longer a requirement as BoardComplexItem.sprite was turned into a property that takes care
of calling update_sprite().

Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:

This is not only no longer required but also wasteful as
update_sprite() is called twice here.
item.sprite = s
item.update_sprite()
board.move(item, constants.RIGHT, 1)
time.sleep(0.2)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.13 ComplexWall

class pygamelib.board_items.ComplexWall(**kwargs)
Bases: pygamelib.board_items.Wall, pygamelib.board_items.BoardComplexItem

New in version 1.2.0.

A complex wall is nothing more than a Wall mashed with a BoardComplexItem.

It supports all parameters of both with inheritance going first to Wall and second to BoardComplexItem.

The main interest is of course the multiple cell representation and the Sprites support.

Example:

wall = ComplexWall(
sprite=sprite_brick_wall

)

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

310 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

item(row, column) Return the item component at the row, column posi-
tion if it is within the complex item’s boundaries.

load(data) Load data and create a new ComplexWall out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() This represent the capacity for a BoardItem to be

overlapped by player or NPC.
pickable() This represent the capacity for a BoardItem to be

pick-up by player or NPC.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the complex board item from the display

buffer to the frame buffer.
restorable() This represent the capacity for an Immovable

Movable item.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.
update_sprite() Update the complex item with the current sprite.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model

Continued on next page

3.4. board_items 311

pygamelib Documentation, Release 1.3.0

Table 57 – continued from previous page
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
sprite A property to easily access and update a complex

item’s sprite.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

312 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

3.4. board_items 313

pygamelib Documentation, Release 1.3.0

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

314 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Return type int

item(row, column)
Return the item component at the row, column position if it is within the complex item’s boundaries.

Return type ~pygamelib.board_items.BoardItem

Raises PglOutOfBoardBoundException – if row or column are out of bound.

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new ComplexWall out of it.

Parameters data (dict) – Data to create a new complex wall item (usually generated by
serialize())

Returns A new complex npc.

Return type ~pygamelib.board_items.ComplexWall

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
This represent the capacity for a BoardItem to be overlapped by player or NPC.

Returns False

Return type bool

particle_emitter

pickable()
This represent the capacity for a BoardItem to be pick-up by player or NPC.

3.4. board_items 315

pygamelib Documentation, Release 1.3.0

Returns False

Return type bool

Example:

if mywall.pickable():
print('Whoaa this wall is really light... and small...')

else:
print('Really? Trying to pick-up a wall?')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
This represent the capacity for an Immovable Movable item. A wall is not overlappable.

Returns False

Return type bool

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

316 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

3.4. board_items 317

pygamelib Documentation, Release 1.3.0

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

sprite
A property to easily access and update a complex item’s sprite.

Parameters new_sprite (Sprite) – The sprite to set

Example:

npc1 = board_items.ComplexNpc(
sprite=npc_sprite_collection['npc1_idle']

)
to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:

game.screen.place(
base.Text(

'Big boi detected!!!',
core.Color(255,0,0),
style=constants.BOLD,

),
notifications.row,
notifications.column,

)
And to set it:
if game.player in game.neighbors(3, npc1):

npc1.sprite = npc_sprite_collection['npc1_fight']

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

318 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

an_object.store_screen_coordinate(3,8)

update_sprite()
Update the complex item with the current sprite.

Note: This method use to need to be called every time the sprite was changed. Starting with version
1.3.0, it is no longer a requirement as BoardComplexItem.sprite was turned into a property that takes care
of calling update_sprite().

Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:

This is not only no longer required but also wasteful as
update_sprite() is called twice here.
item.sprite = s
item.update_sprite()
board.move(item, constants.RIGHT, 1)
time.sleep(0.2)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.14 Door

class pygamelib.board_items.Door(**kwargs)
Bases: pygamelib.board_items.GenericStructure

A Door is a GenericStructure that is not pickable, overlappable and restorable. It has a value of 0 and a
size of 1 by default. It is an helper class that allows to focus on game design and mechanics instead of small
building blocks.

Parameters

• model (str) – The model that will represent the door on the map

• value (int) – The value of the door, it is useless in that case. The default value is 0.

• inventory_space (int) – The size of the door in the inventory. Unless you make the
door pickable (I have no idea why you would do that. . .), this parameter is not used.

• type (str) – The type of the door. It is often used as a type identifier for your game main
loop. For example: unlocked_door or locked_door.

• pickable (Boolean) – Is this door pickable by the player? Default value is False.

3.4. board_items 319

pygamelib Documentation, Release 1.3.0

• overlappable (Boolean) – Is this door overlappable by the player? Default value is
True.

• restorable (Boolean) – Is this door restorable after being overlapped? Default value
is True.

Note: All the options from GenericStructure are also available to this constructor.

Example:

door1 = Door(model=graphics.Models.DOOR,type='locked_door')

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

320 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

3.4. board_items 321

pygamelib Documentation, Release 1.3.0

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

322 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

3.4. board_items 323

pygamelib Documentation, Release 1.3.0

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

324 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

3.4. board_items 325

pygamelib Documentation, Release 1.3.0

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

(continues on next page)

326 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

(continued from previous page)

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.15 GenericActionableStructure

class pygamelib.board_items.GenericActionableStructure(**kwargs)
Bases: pygamelib.board_items.GenericStructure, pygamelib.board_items.
Actionable

A GenericActionableStructure is the combination of a GenericStructure and an Actionable. It is only
a helper combination.

Please see the documentation for GenericStructure and Actionable for more information.

3.4. board_items 327

pygamelib Documentation, Release 1.3.0

Important: There’s a complete tutorial about Actionable items on the pygamelib wiki

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

activate() This function is calling the action function with the
action_parameters.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.

Continued on next page

328 Chapter 3. Tutorials

https://github.com/pygamelib/pygamelib/wiki/Actionable-Items

pygamelib Documentation, Release 1.3.0

Table 61 – continued from previous page
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

activate()
This function is calling the action function with the action_parameters.

The action callback function should therefor have a signature like:

def my_callback_function(actionable, action_parameters)

With actionable being the Actionable current reference to self.

Usually it’s automatically called by move() when a Player or NPC (see board_items)

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

3.4. board_items 329

pygamelib Documentation, Release 1.3.0

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

330 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

3.4. board_items 331

pygamelib Documentation, Release 1.3.0

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

332 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

3.4. board_items 333

pygamelib Documentation, Release 1.3.0

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

334 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.16 GenericStructureComplexComponent

class pygamelib.board_items.GenericStructureComplexComponent(**kwargs)
Bases: pygamelib.board_items.GenericStructure, pygamelib.board_items.
BoardItemComplexComponent

3.4. board_items 335

pygamelib Documentation, Release 1.3.0

A ComplexComponent specifically for generic structures.

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns False.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
Continued on next page

336 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 63 – continued from previous page
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

3.4. board_items 337

pygamelib Documentation, Release 1.3.0

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

338 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

3.4. board_items 339

pygamelib Documentation, Release 1.3.0

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns False. A component is never pickable by itself (either the whole complex item is pickable or not,
but not partially)

Example:

340 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

if item.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

3.4. board_items 341

pygamelib Documentation, Release 1.3.0

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

342 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.17 GenericStructure

class pygamelib.board_items.GenericStructure(value=0, **kwargs)
Bases: pygamelib.board_items.Immovable

A GenericStructure is as the name suggest, a generic object to create all kind of structures.

It can be tweaked with all the properties of BoardItem, Immovable and it can be made pickable, overlap-
pable or restorable or any combination of these.

If you need an action to be done when a Player and/or a NPC touch the structure please have a look at
pygamelib.board_items.GenericActionableStructure.

Parameters

• pickable (bool) – Define if the structure can be picked-up by a Player or NPC.

3.4. board_items 343

pygamelib Documentation, Release 1.3.0

• overlappable (bool) – Define if the structure can be overlapped by a Player or NPC.

• restorable (bool) – Define if the structure can be restored by the Board after a Player
or NPC passed through. For example, you want a door or an activator structure (see Generi-
cActionableStructure for that) to remain on the board after it’s been overlapped by a player.
But you could also want to develop some kind of Space Invaders game were the protection
block are overlappable but not restorable.

• value (int|float) – The value of the structure. It can be used for scoring, resource
spending, etc.

On top of these, this object takes all parameters of BoardItem and Immovable

Important: If you need a structure with a permission system please have a look at
GenericActionableStructure. This class has a permission system for activation.

__init__(value=0, **kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__([value]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

344 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

3.4. board_items 345

pygamelib Documentation, Release 1.3.0

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

346 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

3.4. board_items 347

pygamelib Documentation, Release 1.3.0

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

348 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

3.4. board_items 349

pygamelib Documentation, Release 1.3.0

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

(continues on next page)

350 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

(continued from previous page)

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.18 Immovable

class pygamelib.board_items.Immovable(inventory_space: int = None, **kwargs)
Bases: pygamelib.board_items.BoardItem

This class derive BoardItem and describe an object that cannot move or be moved (like a wall).
can_move() cannot be configured and return False. The other properties can be configured. They have
the same default values than BoardItem.

3.4. board_items 351

pygamelib Documentation, Release 1.3.0

Parameters inventory_space (int) – The space the immovable item takes into an
Inventory (in case the item is pickable). By default it is 0.

__init__(inventory_space: int = None, **kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(inventory_space, **kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
Continued on next page

352 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 67 – continued from previous page
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

3.4. board_items 353

pygamelib Documentation, Release 1.3.0

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

354 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

3.4. board_items 355

pygamelib Documentation, Release 1.3.0

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

356 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

3.4. board_items 357

pygamelib Documentation, Release 1.3.0

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

358 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.19 Movable

class pygamelib.board_items.Movable(step: int = None, step_vertical: int = None,
step_horizontal: int = None, movement_speed: float =
None, **kwargs)

Bases: pygamelib.board_items.BoardItem

A class representing BoardItem capable of movements.

Movable subclasses BoardItem.

Parameters

• step (int) – the amount of cell a movable can cross in one turn. Default value: 1.

• step_vertical (int) – the amount of cell a movable can vertically cross in one turn.
Default value: step value.

• step_horizontal (int) – the amount of cell a movable can horizontally cross in one
turn. Default value: step value.

3.4. board_items 359

pygamelib Documentation, Release 1.3.0

• movement_speed (int|float) – The time (in seconds) between 2 movements of a
Movable. It is used by all the Game’s actuation methods to enforce move speed of NPC and
projectiles.

The movement_speed parameter is only used when the Game is configured with MODE_RT. Additionally the
dtmove property is used to accumulate time between frames. It is entirely managed by the Game object and
most of the time you shouldn’t mess up with it. Unless you want to manage movements by yourself. If so, have
fun! That’s the point of the pygamelib to let you do whatever you like.

This class derive BoardItem and describe an object that can move or be moved (like a player or NPC). Thus
this class implements BoardItem.can_move(). However it does not implement BoardItem.pickable() or Board-
Item.overlappable()

__init__(step: int = None, step_vertical: int = None, step_horizontal: int = None, movement_speed:
float = None, **kwargs)

Like the object class, this class constructor takes no parameter.

Methods

__init__(step, step_vertical, . . .) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Movable implements can_move().
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

has_inventory() This is a virtual method that must be implemented in
deriving class.

load(data) Load data and create a new Movable out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Serialize the Immovable object.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

360 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

dtmove
heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()→ bool
Movable implements can_move().

Returns True

Return type Boolean

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

3.4. board_items 361

pygamelib Documentation, Release 1.3.0

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

362 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

dtmove

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

has_inventory()→ bool
This is a virtual method that must be implemented in deriving class. This method has to return True or
False. This represent the capacity for a Movable to have an inventory.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

3.4. board_items 363

pygamelib Documentation, Release 1.3.0

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new Movable out of it.

Parameters data (dict) – Data to create a new movable item (usually generated by
serialize())

Returns A new complex item.

Return type ~pygamelib.board_items.Movable

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

364 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

3.4. board_items 365

pygamelib Documentation, Release 1.3.0

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Serialize the Immovable object.

This returns a dictionary that contains all the key/value pairs that makes up the object.

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

366 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.20 NPC

class pygamelib.board_items.NPC(actuator=None, **kwargs)
Bases: pygamelib.board_items.Character

3.4. board_items 367

pygamelib Documentation, Release 1.3.0

A class that represent a non playable character controlled by the computer. For the NPC to be successfully
managed by the Game, you need to set an actuator.

None of the parameters are mandatory, however it is advised to make good use of some of them (like type or
name) for game design purpose.

In addition to its own member variables, this class inherits all members from:

• pygamelib.board_items.Character

• pygamelib.board_items.Movable

• pygamelib.board_items.BoardItem

This class sets a couple of variables to default values:

• max_hp: 10

• hp: 10

• remaining_lives: 1

• attack_power: 5

• movement_speed: 0.25 (one movement every 0.25 second). Only useful if the game mode is set to
MODE_RT.

Parameters actuator (pygamelib.actuators.Actuator) – An actuator, it can be any
class but it need to implement pygamelib.actuators.Actuator.

Example:

mynpc = NPC(name='Idiot McStupid', type='dumb_enemy')
mynpc.step = 1
mynpc.actuator = RandomActuator()

__init__(actuator=None, **kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__([actuator]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Movable implements can_move().
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

has_inventory() Define if the NPC has an inventory.
load(data) Load data and create a new NPC out of it.
notify([modifier]) Notify all the observers that a change occurred.

Continued on next page

368 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 70 – continued from previous page
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Define if the NPC is pickable.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Serialize the NPC object.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

dtmove
heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

3.4. board_items 369

pygamelib Documentation, Release 1.3.0

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()→ bool
Movable implements can_move().

Returns True

Return type Boolean

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

370 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

dtmove

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

has_inventory()
Define if the NPC has an inventory.

This method returns false because the game engine doesn’t manage NPC inventory yet but it could be in
the future. It’s a good habit to check the value returned by this function.

Returns False

Return type Boolean

Example:

3.4. board_items 371

pygamelib Documentation, Release 1.3.0

if mynpc.has_inventory():
print("Cool: we can pickpocket that NPC!")

else:
print("No pickpocketing XP for us today :(")

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

372 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new NPC out of it.

Parameters data (dict) – Data to create a new npc (usually generated by serialize())

Returns A new npc.

Return type ~pygamelib.board_items.NPC

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Define if the NPC is pickable.

Obviously this method always return False.

Returns False

Return type Boolean

Example:

if mynpc.pickable():
Utils.warn("Something is fishy, that NPC is pickable"

"but is not a Pokemon...")

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

3.4. board_items 373

pygamelib Documentation, Release 1.3.0

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Serialize the NPC object.

This returns a dictionary that contains all the key/value pairs that makes up the object.

374 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

3.4. board_items 375

pygamelib Documentation, Release 1.3.0

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.21 Player

class pygamelib.board_items.Player(inventory=None, **kwargs)
Bases: pygamelib.board_items.Character

A class that represent a player controlled by a human.

This can take all parameter from Character, Movable and obviously BoardItem.

It is a specific board item as the whole Game class assumes only one player. Aside from the wrapper functions
(like Game.move_player for example), there is no reel limitations to use more than one player.

The player also has a couple of attributes that are added for your convenience. You are free to use them or not.
They are (name and default value):

• max_hp: 100

• hp: 100

• remaining_lives: 3

• attack_power: 10

• movement_speed: 0.1 (one movement every 0.1 second). Only useful if the game mode is set to
MODE_RT.

• inventory: A Inventory object. If none is provided, one is created automatically.

376 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

A player can be animated by providing a Animation object to its animation attribute.

Like all other board items, you can specify a sprixel attribute that will be the representation of the player on the
board.

Example:

player = Player(
name="Player",
A sprixel with "@" as the model, no background color, a cyan foreground
color and we set the background to be transparent.
sprixel=core.Sprixel("@", None, core.Color(0, 255, 255), True),
max_hp=200,

)

__init__(inventory=None, **kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__([inventory]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Movable implements can_move().
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

has_inventory() This method returns True (a player has an inventory).
load(data) Load data and create a new Character out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() This method returns False (a player is obviously not

pickable).
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Serialize the Character object.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

3.4. board_items 377

pygamelib Documentation, Release 1.3.0

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

dtmove
heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()→ bool
Movable implements can_move().

Returns True

Return type Boolean

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

378 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

3.4. board_items 379

pygamelib Documentation, Release 1.3.0

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

dtmove

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

has_inventory()
This method returns True (a player has an inventory).

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

380 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new Character out of it.

Parameters data (dict) – Data to create a new character item (usually generated by
serialize())

Returns A new character item.

Return type ~pygamelib.board_items.Character

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

3.4. board_items 381

pygamelib Documentation, Release 1.3.0

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
This method returns False (a player is obviously not pickable).

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

382 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Serialize the Character object.

This returns a dictionary that contains all the key/value pairs that makes up the object.

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

(continues on next page)

3.4. board_items 383

pygamelib Documentation, Release 1.3.0

(continued from previous page)

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

384 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

3.4.22 Projectile

class pygamelib.board_items.Projectile(name=’projectile’, direction=10000100, step=1,
range=5, model=’’, movement_animation=None,
hit_animation=None, hit_model=None,
hit_callback=None, is_aoe=False, aoe_radius=0,
parent=None, callback_parameters=None, move-
ment_speed=0.15, collision_exclusions=None,
**kwargs)

Bases: pygamelib.board_items.Movable

A class representing a projectile type board item. That class can be sub-classed to represent all your needs
(fireballs, blasters shots, etc.).

That class support the 2 types of representations: model and animations. The animation cases are slightly more
evolved than the regular item.animation. It does use the item.animation but with more finesse as a projectile can
travel in many directions. So it also keeps track of models and animation per travel direction.

You probably want to subclass Projectile. It is totally ok to use it as it, but it is easier to create a subclass that
contains all your Projectile information and let the game engine deal with orientation, range keeping, etc. Please
see examples/07_projectiles.py for a good old fireball example.

By default, Projectile travels in straight line in one direction. This behavior can be overwritten by setting a
specific actuator (a projectile is a Movable so you can use my_projectile.actuator).

The general way to use it is as follow:

• Create a factory object with your static content (usually the static models, default direction and hit callback)

• Add the direction related models and/or animation (keep in mind that animation takes precedence over
static models)

• deep copy that object when needed and add it to the projectiles stack of the game object.

• use Game.actuate_projectiles(level) to let the Game engine do the heavy lifting.

The Projectile constructor takes the following parameters:

Parameters

• direction (int) – A direction from the constants module

• range (int) – The maximum range of the projectile in number of cells that can be crossed.
When range is attained the hit_callback is called with a BoardItemVoid as a collision object.

• step (int) – the amount of cells a projectile can cross in one turn

• model (str) – the default model of the projectile.

• movement_animation (Animation) – the default animation of a projectile. If a
projectile is sent in a direction that has no explicit and specific animation, then move-
ment_animation is used if defined.

• hit_animation (Animation) – the animation used when the projectile collide with
something.

• hit_model (str) – the model used when the projectile collide with something.

• hit_callback (function) – A reference to a function that will be called upon colli-
sion. The hit_callback is receiving the object it collides with as first parameter.

• is_aoe (bool) – Is this an ‘area of effect’ type of projectile? Meaning, is it doing some-
thing to everything around (mass heal, exploding rocket, fireball, etc.)? If yes, you must set

3.4. board_items 385

pygamelib Documentation, Release 1.3.0

that parameter to True and set the aoe_radius. If not, the Game object will only send the
colliding object in front of the projectile.

• aoe_radius (int) – the radius of the projectile area of effect. This will force the Game
object to send a list of all objects in that radius.

• callback_parameters (list) – A list of parameters to pass to hit_callback.

• movement_speed (int|float) – The movement speed of the projectile

• collision_exclusions (list) – A list of TYPES of objects that should not collides
with that projectile. It is usually a good idea to put the projectile type in the exclusion list.
This prevent the projectile to collide with other instances of itself. Adding the projectile’s
emitter is also a valid idea.

• parent – The parent object (usually a Board object or some sort of BoardItem).

Important: The effects of a Projectile are determined by the callback. No callback == no effect!

Example:

fireball = Projectile(
name="fireball",
model=Utils.red_bright(black_circle),
hit_model=graphics.Models.EXPLOSION,
won't collide with other projectiles.
collision_exclusions = [Projectile],

)
fireball.set_direction(constants.RIGHT)
my_game.add_projectile(1, fireball,

my_game.player.pos[0], my_game.player.pos[1] + 1)

__init__(name=’projectile’, direction=10000100, step=1, range=5, model=’’, move-
ment_animation=None, hit_animation=None, hit_model=None, hit_callback=None,
is_aoe=False, aoe_radius=0, parent=None, callback_parameters=None, move-
ment_speed=0.15, collision_exclusions=None, **kwargs)

Like the object class, this class constructor takes no parameter.

Methods

__init__([name, direction, step, range, . . .]) Like the object class, this class constructor takes no
parameter.

add_directional_animation(direction, ani-
mation)

Add an animation for a specific direction.

add_directional_model(direction, model) Add an model for a specific direction.
attach(observer) Attach an observer to this instance.
can_move() Movable implements can_move().
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
directional_animation(direction) Return the animation for a specific direction.
directional_model(direction) Return the model for a specific direction.
display() Print the model WITHOUT carriage return.

Continued on next page

386 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 74 – continued from previous page
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

has_inventory() Projectile cannot have inventory by default.
hit(objects) A method that is called when the projectile hit some-

thing.
load(data) Load data and create a new Movable out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Projectile are overlappable by default.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
remove_directional_animation(direction) Remove an animation for a specific direction.
remove_directional_model(direction) Remove the model for a specific direction.
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() We assume that by default, Projectiles are restorable.
serialize() Serialize the Immovable object.
set_can_move(value) Set the value of the can_move property to value.
set_direction(direction) Set the direction of a projectile
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

direction The direction of the projectile.
dtmove
heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

3.4. board_items 387

pygamelib Documentation, Release 1.3.0

add_directional_animation(direction, animation)
Add an animation for a specific direction.

Parameters

• direction (int) – A direction from the constants module.

• animation (Animation) – The animation for the direction

Example:

fireball.add_directional_animation(constants.UP, constants.UP, animation)

add_directional_model(direction, model)
Add an model for a specific direction.

Parameters

• direction (int) – A direction from the constants module.

• model (str) – The model for the direction

Example:

fireball.add_directional_animation(constants.UP, upward_animation)

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()→ bool
Movable implements can_move().

Returns True

Return type Boolean

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on

388 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

direction
The direction of the projectile.

Updating this property also updates the UnidirectionalActuator’s direction.

Parameters value (int | Vector2D) – some param

3.4. board_items 389

pygamelib Documentation, Release 1.3.0

Warning: If your projectile uses directional model and/or animation you should use
set_direction() to set the projectile direction.

Example:

bullet.direction = Vector2D(0, 1)

directional_animation(direction)
Return the animation for a specific direction.

Parameters direction (int) – A direction from the constants module.

Return type Animation

Example:

No more animation for the UP direction
fireball.directional_animation(constants.UP)

directional_model(direction)
Return the model for a specific direction.

Parameters direction (int) – A direction from the constants module.

Return type str

Example:

fireball.directional_model(constants.UP)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

dtmove

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

390 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

has_inventory()
Projectile cannot have inventory by default.

Returns False

Return type Boolean

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

hit(objects)
A method that is called when the projectile hit something.

That method is automatically called by the Game object when the Projectile collide with another object or
is at the end of its range.

Here are the call cases covered by the Game object:

• range is reached without collision and projectile IS NOT an AoE type: hit() is called with a single
BoardItemVoid in the objects list.

3.4. board_items 391

pygamelib Documentation, Release 1.3.0

• range is reached without collision and projectile IS an AoE type: hit() is called with the list of all
objects within aoe_radius (including structures).

• projectile collide with something and IS NOT an AoE type: hit() is called with the single colliding
object in the objects list.

• projectile collide with something and IS an AoE type: hit() is called with the list of all objects within
aoe_radius (including structures).

In turn, that method calls the hit_callback with the following parameters (in that order):

1. the projectile object

2. the list of colliding objects (that may contain only one object)

3. the callback parameters (from the constructor callback_parameters)

Parameters objects – A list of objects hit by or around the projectile.

Example:

my_projectile.hit([npc1])

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new Movable out of it.

Parameters data (dict) – Data to create a new movable item (usually generated by
serialize())

Returns A new complex item.

Return type ~pygamelib.board_items.Movable

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

392 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Projectile are overlappable by default.

Returns True

Return type Boolean

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

remove_directional_animation(direction)
Remove an animation for a specific direction.

Parameters direction (int) – A direction from the constants module.

Example:

No more animation for the UP direction
fireball.remove_directional_animation(constants.UP)

remove_directional_model(direction)
Remove the model for a specific direction.

Parameters direction (int) – A direction from the constants module.

Example:

fireball.directional_model(constants.UP)

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

3.4. board_items 393

pygamelib Documentation, Release 1.3.0

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
We assume that by default, Projectiles are restorable.

Returns True

Return type bool

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Serialize the Immovable object.

This returns a dictionary that contains all the key/value pairs that makes up the object.

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_direction(direction)
Set the direction of a projectile

This method will set a UnidirectionalActuator with the direction. It will also take care of updating the
model and animation for the given direction if they are specified.

394 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Parameters direction (int) – A direction from the constants module.

Example:

fireball.set_direction(constants.UP)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

3.4. board_items 395

pygamelib Documentation, Release 1.3.0

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.23 TextItem

class pygamelib.board_items.TextItem(text=None, **kwargs)
Bases: pygamelib.board_items.BoardComplexItem

New in version 1.2.0.

The text item is a board item that can contains text. The text can then be manipulated and placed on a Board.

It is overall a BoardComplexItem (so it takes all the parameters of that class). The big difference is that the
first parameter is the text you want to display.

The text parameter can be either a regular string or a Text object (in case you want formatting and colors).

Parameters text (str | Text) – The text you want to display.

Example:

city_name = TextItem('Super City')
fancy_city_name = TextItem(text=base.Text('Super City', base.Fore.GREEN,

base.Back.BLACK,
base.Style.BRIGHT

))
my_board.place_item(city_name, 0, 0)
my_board.place_item(fancy_city_name, 1, 0)

__init__(text=None, **kwargs)
Like the object class, this class constructor takes no parameter.

396 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Methods

__init__([text]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Returns True if the item can move, False otherwise.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

item(row, column) Return the item component at the row, column posi-
tion if it is within the complex item’s boundaries.

load(data) Load data and create a new TextItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the complex board item from the display

buffer to the frame buffer.
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.
update_sprite() Update the complex item with the current sprite.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space A property to get and set the size that the BoardItem

takes in the Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter

Continued on next page

3.4. board_items 397

pygamelib Documentation, Release 1.3.0

Table 77 – continued from previous page
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
sprite A property to easily access and update a complex

item’s sprite.
text The text within the item.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Returns True if the item can move, False otherwise.

Example:

if board.item(4,5).can_move():
print('The item can move')

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

398 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

3.4. board_items 399

pygamelib Documentation, Release 1.3.0

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
A property to get and set the size that the BoardItem takes in the Inventory .

Returns The size of the item.

400 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Return type int

item(row, column)
Return the item component at the row, column position if it is within the complex item’s boundaries.

Return type ~pygamelib.board_items.BoardItem

Raises PglOutOfBoardBoundException – if row or column are out of bound.

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new TextItem out of it.

Parameters data (dict) – Data to create a new text item (usually generated by
serialize())

Returns A new complex npc.

Return type ~pygamelib.board_items.TextItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

3.4. board_items 401

pygamelib Documentation, Release 1.3.0

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

402 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

(continues on next page)

3.4. board_items 403

pygamelib Documentation, Release 1.3.0

(continued from previous page)

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

sprite
A property to easily access and update a complex item’s sprite.

Parameters new_sprite (Sprite) – The sprite to set

Example:

npc1 = board_items.ComplexNpc(
sprite=npc_sprite_collection['npc1_idle']

)
to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:

game.screen.place(
base.Text(

'Big boi detected!!!',
core.Color(255,0,0),
style=constants.BOLD,

),
notifications.row,
notifications.column,

)
And to set it:
if game.player in game.neighbors(3, npc1):

npc1.sprite = npc_sprite_collection['npc1_fight']

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

404 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

an_object.store_screen_coordinate(3,8)

text
The text within the item.

TextItem.text can be set to either a string or a Text object.

It will always return a Text object.

Internally it translate the text to a Sprite to display it correctly on a Board. If print()-ed it will do so
like the Text object.

update_sprite()
Update the complex item with the current sprite.

Note: This method use to need to be called every time the sprite was changed. Starting with version
1.3.0, it is no longer a requirement as BoardComplexItem.sprite was turned into a property that takes care
of calling update_sprite().

Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:

This is not only no longer required but also wasteful as
update_sprite() is called twice here.
item.sprite = s
item.update_sprite()
board.move(item, constants.RIGHT, 1)
time.sleep(0.2)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.24 Tile

class pygamelib.board_items.Tile(**kwargs)
Bases: pygamelib.board_items.BoardComplexItem, pygamelib.board_items.
GenericStructure

New in version 1.2.0.

A Tile is a standard BoardComplexItem configured by default to:

• be overlappable

• be restorable

• be not pickable

3.4. board_items 405

pygamelib Documentation, Release 1.3.0

• be immovable.

Aside from the movable attributes (it inherit from GenericStructure so it’s an Immovable object), everything
else is configurable.

It is particularly useful to display a Sprite on the background or to create terrain.

Example:

grass_sprite = Sprite.load_from_ansi_file('textures/grass.ans')
for pos in grass_positions:

outdoor_level.place_item(Tile(sprite=grass_sprite), pos[0], pos[1])

__init__(**kwargs)

Parameters

• overlappable (bool) – Defines if the Tile can be overlapped.

• restorable (bool) – Defines is the Tile should be restored after being overlapped.

• pickable (bool) – Defines if the Tile can be picked up by the Player or NPC.

Please see BoardComplexItem for additional parameters.

Methods

__init__(**kwargs)
param overlappable Defines if the Tile

can be overlapped.

attach(observer) Attach an observer to this instance.
can_move() A Tile cannot move.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

item(row, column) Return the item component at the row, column posi-
tion if it is within the complex item’s boundaries.

load(data) Load data and create a new Tile out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() Returns True if the item is overlappable, False other-

wise.
pickable() Returns True if the item is pickable, False otherwise.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the complex board item from the display

buffer to the frame buffer.
restorable() Returns True if the item is restorable, False other-

wise.
serialize() Return a dictionary with all the attributes of this ob-

ject.
Continued on next page

406 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 78 – continued from previous page
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.
update_sprite() Update the complex item with the current sprite.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
sprite A property to easily access and update a complex

item’s sprite.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

3.4. board_items 407

pygamelib Documentation, Release 1.3.0

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
A Tile cannot move.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

408 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

3.4. board_items 409

pygamelib Documentation, Release 1.3.0

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

item(row, column)
Return the item component at the row, column position if it is within the complex item’s boundaries.

Return type ~pygamelib.board_items.BoardItem

Raises PglOutOfBoardBoundException – if row or column are out of bound.

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new Tile out of it.

Parameters data (dict) – Data to create a new tile (usually generated by serialize())

Returns A new complex npc.

Return type ~pygamelib.board_items.Tile

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

410 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
Returns True if the item is overlappable, False otherwise.

Example:

if board.item(4,5).overlappable():
print('The item is overlappable')

particle_emitter

pickable()
Returns True if the item is pickable, False otherwise.

Example:

if board.item(4,5).pickable():
print('The item is pickable')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the complex board item from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
Returns True if the item is restorable, False otherwise.

Example:

3.4. board_items 411

pygamelib Documentation, Release 1.3.0

if board.item(4,5).restorable():
print('The item is restorable')

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

412 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

sprite
A property to easily access and update a complex item’s sprite.

Parameters new_sprite (Sprite) – The sprite to set

Example:

npc1 = board_items.ComplexNpc(
sprite=npc_sprite_collection['npc1_idle']

)
to access the sprite:
if npc1.sprite.width * npc1.sprite.height > CONSTANT_BIG_GUY:

game.screen.place(
base.Text(

'Big boi detected!!!',
core.Color(255,0,0),
style=constants.BOLD,

),
notifications.row,
notifications.column,

)
And to set it:
if game.player in game.neighbors(3, npc1):

npc1.sprite = npc_sprite_collection['npc1_fight']

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

3.4. board_items 413

pygamelib Documentation, Release 1.3.0

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

update_sprite()
Update the complex item with the current sprite.

Note: This method use to need to be called every time the sprite was changed. Starting with version
1.3.0, it is no longer a requirement as BoardComplexItem.sprite was turned into a property that takes care
of calling update_sprite().

Example:

item = BoardComplexItem(sprite=position_idle)
for s in [walk_1, walk_2, walk_3, walk_4]:

This is not only no longer required but also wasteful as
update_sprite() is called twice here.
item.sprite = s
item.update_sprite()
board.move(item, constants.RIGHT, 1)
time.sleep(0.2)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

414 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

3.4.25 Treasure

class pygamelib.board_items.Treasure(value=10, **kwargs)
Bases: pygamelib.board_items.Immovable

A Treasure is an Immovable that is pickable and with a non zero value. It is an helper class that allows to
focus on game design and mechanics instead of small building blocks.

Parameters

• model (str) – The model that will represent the treasure on the map

• value (int) – The value of the treasure, it is usually used to calculate the score.

• inventory_space (int) – The space occupied by the treasure. It is used by
Inventory as a measure of space. If the treasure’s size exceed the Inventory size (or the
cumulated size of all items + the treasure exceed the inventory max_size()) the Inventory
will refuse to add the treasure.

Note: All the options from Immovable are also available to this constructor.

Example:

money_bag = Treasure(
model=graphics.Models.MONEY_BAG,value=100,inventory_space=2

)
print(f"This is a money bag {money_bag}")
player.inventory.add_item(money_bag)
print(f"The inventory value is {player.inventory.value()} and is at

{player.inventory.size()}/{player.inventory.max_size}")

__init__(value=10, **kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__([value]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() This represent the capacity for a Treasure to be over-

lapped by player or NPC.
Continued on next page

3.4. board_items 415

pygamelib Documentation, Release 1.3.0

Table 80 – continued from previous page
pickable() This represent the capacity for a Treasure to be

picked-up by player or NPC.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() This represent the capacity for a Treasure to be re-

stored after being overlapped.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

416 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

3.4. board_items 417

pygamelib Documentation, Release 1.3.0

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

418 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

3.4. board_items 419

pygamelib Documentation, Release 1.3.0

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
This represent the capacity for a Treasure to be overlapped by player or NPC.

A treasure is not overlappable.

Returns False

Return type bool

particle_emitter

pickable()
This represent the capacity for a Treasure to be picked-up by player or NPC.

A treasure is obviously pickable by the player and potentially NPCs. Board puts the Treasure in the
Inventory if the picker implements has_inventory()

Returns True

Return type bool

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

restorable()
This represent the capacity for a Treasure to be restored after being overlapped.

A treasure is not overlappable, therefor is not restorable.

420 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns False

Return type bool

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_pickable(False)

3.4. board_items 421

pygamelib Documentation, Release 1.3.0

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

422 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.4.26 Wall

class pygamelib.board_items.Wall(**kwargs)
Bases: pygamelib.board_items.Immovable

A Wall is a specialized Immovable object that as unmodifiable characteristics:

• It is not pickable (and cannot be).

• It is not overlappable (and cannot be).

• It is not restorable (and cannot be).

As such it’s an object that cannot be moved, cannot be picked up or modified by Player or NPC and block their
ways. It is therefor advised to create one per board and reuse it in many places.

Parameters

• model (str) – The representation of the Wall on the Board.

• name (str) – The name of the Wall.

• size (int) – The size of the Wall. This parameter will probably be deprecated as size is
only used for pickable objects.

__init__(**kwargs)
Like the object class, this class constructor takes no parameter.

Methods

__init__(**kwargs) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
can_move() Return the capability of moving of an item.
collides_with(other, projection_offset) Tells if this item collides with another item.
debug_info() Return a string with the list of the attributes and their

current value.
detach(observer) Detach an observer from this instance.
display() Print the model WITHOUT carriage return.
distance_to(other) Calculates the distance with an item.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load data and create a new BoardItem out of it.
notify([modifier]) Notify all the observers that a change occurred.
overlappable() This represent the capacity for a BoardItem to be

overlapped by player or NPC.
Continued on next page

3.4. board_items 423

pygamelib Documentation, Release 1.3.0

Table 82 – continued from previous page
pickable() This represent the capacity for a BoardItem to be

pick-up by player or NPC.
position_as_vector() Returns the current item position as a Vector2D
render_to_buffer(buffer, row, column, . . .) Render the board item into a display buffer (not a

screen buffer).
restorable() This represent the capacity for an Immovable

Movable item.
serialize() Return a dictionary with all the attributes of this ob-

ject.
set_can_move(value) Set the value of the can_move property to value.
set_overlappable(value) Set the value of the overlappable property to value.
set_pickable(value) Set the value of the pickable property to value.
set_restorable(value) Set the value of the restorable property to value.
store_position(row, column, layer) Store the BoardItem position for self access.
store_screen_position(row, column) Store the screen position of the object.

Attributes

animation A property to get and set an Animation for this
item.

column Convenience method to get the current stored col-
umn of the item.

heading Return the heading of the item.
height Convenience method to get the height of the item.
inventory_space Return the size that the Immovable item takes in the

Inventory .
layer Convenience method to get the current stored layer

number of the item.
model
particle_emitter
row Convenience method to get the current stored row of

the item.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
size A read-only property that gives the size of the item

as a 2 dimensions list.
width Convenience method to get the width of the item.

animation
A property to get and set an Animation for this item.

Important: When an animation is set, the item is setting the animation’s parent to itself.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

424 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

can_move()
Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method always returns False.

Returns False

Return type bool

collides_with(other, projection_offset: pygamelib.base.Vector2D = None)
Tells if this item collides with another item.

Important: collides_with() does not take the layer into account! It is not desirable for the pygamelib to
assume that 2 items on different layers wont collide. For example, if a player is over a door, they are on
different layers, but logically speaking they are colliding. The player is overlapping the door. Therefor, it
is the responsibility of the developer to check for layers in collision, if it is important to the game logic.

Parameters

• other (BoardItem) – The item you want to check for collision.

• projection_offset (Vector2D) – A vector to offset this board item’s position (not
the position of the other item). Use this to detect a collision before moving the board item.
You can pass the movement vector before moving to check if a collision will occur when
moving.

Return type bool

Example:

if projectile.collides_with(game.player):
game.player.hp -= 5

column
Convenience method to get the current stored column of the item.

This is absolutely equivalent to access to item.pos[1].

Returns The column coordinate

Return type int

Example:

if item.column != item.pos[1]:
print('Something extremely unlikely just happened...')

debug_info()
Return a string with the list of the attributes and their current value.

3.4. board_items 425

pygamelib Documentation, Release 1.3.0

Return type str

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()
Print the model WITHOUT carriage return.

distance_to(other)
Calculates the distance with an item.

Parameters other (BoardItem) – The item you want to calculate the distance to.

Returns The distance between this item and the other.

Return type float

Example:

if npc.distance_to(game.player) <= 2.0:
npc.seek_and_destroy = True

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

heading
Return the heading of the item.

This is a read only property that is updated by store_position().

The property represent the orientation and movement of the item in the board. It gives the difference
between the item’s centroid current and previous position. Thus, giving you both the direction and the
distance of the movement. You can get the angle from here.

One of the possible usage of that property is to set the sprite/sprixel/model of a moving item.

Returns The heading of the item.

Return type Vector2D

426 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

if my_item.heading.column > 0:
my_item.sprixel.model = item_models["heading_right"]

Warning: Just after placing an item on the board, and before moving it, the heading cannot be trusted!
The heading represent the direction and orientation of the movement, therefore, it is not reliable before
the item moved.

height
Convenience method to get the height of the item.

This is absolutely equivalent to access to item.size[1].

Returns The height

Return type int

Example:

if item.height > board.height:
print('The item is too big for the board.')

inventory_space
Return the size that the Immovable item takes in the Inventory .

Returns The size of the item.

Return type int

layer
Convenience method to get the current stored layer number of the item.

This is absolutely equivalent to access to item.pos[2].

Returns The layer number

Return type int

Example:

if item.layer != item.pos[2]:
print('Something extremely unlikely just happened...')

classmethod load(data)
Load data and create a new BoardItem out of it.

Parameters data (dict) – Data to create a new item (usually generated by serialize())

Returns A new item.

Return type ~pygamelib.board_items.BoardItem

model

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

3.4. board_items 427

pygamelib Documentation, Release 1.3.0

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

overlappable()
This represent the capacity for a BoardItem to be overlapped by player or NPC.

Returns False

Return type bool

particle_emitter

pickable()
This represent the capacity for a BoardItem to be pick-up by player or NPC.

Returns False

Return type bool

Example:

if mywall.pickable():
print('Whoaa this wall is really light... and small...')

else:
print('Really? Trying to pick-up a wall?')

position_as_vector()
Returns the current item position as a Vector2D

Returns The position as a 2D vector

Return type Vector2D

Example:

gravity = Vector2D(9.81, 0)
next_position = item.position_as_vector() + gravity.unit()

render_to_buffer(buffer, row, column, height, width)
Render the board item into a display buffer (not a screen buffer).

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

428 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

restorable()
This represent the capacity for an Immovable Movable item. A wall is not overlappable.

Returns False

Return type bool

row
Convenience method to get the current stored row of the item.

This is absolutely equivalent to access to item.pos[0].

Returns The row coordinate

Return type int

Example:

if item.row != item.pos[0]:
print('Something extremely unlikely just happened...')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()→ dict
Return a dictionary with all the attributes of this object.

Returns A dictionary with all the attributes of this object.

Return type dict

set_can_move(value)
Set the value of the can_move property to value.

Parameters value (bool) – The value to set.

Example:

item.set_can_move(False)

set_overlappable(value)
Set the value of the overlappable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_overlappable(False)

set_pickable(value)
Set the value of the pickable property to value.

Parameters value (bool) – The value to set.

Example:

3.4. board_items 429

pygamelib Documentation, Release 1.3.0

item.set_pickable(False)

set_restorable(value)
Set the value of the restorable property to value.

Parameters value (bool) – The value to set.

Example:

item.set_restorable(False)

size
A read-only property that gives the size of the item as a 2 dimensions list. The first element is the width
and the second the height.

Returns The size.

Return type list

Example:

This is a silly example because the Board object does not allow
that use case.
if item.column + item.size[0] >= board.width:

Game.instance().screen.display_line(
f"{item.name} cannot be placed at {item.pos}."

)

store_position(row: int, column: int, layer: int = 0)
Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self position. It is a redundant informa-
tion and might not be synchronized.

Parameters

• row (int) – the row of the item in the Board.

• column (int) – the column of the item in the Board.

• layer – the layer of the item in the Board. By default layer is set to 0.

Example:

item.store_position(3,4)

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

430 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

width
Convenience method to get the width of the item.

This is absolutely equivalent to access to item.size[0].

Returns The width

Return type int

Example:

if item.width > board.width:
print('The item is too big for the board.')

3.5 constants

Accessible constants are the following:

General purpose:

• PYGAMELIB_VERSION

Directions:

• NO_DIR: This one is used when no direction can be provided by an actuator (destination reached for a
PathFinder for example)

• UP

• DOWN

• LEFT

• RIGHT

• DRUP : Diagonal right up

• DRDOWN : Diagonal right down

• DLUP : Diagonal Left up

• DLDOWN : Diagonal left down

Permissions:

• PLAYER_AUTHORIZED

• NPC_AUTHORIZED

• ALL_PLAYABLE_AUTHORIZED (deprecated in 1.2.0 in favor of ALL_CHARACTERS_AUTHORIZED)

• ALL_CHARACTERS_AUTHORIZED

• ALL_MOVABLE_AUTHORIZED

• NONE_AUTHORIZED

UI positions:

• ORIENTATION_HORIZONTAL

• ORIENTATION_VERTICAL

• ALIGN_LEFT

• ALIGN_RIGHT

3.5. constants 431

pygamelib Documentation, Release 1.3.0

• ALIGN_CENTER

Actions states (for Actuators for example):

• RUNNING

• PAUSED

• STOPPED

Accepted input (mainly used in pygamelib.gfx.ui for input dialogs): * INTEGER_FILTER * PRINTABLE_FILTER

Path Finding Algorithm Constants:

• ALGO_BFS

• ALGO_ASTAR

Text styling constants:

• BOLD

• UNDERLINE

Special constants:

• NO_PLAYER : That constant is used to tell the Game object not to manage the player.

• MODE_RT : Set the game object to Real Time mode. The game runs independently from the user input.

• MODE_TBT : Set the game object to Turn By Turn mode. The game runs turn by turn and pause between each
user input.

3.6 engine

3.6.1 Board

class pygamelib.engine.Board(name: str = ’Board’, size: list = None, ui_borders: str
= None, ui_border_bottom: str = ’-’, ui_border_top: str
= ’-’, ui_border_left: str = ’|’, ui_border_right: str =
’|’, ui_board_void_cell=’ ’, ui_board_void_cell_sprixel:
pygamelib.gfx.core.Sprixel = None, player_starting_position:
list = None, DISPLAY_SIZE_WARNINGS=False, parent=None,
partial_display_viewport=None, partial_display_focus=None,
enable_partial_display=False)

Bases: pygamelib.base.PglBaseObject

A class that represent a game board.

The board object is a 2D matrix of board items. This means that you can visualize it as a chessboard for example.
All board items are positioned on this chessboard-like object and can be moved around.

The Board object is the base object to build a level. Once created to your liking you can add items from the
board_items module. You can also derived BoardItem to create your own board items, specific to your game.

If you want a detailed introduction to the Board object, go the the pygamelib wiki and read the “Getting started:
the Board” article.

Note: In version 1.3.0 a new screen rendering stack was introduced. With this came the need for some object
to hold more information about their state. This is the case for Board. To use partial display with the Screen
buffer system the board itself needs to hold the information about were to draw and on what to focus on. The

432 Chapter 3. Tutorials

https://github.com/pygamelib/pygamelib/wiki/Getting-started-Board
https://github.com/pygamelib/pygamelib/wiki/Getting-started-Board

pygamelib Documentation, Release 1.3.0

existing code will still work as the Game object takes care of forwarding the information to the Board. However,
it is now possible to exploit the Camera object to create cut scenes and more interesting movements.

Important: Partial display related parameters are information used by the display_around() method and
the Screen object to either display directly the board (display_around) or render the Board in the frame buffer.
You have to make sure that the focus element’s position is updated. If you use the player, you have nothing
to do but the Camera object needs to be manually updated for example.

Warning: in 1.3.0 the notion of layers was added to the Board object. Layers are used to better manage
items overlapping. For the moment, layers are automatically managed to expand and shrink on demand (or
on a need basis). You can use the layer system to add some depth to your game but you should be warned
that you may experience some issues. If it is the case please report them on the Github issues page. For
existing code, the entire Board object behaves exactly like in version 1.2.x.

__init__(name: str = ’Board’, size: list = None, ui_borders: str = None, ui_border_bottom:
str = ’-’, ui_border_top: str = ’-’, ui_border_left: str = ’|’, ui_border_right: str =
’|’, ui_board_void_cell=’ ’, ui_board_void_cell_sprixel: pygamelib.gfx.core.Sprixel
= None, player_starting_position: list = None, DISPLAY_SIZE_WARNINGS=False,
parent=None, partial_display_viewport=None, partial_display_focus=None, en-
able_partial_display=False)

Parameters

• name (str) – the name of the Board

• size (list) – array [width,height] with width and height being int. The size of the
board. If layers is not specified it is set to 5.

• player_starting_position (list) – array [row,column] with row and column
being int. The coordinates at which Game will place the player on change_level().

• ui_borders (str) – To set all the borders to the same value

• ui_border_left (str) – A string that represents the left border.

• ui_border_right (str) – A string that represents the right border.

• ui_border_top (str) – A string that represents the top border.

• ui_border_bottom (str) – A string that represents the bottom border.

• ui_board_void_cell (str) – A string that represents an empty cell. This option
is going to be the model of the BoardItemVoid (see pygamelib.board_items.
BoardItemVoid)

• parent (Game) – The parent object (usually the Game object).

• DISPLAY_SIZE_WARNINGS (bool) – A boolean to show or hide the warning about
boards bigger than 80 rows and/or columns.

• enable_partial_display (bool) – A boolean to tell the Board to enable or not
partial display of boards. Default: False.

• partial_display_viewport (list) – A 2 int elements array that gives the radius
of the partial display in number of row and column. Please see display_around().

3.6. engine 433

https://github.com/pygamelib/pygamelib/issues

pygamelib Documentation, Release 1.3.0

• partial_display_focus (BoardItem or Vector2D) – An item to focus (i.e cen-
ter) the view on. When partial display is enabled the rendered view will be centered on
this focus point/item. It can be an item or a vector.

Methods

__init__(name, size, ui_borders, . . . [, . . .])
param name the name of the Board

attach(observer) Attach an observer to this instance.
check_sanity() Check the board sanity.
clear_cell(row, column[, layer]) Clear cell (row, column, layer)
detach(observer) Detach an observer from this instance.
display() Display the entire board.
display_around(item, row_radius, col-
umn_radius)

Display only a part of the board.

generate_void_cell() This method return a void cell.
get_immovables(**kwargs) Return a list of all the Immovable objects in the

Board.
get_movables(**kwargs) Return a list of all the Movable objects in the Board.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

init_board() Initialize the board with BoardItemVoid that uses
ui_board_void_cell_sprixel or ui_board_void_cell
(in that order of preference) as model.

init_cell(row, column[, layer]) Initialize a specific cell of the board with Board-
ItemVoid that uses ui_board_void_cell as model.

instantiate_item(data) Instantiate a BoardItem from its serialized data.
item(row, column[, layer]) Return the item at the row, column, layer position if

within board’s boundaries.
layers(row, column) A method to get the number of layers at the Board’s

given coordinates.
load(data) Create a new Board object based on serialized data.
move(item, direction[, step]) Board.move() is a routing function.
neighbors(obj, radius) Returns a list of neighbors (non void item) around an

object.
notify([modifier]) Notify all the observers that a change occurred.
place_item(item, row, column, layer, auto_layer) Place an item at coordinates row, column and layer.
remove_item(item) Remove an item from the board.
render_cell(row, column) New in version 1.3.0.

render_to_buffer(buffer, row, column, . . .) Render the board into from the display buffer to the
frame buffer.

serialize() Return a serialized version of the board.
store_screen_position(row, column) Store the screen position of the object.

Attributes

434 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

height A convenience read only property to get the height
of the Board.

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
width A convenience read only property to get the width of

the Board.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

check_sanity()→ None
Check the board sanity.

This is essentially an internal method called by the constructor.

clear_cell(row, column, layer=0)
Clear cell (row, column, layer)

This method clears a cell, meaning it position a void_cell BoardItemVoid at these coordinates.

It also removes the items from the the list of movables and immovables.

Parameters

• row (int) – The row of the item to remove

• column (int) – The column of the item to remove

• layer (int) – The layer of the item to remove. The default value is 0 to remain coherent
with previous version of the library.

Example:

myboard.clear_cell(3,4,0)

Warning: This method does not check the content before, it will overwrite the content.

Important: In the case of a BoardComplexItem derivative (Tile, ComplexPlayer , ComplexNPC, etc.)
clearing one cell of the entire item is enough to remove the entire item from the list of movables or
immovables.

3.6. engine 435

pygamelib Documentation, Release 1.3.0

Note: Starting in 1.3.0 and the addition of board’s layers, there is no more overlapping matrix. With no
more moving items around this method should be a little faster. It also means that the layer parameter is
really important (a wrong layer means that you’ll clear the wrong cell). Be ready to catch an IndexError
exception

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display()→ None
Display the entire board.

This method display the Board (as in print()), taking care of displaying the borders, and everything inside.

It uses the __str__ method of the item, which by default uses (in order) BoardItem.sprixel and (if no sprixel
is defined) BoardItem.model. If you want to override this behavior you have to subclass BoardItem.

display_around(item, row_radius, column_radius)→ None
Display only a part of the board.

This method behaves like display() but only display a part of the board around an item (usually the player).
Example:

This will display only a total of 30 cells vertically and
60 cells horizontally.
board.display_around(player, 15, 30)

Parameters

• item (BoardItem) – an item to center the view on (it has to be a subclass of BoardItem)

• row_radius (int) – The radius of display in number of rows showed. Remember that
it is a radius not a diameter. . .

• column_radius (int) – The radius of display in number of columns showed. Remem-
ber that. . . Well, same thing.

It uses the same display algorithm than the regular display() method.

generate_void_cell()
This method return a void cell.

If ui_board_void_cell_sprixel is defined it uses it, otherwise use ui_board_void_cell to generate the void
item.

Returns A void board item

Return type BoardItemVoid

Example:

436 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

board.generate_void_cell()

get_immovables(**kwargs)
Return a list of all the Immovable objects in the Board.

See pygamelib.board_items.Immovable for more on an Immovable object.

Parameters **kwargs – an optional dictionnary with keys matching Immovables class mem-
bers and value being something contained in that member.

Returns A list of Immovable items

Example:

for m in myboard.get_immovables():
print(m.name)

Get all the Immovable objects that type contains "wall"
AND name contains fire

walls = myboard.get_immovables(type="wall",name="fire")

get_movables(**kwargs)
Return a list of all the Movable objects in the Board.

See pygamelib.board_items.Movable for more on a Movable object.

Parameters **kwargs – an optional dictionnary with keys matching Movables class members
and value being something contained in that member.

Returns A list of Movable items

Example:

for m in myboard.get_movables():
print(m.name)

Get all the Movable objects that has a type that contains "foe"
foes = myboard.get_movables(type="foe")

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

height
A convenience read only property to get the height of the Board.

It is absolutely equivalent to access to board.size[1].

3.6. engine 437

pygamelib Documentation, Release 1.3.0

Returns The height of the board.

Return type int

Example:

if board.size[1] != board.height:
print('Houston, we have a problem...')

init_board()
Initialize the board with BoardItemVoid that uses ui_board_void_cell_sprixel or ui_board_void_cell (in
that order of preference) as model.

This method is automatically called by the Board’s constructor.

Example:

myboard.init_board()

init_cell(row, column, layer=0)→ None
Initialize a specific cell of the board with BoardItemVoid that uses ui_board_void_cell as model.

Parameters

• row (int) – the row coordinate.

• column (int) – the column coordinate.

Example:

myboard.init_cell(2,3,0)

static instantiate_item(data: dict)
Instantiate a BoardItem from its serialized data.

Parameters data (dict) – The data to use to build the item.

Returns an instance of a BoardItem.

Important: The actual object depends on the serialized data. It can be any derivative of BoardItem (even
custom objects as long as they inherit from BoardItem) as long as they are importable by this class.

Example:

First get some board item serialization data. For example:
data = super_duper_npc.serialize()
Then instantiate a new one:
another_super_duper_npc = Board.instantiate_item(data)

item(row, column, layer=-1)
Return the item at the row, column, layer position if within board’s boundaries.

Parameters

• row (int) – The row to probe.

• column (int) – The column to probe.

• layer (int) – The layer to probe (default: -1 i.e the top item).

Return type pygamelib.board_items.BoardItem

438 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Raises PglOutOfBoardBoundException – if row, column or layer are out of bound.

layers(row, column)→ int
A method to get the number of layers at the Board’s given coordinates.

Returns The number of layers of the board.

Return type int

Example:

if board.layers(game.player.row, game.player.column) > 1:
print('The player is stomping on something!')

classmethod load(data: dict = None)
Create a new Board object based on serialized data.

If data is None, None is returned.

If a color component is missing from data, it is set to 0 (see examples).

Raises an exception if the color components are not integer.

Parameters data (dict) – Data loaded from JSON data (serialized).

Returns Either a Board object or None if data where empty.

Return type Board | NoneType

Raise PglInvalidTypeException

Example:

Loading from parsed JSON data
new_board = Board.load(json.load("board_lvl_01.json"))

move(item, direction, step=1)
Board.move() is a routing function. It does 2 things:

1 - If the direction is a Vector2D, round the values to the nearest integer (as move works
with entire board cells, i.e integers).

2 - route toward the right moving function depending if the item is complex or not.

Move an item in the specified direction for a number of steps.

Parameters

• item (pygamelib.board_items.Movable) – an item to move (it has to be a sub-
class of Movable)

• direction (pygamelib.constants or Vector2D) – a direction from constants

• step (int) – the number of steps to move the item.

If the number of steps is greater than the Board, the item will be move to the maximum possible position.

If the item is not a subclass of Movable, an PglObjectIsNotMovableException exception (see
pygamelib.base.PglObjectIsNotMovableException).

Example:

board.move(player,constants.UP,1)

3.6. engine 439

pygamelib Documentation, Release 1.3.0

Important: if the move is successful, an empty BoardItemVoid (see pygamelib.boards_item.
BoardItemVoid) will be put at the departure position (unless the movable item is over an overlappable
item). If the movable item is over an overlappable item, the overlapped item is restored.

Important: Also important: If the direction is a Vector2D, the values will be rounded to the nearest
integer (as move works with entire board cells). It allows for movement accumulation before actually
moving. The step parameter is not used in that case.

neighbors(obj, radius: int = 1)
Returns a list of neighbors (non void item) around an object.

This method returns a list of objects that are all around an object between the position of an object and all
the cells at radius.

Parameters

• radius (int) – The radius in which non void item should be included

• obj (BoardItem) – The central object. The neighbors are calculated for that object.

Returns A list of BoardItem. No BoardItemVoid is included.

Raises PglInvalidTypeException – If radius is not an int.

Example:

for item in game.neighbors(npc, 2):
print(f'{item.name} is around {npc.name} at coordinates '

'({item.pos[0]},{item.pos[1]})')

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

place_item(item, row: int, column: int, layer: int = 0, auto_layer: bool = True)
Place an item at coordinates row, column and layer.

If row, column or layer are out of the board boundaries, a PglOutOfBoardBoundException is raised.

If the item is not a subclass of BoardItem, a PglInvalidTypeException

The observers are notified of a successful placement with the
pygamelib.engine.Board.place_item:item_placed event. The item that was deleted is passed as the
value of the event.

440 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Warning: Nothing prevents you from placing an object on top of another. Be sure to check that.
This method will check for items that are both overlappable and restorable to save them, but that’s the
extend of it.

remove_item(item)
Remove an item from the board.

If the item is a single BoardItem, this method is absolutely equivalent to calling clear_cell(). If item
is a derivative of BoardComplexItem, it is not as clear_cell() only clears a specific cell (that can be part of
a complex item). This method actually remove the entire item and clears all its cells.

The observers are notified of a successful removal with the
pygamelib.engine.Board.remove_item:item_removed event. The item that was deleted is passed as
the value of the event.

Parameters item (BoardItem) – The item to remove.

Example:

game.current_board().remove_item(game.player)

render_cell(row, column)
New in version 1.3.0.

Render the cell at given position.

This method always return a Sprixel (it could be an empty one though). It automatically render the
highest item (if items are overlapping for example). If the rendered Sprixel is configured to have
transparent background, this method is going to go through the layers to make sure that it is rendering the
sprixels correctly (i.e: with the right background color).

For basic usage of the library it is unlikely that you will use it. It is part of the screen rendering stack
introduced in version 1.3.0. Actually unless you need to write a different rendering system you won’t use
that method.

Parameters

• row (int) – The row to render.

• column (int) – The column to render.

Return type Sprixel

Raises PglOutOfBoardBoundException – if row or column are out of bound.

Example:

This renders the board from the top left corner of the screen.
for row in range(0, myboard.height):

for column in range(0, myboard.height):
myscreen.place(

myboard.render_cell(row, column)
),
row,
column,

render_to_buffer(buffer, row, column, buffer_height, buffer_width)→ None
Render the board into from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

3.6. engine 441

pygamelib Documentation, Release 1.3.0

Parameters

• buffer (numpy.array) – A frame buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Return a serialized version of the board.

Returns A dictionary containing the board’s attributes.

Example:

serialized_board_data = myboard.serialize()

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

width
A convenience read only property to get the width of the Board.

It is absolutely equivalent to access to board.size[0].

Returns The width of the board.

Return type int

Example:

if board.size[0] != board.width:
print('Houston, we have a problem...')

442 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

3.6.2 Game

class pygamelib.engine.Game(name=’Game’, player=None, boards={}, menu={}, cur-
rent_level=None, enable_partial_display=False, par-
tial_display_viewport=None, partial_display_focus=None,
mode=90000003, user_update=None, input_lag=0.01,
user_update_paused=None)

Bases: pygamelib.base.PglBaseObject

A class that serve as a game engine.

This object is the central system that allow the management of a game. It holds boards (see pygamelib.
engine.Board), associate it to level, takes care of level changing, etc.

Note: The game object has an object_library member that is always an empty array except just after loading
a board. In this case, if the board have a “library” field, it is going to be used to populate object_library. This
library is accessible through the Game object mainly so people have access to it across different Boards during
level design in the editor. That architecture decision is debatable.

Note: The constructor of Game takes care of initializing the terminal to properly render the colors on Windows.

Important: The Game object automatically assumes ownership over the Player.

__init__(name=’Game’, player=None, boards={}, menu={}, current_level=None, en-
able_partial_display=False, partial_display_viewport=None, partial_display_focus=None,
mode=90000003, user_update=None, input_lag=0.01, user_update_paused=None)

Parameters

• name (str) – The Game name.

• boards (dict) – A dictionary of boards with the level number as key and a board refer-
ence as value.

• menu (dict) – A dictionary of menus with a category (str) as key and another dictionary
(key: a shortcut, value: a description) as value.

• current_level (int) – The current level.

• enable_partial_display (bool) – A boolean to tell the Game object to enable or
not partial display of boards. Default: False.

• partial_display_viewport (list) – A 2 int elements array that gives the radius
of the partial display in number of row and column. Please see display_around().

• partial_display_focus (BoardItem) – The object that is going to be the center
of the view when the board is displayed.

• mode (int) – The mode parameter configures the way the run() method is going to be-
have. The default value is constants.MODE_TBT. TBT is short for “Turn By Turn”. In
that mode, the Game object wait for an user input before looping. Exactly like when you
wait for user input with get_key(). The other possible value is constants.MODE_RT. RT
stands for “Real Time”. In that mode, the Game object waits for a minimal amount of time
(0.01 i.e 100 FPS, configurable through the input_lag parameter) in order to get the input
from the user and call the update function right away. This parameter is only useful if you
use Game.run().

3.6. engine 443

pygamelib Documentation, Release 1.3.0

• user_update (function) – A reference to the main program update function. The
update function is called for each new frame. It is called with 3 parameters: the game
object, the user input (can be None) and the elapsed time since last frame.

• user_update_paused (function) – A reference to the update function called when
the game is paused. It is called with the same 3 parameters than the regular update func-
tion: the game object, the user input (can be None) and the elapsed time since last frame.
If not specified, the regular update function is called but nothing is done regarding NPCs,
projectiles, animations, etc.

• input_lag (float|int) – The amount of time the run() function is going to wait for
a user input before returning None and calling the update function. Default is 0.01.

Methods

__init__([name, player, boards, menu, . . .])
param name The Game name.

actuate_npcs(level_number[, elapsed_time]) Actuate all NPCs on a given level
actuate_projectiles(level_number[,
elapsed_time])

Actuate all Projectiles on a given level

add_board(level_number, board) Add a board for the level number.
add_menu_entry(category, shortcut, message) Add a new entry to the menu.
add_npc(level_number, npc[, row, column, . . .]) Add a NPC to the game.
add_projectile(level_number, projectile[,
. . .])

Add a Projectile to the game.

animate_items(level_number[, elapsed_time]) That method goes through all the BoardItems of a
given map and call Animation.next_frame().

attach(observer) Attach an observer to this instance.
change_level(level_number) Change the current level, load the board and place

the player to the right place.
clear_screen() Clear the whole screen (i.e: remove everything writ-

ten in terminal)
clear_session_logs() Delete all the log lines from the logs.
config(section) Get the content of a previously loaded configuration

section.
create_config(section) Initialize a new config section.
current_board() This method return the board object corresponding

to the current_level.
delete_all_levels() Delete all boards and their associated levels from the

game object.
delete_level(lvl_number) Delete a level and its associated Board from the game

object.
delete_menu_category([category]) Delete an entire category from the menu.
detach(observer) Detach an observer from this instance.
display_board() Display the current board.
display_menu(category[, orientation, paginate]) Display the menu.
display_player_stats([life_model,
void_model])

Display the player name and health.

get_board(level_number) This method returns the board associated with a level
number.

get_key() Reads the next key-stroke returning it as a string.
Continued on next page

444 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 86 – continued from previous page
get_menu_entry(category, shortcut) Get an entry of the menu.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

insert_board(level_number, board) Insert a board for the level number.
instance(*args, **kwargs) Returns the instance of the Game object
load_board(filename[, lvl_number]) Load a saved board
load_config(filename, section) Load a configuration file from the disk.
move_player(direction[, step]) Easy wrapper for Board.move().
neighbors([radius, obj]) Get a list of neighbors (non void item) around an ob-

ject.
notify([modifier]) Notify all the observers that a change occurred.
pause() Set the game engine state to PAUSE.
remove_npc(level_number, npc) This methods remove the NPC from the level in pa-

rameter.
run() New in version 1.2.0.

save_board(lvl_number, filename) Save a board to a JSON file
save_config(section, filename, append) Save a configuration section.
session_log(line) Add a line to the session logs.
session_logs() Return the complete session logs since instantiation.
start() Set the game engine state to RUNNING.
stop() Set the game engine state to STOPPED.
store_screen_position(row, column) Store the screen position of the object.
update_menu_entry(category, shortcut, mes-
sage)

Update an entry of the menu.

Attributes

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
state Get/set the state of the game.

actuate_npcs(level_number, elapsed_time=0.0)
Actuate all NPCs on a given level

This method actuate all NPCs on a board associated with a level. At the moment it means moving the
NPCs but as the Actuators become more capable this method will evolve to allow more choice (like attack
use objects, etc.)

When all NPCs have been successfully actuated, the observers are notified of the change with the
pygamelib.engine.Game.actuate_npcs:npcs_actuated event. Their is value passed for that event.

Parameters

• level_number (int) – The number of the level to actuate NPCs in.

• elapsed_time (float) – The amount of time that passed since last call. This param-
eter is not mandatory.

Example:

mygame.actuate_npcs(1)

3.6. engine 445

pygamelib Documentation, Release 1.3.0

Note: This method only move NPCs when their actuator state is RUNNING. If it is PAUSED or
STOPPED, the NPC is not moved.

Note: Since version 1.2.0 it’s possible for a Movable item to have different vertical and horizontal move-
ment steps, so actuate_npc respect that by integrating the steps with a unit direction vector. It should be
completely transparent and you should not expect any change. Just more movement freedom. If you do
experience issues, please report a bug.

Note: Since version 1.2.0 and the appearance of the realtime mode, we have to account for movement
speed. This method does it.

actuate_projectiles(level_number, elapsed_time=0.0)
Actuate all Projectiles on a given level

This method actuate all Projectiles on a board associated with a level. This method differs from actu-
ate_npcs() as some logic is involved with projectiles that NPC do not have. This method decrease the
available range by projectile.step each time it’s called. It also detects potential collisions. If the available
range falls to 0 or a collision is detected the projectile hit_callback is called.

This method respects the Projectile.collision_exclusions parameter and does not register collisions with
objects of a type present in that list.

Important: In this method, projectiles do not collide with overlappable items. If you want to detect
collisions with overlappable objects, please implement your own projectile actuation method.

Parameters

• level_number (int) – The number of the level to actuate Projectiles in.

• elapsed_time (float) – The amount of time that passed since last call. This param-
eter is not mandatory.

When all Projectiles have been successfully actuated, the observers are notified of the change with
the pygamelib.engine.Game.actuate_projectiles:projectiles_actuated event. Their is value passed for that
event.

Example:

mygame.actuate_projectiles(1)

Note: This method only move Projectiles when their actuator state is RUNNING. If it is PAUSED or
STOPPED, the Projectile is not moved.

Important: Please have a look at the pygamelib.board_items.Projectile.hit() method
for more information on the projectile hit mechanic.

add_board(level_number: int, board: pygamelib.engine.Board)→ None
Add a board for the level number.

446 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

This method associate a Board (pygamelib.engine.Board) to a level number.

If the partial display is enabled at Game level (i.e: partial_display_viewport is not None and en-
able_partial_display is True), this method propagate the settings to the board automatically. Same for
partial_display_focus.

Example:

game.add_board(1,myboard)

Parameters

• level_number (int) – the level number to associate the board to.

• board (pygamelib.engine.Board) – a Board object corresponding to the level
number.

Raises PglInvalidTypeException – If either of these parameters are not of the correct
type.

add_menu_entry(category, shortcut, message, data=None)
Add a new entry to the menu.

Deprecated since version 1.3.0: This function will be removed in version 1.4.0

Add another shortcut and message to the specified category.

Categories help organize the different sections of a menu or dialogues.

Parameters

• category (str) – The category to which the entry should be added.

• shortcut (str) – A shortcut (usually one key) to display.

• message (various) – a message that explains what the shortcut does.

• data – a data that you can get from the menu object.

The shortcut and data is optional.

Example:

game.add_menu_entry('main_menu','d','Go right',constants.RIGHT)
game.add_menu_entry('main_menu',None,'-----------------')
game.add_menu_entry('main_menu','v','Change game speed')

add_npc(level_number, npc, row=None, column=None, layer=None, auto_layer=True)
Add a NPC to the game. It will be placed on the board corresponding to the level_number. If row and
column are not None, the NPC is placed at these coordinates. Else, it’s randomly placed in an empty cell.

Example:

game.add_npc(1,my_evil_npc,5,2)

Parameters

• level_number (int) – the level number of the board.

• npc (pygamelib.board_items.NPC) – the NPC to place.

• row (int) – the row coordinate to place the NPC at.

• column (int) – the column coordinate to place the NPC at.

3.6. engine 447

pygamelib Documentation, Release 1.3.0

If either of these parameters are not of the correct type, a PglInvalidTypeException exception is raised.

Important: If the NPC does not have an actuator, this method is going to affect a
pygamelib.actuators.RandomActuator() to npc.actuator. And if npc.step == None, this method sets it to 1

add_projectile(level_number, projectile, row=None, column=None)
Add a Projectile to the game. It will be placed on the board corresponding to level_number. Neither row
nor column can be None.

Example:

game.add_projectile(1, fireball, 5, 2)

Parameters

• level_number (int) – the level number of the board.

• projectile (Projectile) – the Projectile to place.

• row (int) – the row coordinate to place the Projectile at.

• column (int) – the column coordinate to place the Projectile at.

If either of these parameters are not of the correct type, a PglInvalidTypeException exception is raised.

Important: If the Projectile does not have an actuator, this method is going to affect
pygamelib.actuators.RandomActuator(moveset=[RIGHT]) to projectile.actuator. And if projectile.step ==
None, this method sets it to 1.

animate_items(level_number, elapsed_time=0.0)
That method goes through all the BoardItems of a given map and call Animation.next_frame().

When all items have been successfully animated, the observers are notified of the change with the
pygamelib.engine.Game.animate_items:items_animated event. Their is value passed for that event.

Parameters

• level_number (int) – The number of the level to animate items in.

• elapsed_time (float) – The amount of time that passed since last call. This param-
eter is not mandatory.

Raise PglInvalidLevelException PglInvalidTypeException

Example:

mygame.animate_items(1)

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

448 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

change_level(level_number: int)→ None
Change the current level, load the board and place the player to the right place.

Example:

game.change_level(1)

Parameters level_number (int) – the level number to change to.

Raises base.PglInvalidTypeException – If parameter is not an int.

clear_screen()
Clear the whole screen (i.e: remove everything written in terminal)

Deprecated since version 1.2.0: Starting 1.2.0 we are using the pygamelib.engine.Screen object to manage
the screen. That function is a simple forward and is kept for backward compatibility only. You should use
Game.screen.clear()

clear_session_logs()→ None
Delete all the log lines from the logs.

Example:

game = Game.instance()
game.clear_logs()

Note: The session log system is nothing more than a list to do your “debug prints”. If you want a real
logging system, please use Python logging module.

config(section: str = ’main’)→ dict
Get the content of a previously loaded configuration section.

Parameters section (str) – The name of the section.

Example:

if mygame.config('main')['pgl-version-required'] < 10200:
print('The pygamelib version 1.2.0 or greater is required.')
exit()

create_config(section: str)→ None
Initialize a new config section.

The new section is a dictionary.

Parameters section (str) – The name of the new section.

Example:

if mygame.config('high_scores') is None:
mygame.create_config('high_scores')

mygame.config('high_scores')['first_place'] = mygame.player.name

3.6. engine 449

pygamelib Documentation, Release 1.3.0

current_board()→ pygamelib.engine.Board
This method return the board object corresponding to the current_level.

Example:

game.current_board().display()

If current_level is set to a value with no corresponding board a PglException exception is raised with an
invalid_level error.

delete_all_levels()
Delete all boards and their associated levels from the game object.

You might want to think twice before using that function. . .

Example:

game.delete_all_levels()

delete_level(lvl_number: int = None)
Delete a level and its associated Board from the game object.

Both the level and the board can’t be used after that (unless they are reloaded or replaced of course).

Parameters lvl_number (int) – The number of the level to remove.

Raises

• base.PglInvalidTypeException – If parameter is not an int.

• base.PglInvalidLevelException – If parameter is not a valid level.

Example:

my_game.delete_level(1)

delete_menu_category(category=None)
Delete an entire category from the menu.

Deprecated since version 1.3.0: This function will be removed in version 1.4.0

That function removes the entire list of messages that are attached to the category.

Parameters category (str) – The category to delete.

Raises PglInvalidTypeException – If the category is not a string

Important: If the entry have no shortcut it’s advised not to try to update unless you have only one
NoneType as a shortcut.

Example:

game.add_menu_entry('main_menu','d','Go right')
game.update_menu_entry('main_menu','d','Go LEFT',constants.LEFT)

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

450 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

display_board()
Display the current board.

The behavior of that function is dependant on how you configured this object. If you set en-
able_partial_display to True AND partial_display_viewport is set to a correct value, it will call
Game.current_board().display_around() with the correct parameters. The partial display will be centered
on the player (Game.player). Otherwise it will just call Game.current_board().display().

If the player is not set or is set to constants.NO_PLAYER partial display won’t activate automatically.

Example:

mygame.enable_partial_display = True
Number of rows, number of column (on each side, total viewport
will be 20x20 in that case).
mygame.partial_display_viewport = [10, 10]
This will call Game.current_board().display_around()
mygame.display()
mygame.enable_partial_display = False
This will call Game.current_board().display()
mygame.display()

display_menu(category, orientation=30000010, paginate=10)
Display the menu.

Deprecated since version 1.3.0: This function will be removed in version 1.4.0

This method display the whole menu for a given category.

Parameters

• category (str) – The category to display. Mandatory parameter.

• orientation (pygamelib.constants) – The shortcut of the entry you want to
get.

• paginate (int) – pagination parameter (how many items to display before changing
line or page).

Example:

game.display_menu('main_menu')
game.display_menu('main_menu', constants.ORIENTATION_HORIZONTAL, 5)

display_player_stats(life_model=’\x1b[41m \x1b[0m’, void_model=’\x1b[40m \x1b[0m’)
Display the player name and health.

Deprecated since version This: method is completely deprecated and not even compatible with the Screen
Buffer system. It will be removed in 1.4.0.

This method print the Player name, a health bar (20 blocks of life_model). When life is missing the
complement (20-life missing) is printed using void_model. It also display the inventory value as “Score”.

Parameters

• life_model (str) – The character(s) that should be used to represent the remaining
life.

3.6. engine 451

pygamelib Documentation, Release 1.3.0

• void_model (str) – The character(s) that should be used to represent the lost life.

Note: This method might change in the future. Particularly it could take a template of what to display.

get_board(level_number: int)→ pygamelib.engine.Board
This method returns the board associated with a level number. :param level_number: The number of the
level. :type level_number: int

Raises PglInvalidTypeException – if the level_number is not an int.

Example:

level1_board = mygame.get_board(1)

static get_key()
Reads the next key-stroke returning it as a string.

Example:

key = Utils.get_key()
if key == Utils.key.UP:

print("Up")
elif key == "q"

exit()

Note: See readkey documentation in readchar package.

get_menu_entry(category, shortcut)
Get an entry of the menu.

Deprecated since version 1.3.0: This function will be removed in version 1.4.0

This method return a dictionnary with 3 entries :

• shortcut

• message

• data

Parameters

• category (str) – The category in which the entry is located.

• shortcut (str) – The shortcut of the entry you want to get.

Returns The menu entry or None if none was found

Return type dict

Example:

ent = game.get_menu_entry('main_menu','d')
game.move_player(int(ent['data']),1)

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

452 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

insert_board(level_number: int, board: pygamelib.engine.Board)→ None
Insert a board for the level number.

This method does basically the same thing than add_board() except that if the level number is already
associated it re-affect the numbers down.

Example:

game.insert_board(1,myboard_1)
level number 1 is associated with myboard_1
game.insert_board(2,myboard_2)
level number 1 is associated with myboard_1
level number 2 is associated with myboard_2
game.insert_board(2,myboard_3)
level number 1 is associated with myboard_1
level number 2 is now associated with myboard_3
level number 3 is associated with myboard_2

Parameters

• level_number (int) – the level number to associate the board to.

• board (pygamelib.engine.Board) – a Board object corresponding to the level
number.

Raises PglInvalidTypeException – If either of these parameters are not of the correct
type.

classmethod instance(*args, **kwargs)
Returns the instance of the Game object

Creates a Game object on first call an then returns the same instance on further calls

Returns Instance of Game object

load_board(filename, lvl_number=0)
Load a saved board

Load a Board saved on the disk as a JSON file. This method creates a new Board object, populate it with
all the elements (except a Player) and then return it.

If the filename argument is not an existing file, the open function is going to raise an exception.

This method, load the board from the JSON file, populate it with all BoardItem included, check for sanity,
init the board with BoardItemVoid and then associate the freshly created board to a lvl_number. It then
create the NPCs and add them to the board.

Parameters

3.6. engine 453

pygamelib Documentation, Release 1.3.0

• filename (str) – The file to load

• lvl_number (int) – The level number to associate the board to. Default is 0.

Returns a newly created board (see pygamelib.engine.Board)

Example:

mynewboard = game.load_board('awesome_level.json', 1)
game.change_level(1)

load_config(filename: str, section: str = ’main’)→ dict
Load a configuration file from the disk. The configuration file must respect the INI syntax. The goal of
these methods is to simplify configuration files management.

Parameters

• filename (str) – The filename to load. does not check for existence.

• section (str) – The section to put the read config file into. This allow for multiple
files for multiple purpose. Section is a human readable unique identifier.

Raises

• FileNotFoundError – If filename is not found on the disk.

• json.decoder.JSONDecodeError – If filename could not be decoded as JSON.

Returns The parsed data.

Return type dict

Warning: breaking changes: before v1.1.0 that method use to load file using the configparser
module. This have been dumped in favor of json files. Since that methods was apparently not used,
there is no backward compatibility.

Example:

mygame.load_config('game_controls.json','game_control')

move_player(direction, step=1)
Easy wrapper for Board.move().

Example:

mygame.move_player(constants.RIGHT,1)

neighbors(radius=1, obj=None)
Get a list of neighbors (non void item) around an object.

This method returns a list of objects that are all around an object between the position of an object and all
the cells at radius.

Parameters

• radius (int) – The radius in which non void item should be included

• object (pygamelib.board_items.BoardItem) – The central object. The
neighbors are calculated for that object. If None, the player is the object.

Returns A list of BoardItem. No BoardItemVoid is included.

454 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Raises PglInvalidTypeException – If radius is not an int.

Example:

for item in game.neighbors(2):
print(f'{item.name} is around player at coordinates '

'({item.pos[0]},{item.pos[1]})')

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

pause()
Set the game engine state to PAUSE.

Example:

mygame.pause()

remove_npc(level_number, npc)
This methods remove the NPC from the level in parameter.

Parameters

• level (int) – The number of the level from where the NPC is to be removed.

• npc (NPC) – The NPC object to remove.

Example:

mygame.remove_npc(1, dead_npc)

run()
New in version 1.2.0.

The run() method act as the main game loop and does a number of things for you:

1. It grabs the user input. If the Game object is configured with MODE_TBT (the default), nothing
happen until the user hit a key. If the mode is set to MODE_RT, it will wait for input_lag secondes
for a user input before going to step 3.

2. It calculate the elapsed time between 2 frames.

3. Accumulates the elapsed time in the player dtmove variable (if there is a player object configured)

4. It sets the cursor position to 0,0 (meaning that your user_update function will draw on top of the
previously drawn window). The Board.display() and Board.display_around() method clean the end of
their line.

3.6. engine 455

pygamelib Documentation, Release 1.3.0

5. It calls the user_update function with 3 parameters: the game object, the key hit by the user (it can be
None) and the elapsed time between to calls.

6. Clears the end of the screen.

7. Actuates NPCs (If there is at least one Board manage by Game).

8. Actuates projectiles (If there is at least one Board manage by Game).

9. Animates items (If there is at least one Board manage by Game).

On the subject of particle emitters, the Board object automatically update the ones that are attached to
BoardItems. For all other particle emitters you need to call the update method of the emitters yourself (for
now).

In version 1.2.X, there was a bug when the game was paused. In that case nothing was happening anymore.
The user update function was not called and events were not processed. On top of that it was impossible to
use run() without associating a board object with a level. Starting with version 1.3.0, it is now possible to
use run() without associating a board object with a level. There is also a new parameter to the constructor
(user_update_paused) that allows you to specify a function that will be called when the game is paused.
This function will be called with the same 3 parameters than the regular update function: the game object,
the user input (can be None) and the elapsed time since last frame.

Important: If you try to set the game state to PAUSED and the user_update_paused function is not
defined, a notification will be issued and the game will continue to run. The notification message is
pygamelib.engine.Game.run:PauseNotAvailable

Raises PglInvalidTypeException, PglInvalidTypeException

Example:

mygame.run()

save_board(lvl_number, filename)
Save a board to a JSON file

This method saves a Board and everything in it but the BoardItemVoid.

Not check are done on the filename, if anything happen you get the exceptions from open().

Parameters

• lvl_number (int) – The level number to get the board from.

• filename (str) – The path to the file to save the data to.

Raises

• PglInvalidTypeException – If any parameter is not of the right type

• PglInvalidLevelException – If the level is not associated with a Board.

Example:

game.save_board(1, 'hac-maps/level1.json')

If Game.object_library is not an empty array, it will be saved also.

456 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Warning: In version 1.3.0 the Board class changed a lot and a layer system has been added. Therefor,
boards saved from version 1.3.0+ are not compatible with previous version. Previous boards can be
loaded (Game.load_board() is backward compatible), but when saved they will be converted to
the new format.

save_config(section: str = None, filename: str = None, append: bool = False)→ None
Save a configuration section.

Parameters

• section (str) – The name of the section to save on disk.

• filename (str) – The file to write in. If not provided it will write in the file that was
used to load the given section. If section was not loaded from a file, save will raise an
exception.

• append (bool) – Do we need to append to the file or replace the content (True = append,
False = replace)

Example:

mygame.save_config('game_controls', 'data/game_controls.json')

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

session_log(line: str)→ None
Add a line to the session logs.

Session logs needs to be activated first.

Parameters line (str) – The line to add to the logs.

Example:

game = Game.instance()
game.ENABLE_SESSION_LOGS = True
game.session_log('Game engine initialized')

Note: The session log system is nothing more than a list to do your “debug prints”. If you want a real
logging system, please use Python logging module.

session_logs()→ list
Return the complete session logs since instantiation.

Example:

3.6. engine 457

pygamelib Documentation, Release 1.3.0

game = Game.instance()
game.ENABLE_SESSION_LOGS = True
for line in game.logs():

print(line)

Note: The session log system is nothing more than a list to do your “debug prints”. If you want a real
logging system, please use Python logging module.

start()
Set the game engine state to RUNNING.

The game has to be RUNNING for actuate_npcs() and move_player() to do anything.

Example:

mygame.start()

state
Get/set the state of the game.

Parameters value (int) – The new state of the game (from the constants module).

Returns The state of the game.

Return type int

The observers are notified of a change of state with the pygamelib.engine.Game.state event. The new state
is passed as the value of the event.

stop()
Set the game engine state to STOPPED.

Example:

mygame.stop()

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

update_menu_entry(category, shortcut, message, data=None)
Update an entry of the menu.

Deprecated since version 1.3.0: This function will be removed in version 1.4.0

Update the message associated to a category and a shortcut.

Parameters

• category (str) – The category in which the entry is located.

458 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• shortcut (str) – The shortcut of the entry you want to update.

• message (various) – a message that explains what the shortcut does.

• data – a data that you can get from the menu object.

Important: If the entry have no shortcut it’s advised not to try to update unless you have only one
NoneType as a shortcut.

Example:

game.add_menu_entry('main_menu','d','Go right')
game.update_menu_entry('main_menu','d','Go LEFT',constants.LEFT)

3.6.3 Inventory

class pygamelib.engine.Inventory(max_size=10, parent=None)
Bases: pygamelib.base.PglBaseObject

A class that represent the Player (or NPC) inventory.

This class is pretty straightforward: it is an object container, you can add, get and remove items and you can get
a value from the objects in the inventory.

On top of that, starting with version 1.3.0, a constraints system has been added. It allows to specify a certain
amount of constraints that will be applied to the items when they are added to the inventory.

For the moment, constraints are limited to the number of items with a given type/ name/value (any combination
of these three).

When a constraint is violated, the item is not added to the inventory and a notification is broadcasted to the
observers of the inventory. A PglInventoryException is also raised with name “constraint_violation” and the
constraint details in description.

Note: You can print() the inventory. This is mostly useful for debug as you want to have a better display in
your game.

Warning: The Game engine and Player takes care to initiate an inventory for the player, you don’t need
to do it.

__init__(max_size=10, parent=None)
The constructor takes two parameters: the maximum size of the inventory. And the Inventory owner/parent.

Each BoardItem that is going to be put in the inventory has a size (default is 1), the total addition of all
these size cannot exceed max_size.

Parameters

• max_size (int) – The maximum size of the inventory. Default value: 10.

• parent – The parent object (usually a BoardItem).

3.6. engine 459

pygamelib Documentation, Release 1.3.0

Methods

__init__([max_size, parent]) The constructor takes two parameters: the maximum
size of the inventory.

add_constraint(constraint_name, item_type,
. . .)
add_item(item) Add an item to the inventory.
attach(observer) Attach an observer to this instance.
available_space() Return the available space in the inventory.
clear_constraints() Remove all constraints from the inventory.
delete_item(name) Delete THE FIRST item matching the name given in

argument.
delete_items(name) Delete ALL items matching the name given in argu-

ment.
detach(observer) Detach an observer from this instance.
empty() Empty the inventory.
get_item(name) Return the FIRST item corresponding to the name

given in argument.
get_items(name) Return ALL items matching the name given in argu-

ment.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

items_name() Return the list of all items names in the inventory.
load(data) Load serialized data into a new Inventory object.
notify([modifier]) Notify all the observers that a change occurred.
remove_constraint(constraint_name)
search(query) Search for objects in the inventory.
serialize() Serialize the inventory in a dictionary.
size() Return the cumulated size of the inventory.
store_screen_position(row, column) Store the screen position of the object.
value() Return the cumulated value of the inventory.

Attributes

constraints
items Return the list of all items in the inventory.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

add_constraint(constraint_name: str, item_type: str = None, item_name: str = None, item_value:
int = None, max_number: int = 1)

Add a constraint to the inventory.

Parameters

• constraint_name (str) – the name of the constraint.

• item_type (str) – the type of the item.

• item_name (int) – the name of the item.

• item_value – the value of the item.

460 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• max_number (int) – the maximum number of items that match the item_* parameters
that can be in the inventory.

The observers are notified of the addition of the constraint with the
pygamelib.engine.Inventory.add_constraint event. The constraint that was added is passed as the
value of the event as a dictionnary.

New in version 1.3.0.

add_item(item)
Add an item to the inventory.

This method will add an item to the inventory unless:

• it is not an instance of BoardItem,

• you try to add an item that is not pickable,

• there is no more space left in the inventory (i.e: the cumulated size of the inventory + your
item.inventory_space is greater than the inventory max_size)

• An existing constraint is violated.

Parameters item (BoardItem) – the item you want to add

Returns The index of the newly added item in the inventory or None if the item could not be
added.

Return type int|None

Raise PglInventoryException, PglInvalidTypeException

When an item is successfully added, the observers are notified of the change with the
pygamelib.engine.Inventory.add_item event. The item that was added is passed as the value of the event.

When something goes wrong exceptions are raised. The following exceptions can be raised
(PglInventoryException):

• not_pickable: The item you try to add is not pickable.

• not_enough_space: There is not enough space left in the inventory.

• constraint_violation: A constraint is violated.

A PglInvalidTypeException is raised when the item you try to add is not a BoardItem.

Example:

item = Treasure(model=graphics.Models.MONEY_BAG,size=2,name='Money bag')
try:

mygame.player.inventory.add_item(item)
expect PglInventoryException as e:

if e.error == 'not_enough_space':
print(f"Impossible to add {item.name} to the inventory, there is no"
"space left in it!")
print(e.message)

elif e.error == 'not_pickable':
print(e.message)

Note: In versions prior to 1.3.0, the inventory object was changing the name of the item if another item
with the same name was already in the inventory. This is (fortunately) not the case anymore. The Inventory

3.6. engine 461

pygamelib Documentation, Release 1.3.0

class does NOT modify the items that are stored into it anymore.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

available_space()→ int
Return the available space in the inventory.

That is to say, Inventory.max_size - Inventory.size().

The returned number is comprised between 0 and Inventory.max_size.

Returns The size as an int.

Return type int

Example:

method()

clear_constraints()
Remove all constraints from the inventory.

The observers are notified with the pygamelib.engine.Inventory.clear_constraints event. The value is set to
None for this event.

New in version 1.3.0.

constraints

Return the list of all constraints in the inventory.

Returns a list of constraints (dict)

Return type list

Example:

for cstr in game.player.inventory.constraints:
print(f" - {cstr[name]}")

delete_item(name)
Delete THE FIRST item matching the name given in argument.

Parameters name (str) – the name of the items you want to delete.

462 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

When an item is successfully removed, the observers are notified of the change with the
pygamelib.engine.Inventory.delete_item event. The item that was deleted is passed as the value of the
event.

Example:

mygame.player.inventory.delete_item('heart_1')

Important: Starting with version 1.3.0 this method does not raise exceptions anymore. It’s behavior also
changed from deleting a precise item to deleting the first one that matches the name.

delete_items(name)
Delete ALL items matching the name given in argument.

Parameters name (str) – the name of the items you want to delete.

The observers are notified of each deletion with the pygamelib.engine.Inventory.delete_item event. The
item that was deleted is passed as the value of the event.

Example:

mygame.player.inventory.delete_items('heart_1')

New in version 1.3.0.

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

empty()
Empty the inventory.

The observers are notified that the Inventory has been emptied with the pygamelib.engine.Inventory.empty
event. Nothing is passed as the value.

Example:

if inventory.size() > 0:
inventory.empty()

get_item(name)
Return the FIRST item corresponding to the name given in argument.

Parameters name (str) – the name of the item you want to get.

Returns An item.

Return type BoardItem | None

Example:

3.6. engine 463

pygamelib Documentation, Release 1.3.0

life_container = mygame.player.inventory.get_item('heart_1')
if isinstance(life_container,GenericActionableStructure):

life_container.action(life_container.action_parameters)

Note: Please note that the item object reference is returned but nothing is changed in the inventory. The
item hasn’t been removed.

Important: Starting with version 1.3.0 this method does not raise exceptions anymore. Instead it returns
None if no item is found. It’s behavior also changed from returning a precise item to the first one that
matches the name.

get_items(name)
Return ALL items matching the name given in argument.

Parameters name (str) – the name of the item you want to get.

Returns An array of items.

Return type list

Example:

for life_container in mygame.player.inventory.get_items('heart_1'):
if isinstance(life_container,GenericActionableStructure):

life_container.action(life_container.action_parameters)

Note: Please note that the item object reference is returned but nothing is changed in the inventory. The
item hasn’t been removed.

New in version 1.3.0.

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

items
Return the list of all items in the inventory.

Returns a list of BoardItem

Return type list

464 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

for item in game.player.inventory.items:
print(f"This is a mighty item: {item.name}")

items_name()
Return the list of all items names in the inventory.

Returns a list of string representing the items names.

Return type list

classmethod load(data: dict)
Load serialized data into a new Inventory object.

Parameters data (dict) – The serialized data

Returns A new Inventory object.

Return type Inventory

New in version 1.3.0.

Example:

my_player.inventory = Inventory.load(data)

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

remove_constraint(constraint_name: str)

Remove a constraint from the inventory.

Parameters constraint_name (str) – the name of the constraint.

The observers are notified of the removal of the constraint with the
pygamelib.engine.Inventory.remove_constraint event. The constraint that was removed is passed as
the value of the event as a dictionnary.

New in version 1.3.0.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

3.6. engine 465

pygamelib Documentation, Release 1.3.0

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

search(query)
Search for objects in the inventory.

All objects that matches the query are going to be returned. Search is performed on the name and type of
the object.

Parameters query – the query that items in the inventory have to match to be returned

Returns a list of BoardItems.

Return type list

Example:

for item in game.player.inventory.search('mighty'):
print(f"This is a mighty item: {item.name}")

serialize()
Serialize the inventory in a dictionary.

Returns The serialized data.

Return type dict

New in version 1.3.0.

Example:

json.dump(my_inventory.serialize(), out_file)

size()
Return the cumulated size of the inventory. It can be used in the UI to display the size compared to
max_size for example.

Returns size of inventory

Return type int

Example:

print(f"Inventory: {mygame.player.inventory.size()}/"
"{mygame.player.inventory.max_size}")

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

466 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

an_object.store_screen_coordinate(3,8)

value()
Return the cumulated value of the inventory. It can be used for scoring for example.

Returns value of inventory

Return type int

Example:

if inventory.value() >= 10:
print('Victory!')
break

3.6.4 Screen

class pygamelib.engine.Screen(width: int = None, height: int = None)
Bases: pygamelib.base.PglBaseObject

The screen object is pretty straightforward: it is an object that allow manipulation of the screen.

Warning: Starting with version 1.3.0 the terminal parameter has been removed. The Screen object now
takes advantage of base.Console.instance() to get a reference to a blessed.Terminal object.

Version 1.3.0 introduced a new way of managing the screen. It rely on an internally managed display buffer that
allows for easier positioning and more regular rendering. This comes at a cost though as the performances takes
a hit. The screen should still be able to be refreshed between 50 and 60+ times per seconds (and still around 30
times per second within a virtual machine). These numbers obviously depends on the terminal used, the screen
size and the content to display.

This change introduce two ways of displaying things on the screen:

• The Improved Screen Management stack (referred to as ISM later in the doc).

• The Legacy Direct Display stack.

It is safer to consider them mutually incompatible. In reality the Improved Screen Management will always
use the whole display but you can use the methods from the Direct Display stack to write over the buffer. It is
really NOT advised.

We introduced the Improved Screen Management stack because the direct display is messy and does not allow
us to do what we want in term of positioning, UI, etc.

A typical usage consist of:

• Placing elements on the screen with place()

• Update the screen with update()

That’s it! The screen maintain its own state and knows when to re-render the display buffer. You don’t need to
manually call render(). This helps with performances as the frame buffer is only rendered when needed.

Example:

screen = Screen()
The next 3 lines do the same thing: display a message centered on the screen.
Screen Buffer style

(continues on next page)

3.6. engine 467

pygamelib Documentation, Release 1.3.0

(continued from previous page)

screen.place('This is centered', screen.vcenter, screen.hcenter)
screen.update()
Direct Display style
screen.display_at('This is centered', screen.vcenter, screen.hcenter)
The rest of this example uses the Screen Buffer (because placing a Board
anywhere on the Screen is not supported by the Direct Display stack).
delete the previous message and place a Board at the center of the screen
screen.delete(screen.vcenter, screen.hcenter)
screen.place(

my_awesome_board,
screen.vcenter - int(my_awesome_board.height/2),
screen.hcenter - int(my_awesome_board.width/2)

)
screen.update()

Precisions about the Improved Screen Management stack:

You don’t need to know how the frame buffer works to use it. However, if you are interested in more details,
here they are.

The Improved Screen Management stacks uses a double numpy buffer to represent the screen. One buffer is
used to place elements as objects (that’s the buffer managed by place() or delete()). It is never directly
printed to the screen. It is here to simplify screen maintenance. This buffer is called the display buffer. It is
practical to use to place, move and delete elements on the screen space. But as said before it cannot be directly
printed to the screen. It needs to be rendered first.

For example, if you want to use a sprite on a title screen and want to move it around (or animate the screen).
Normally (i.e with Direct Display) you would display the sprite at a specific position and then would either call
clear() or overwrite all the sprite with spaces to erase and replace and/or move it. And that’s very slow.

With the Improved Screen Management you place() the sprite and then just delete() it. And since it is
only one object reference it is a very fast operation (we only place or delete one cell of the buffer).

When update() is called, it first look at the state of the buffers and call render() if needed (i.e: if something
has change in the display buffer). The buffers are only rendered when needed.

When render() is called it goes through the display buffer and render each elements transforming it into a
printable sequence that is stored in the frame buffer. The rendering is done from the bottom right corner of the
screen to the top left corner. This allows for cleaning junk characters at no additional cost.

TL;DR: The display buffer hold the objects placed on the screen while the frame buffer hold the rendered
representation of the display buffer.

The Screen object also inherits from the PglBaseObject and if the object that is place()-ed is an instance
of PglBaseObject, the screen will automatically attach itself to the object. When notified of a change it will
trigger a render cycle before the next update.

In terms of performances, depending on your terminal emulator and CPU you will most certainly achieve over
30 FPS. Here are a couple of benchmark results:

• On an Intel Core i7 @ 4.20 GHz: 50 to 70 FPS.

• On an AMD Ryzen 9 5950X @ 4.80 GHz: 60 to 100 FPS.

The new Improved Screen Management is faster than the legacy stack in most of the cases. The only case
when the legacy Direct Display stack might be faster is in the case of a game or application with only simple
ASCII characters and not a lot of things to display.

Here are some compiled benchmark results of both of systems over 150 runs:

468 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Benchmark Improved Screen Man-
agement

Legacy Direct Display

Sprite (place, render and update screen), Sprite
size: 155x29

10.0 msec. or 71 FPS 380.0 msec. or 3 FPS

Sprite 200 updates 620.0 msec. or 76 FPS 9830.0 msec. or 20 FPS
Phase 1 - 500 frames. Single board avg load 11.02 msec. per frame or

91 FPS
12.65 msec. per frame or
79 FPS

Phase 2 - 500 frames. Dual board high load 18.18 msec. per frame or
55 FPS

28.34 msec. per frame or
35 FPS

Overall - 1000 frames. 14.60 msec. per frame or
68 FPS

20.49 msec. per frame or
49 FPS

You can use the 2 benchmark scripts to compare on your system:

• benchmark-screen-buffer.py

• benchmark-screen-direct-display.py

The frame buffer system has been tested on the following terminals:

• xterm-256color

• Konsole

• Kitty

• Alacritty

• GNOME Terminal

Performances are consistants across the different terminals. The only exception is the GNOME Terminal, which
is slower than the others (about 20~30 % slower).

__init__(width: int = None, height: int = None)
The constructor takes the following (optional) parameters.

Parameters

• width (int) – The width of the screen.

• height (int) – The height of the screen.

Setting any of these parameters fixes the screen size regardless of the actual console/terminal resolution.
Leaving any of these parameters unset will let the constructor use the actual console/terminal resolution
instead.

Please have a look at the examples for more on this topic.

Example:

Let's assume a terminal resolution of 170(width)x75(height).
screen = Screen()
Next line display: "Screen width=170 height=75"
print(f"Screen width={screen.width} height={screen.height}")
screen = Screen(50)
Next line display: "Screen width=50 height=75"
print(f"Screen width={screen.width} height={screen.height}")
screen = Screen(height=50)
Next line display: "Screen width=170 height=50"
print(f"Screen width={screen.width} height={screen.height}")
screen = Screen(50, 50)

(continues on next page)

3.6. engine 469

pygamelib Documentation, Release 1.3.0

(continued from previous page)

Next line display: "Screen width=50 height=50"
print(f"Screen width={screen.width} height={screen.height}")

Methods

__init__(width, height) The constructor takes the following (optional) pa-
rameters.

attach(observer) Attach an observer to this instance.
clear() This methods clear the screen.
clear_buffers() This methods clear the Screen’s buffers (both display

and frame buffer).
clear_frame_buffer() This methods clear the frame buffer (but not the dis-

play buffer).
delete([row, column]) Delete a element on screen.
detach(observer) Detach an observer from this instance.
display_at(text[, row, column, clear_eol, . . .]) Displays text at a given position.
display_line(*text[, end, file, flush]) A wrapper to Python’s print() builtin function except

it will always add an ANSI sequence to clear the end
of the line.

display_sprite(sprite[, filler, file, flush]) Displays a sprite at the current cursor position.
display_sprite_at(sprite[, row, column, . . .]) Displays a sprite at a given position.
force_render() Force the immediate rendering of the display buffer.
force_update() Same as force_render() but also force the im-

mediate screen update.
get(row, column) Get an element from the display buffer at the speci-

fied screen coordinates.
handle_notification(subject[, attribute,
value])

When a Screen object is notified, it set the display
buffer to be rendered before the next update.

notify([modifier]) Notify all the observers that a change occurred.
place([element, row, column, rendering_pass]) Place an element on the screen.
render() Render the display buffer into the frame buffer.
store_screen_position(row, column) Store the screen position of the object.
trigger_rendering() Trigger the frame buffer for rendering at the next up-

date.
update() Update the screen.

Attributes

buffer The buffer property return a numpy.array as a
writable frame buffer.

hcenter Return the horizontal center of the screen as an int.
height This property returns the height of the terminal win-

dow in number of characters.
need_rendering This property return True if the display buffer has

been updated since the last rendering cycle and the
screen needs to re-render the frame buffer.

screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

Continued on next page

470 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 91 – continued from previous page
vcenter Return the vertical center of the screen as an int.
width This property returns the width of the terminal win-

dow in number of characters.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

buffer
The buffer property return a numpy.array as a writable frame buffer.

The buffer is a 2D plane (like a screen) and anything can render in it. However, it is recommended to place
objects through Screen.place() and update the screen with Screen.update() (update calls render() if needed
and do the actual display).

Warning: Everything that is stored in the buffer must be printable. Each cell of the frame buffer repre-
sent a single character on screen, so you need to take care of that when you write into that buffer or you
will corrupt the display. If need_rendering returns True, you need to manually call render()
before writing anything into the frame buffer. Or else it will be squashed in the next rendering cycle.

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

clear()
This methods clear the screen.

clear_buffers()
This methods clear the Screen’s buffers (both display and frame buffer).

Make sure that you really want to clear the buffers before doing so, because this is a slow operation.

Once the buffer is cleared nothing is left in it, you have to reposition (place) everything.

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

3.6. engine 471

pygamelib Documentation, Release 1.3.0

clear_frame_buffer()
This methods clear the frame buffer (but not the display buffer). This means that the next time update()
is called, rendering will be triggered.

Make sure that you really want to clear the buffers before doing so, because this is a slow operation. It
might however be faster than manually update screen cells.

Once the buffer is cleared nothing is left in it, it sets the Screen for a rendering update.

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

delete(row=None, column=None)
Delete a element on screen.

It is important to note that if you placed an element that occupies more than 1 cell, you only have to erase
that specific position not the entire area.

Parameters

• row (int) – The row coordinate of the element to delete.

• column (int) – The column coordinate of the element to delete.

Example:

board = Board(size=[20,20])
screen.place(board, 2, 2)
With this we have placed a board at screen coordinates 2,2 and the board
will display on screen coordinates from 2,2 to 22,22.
However, to delete the board we don't need to clean all these cells.
Just the one where we placed the board:
screen.delete(2, 2)

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

472 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

display_at(text, row=0, column=0, clear_eol=False, end=’\n’,
file=<colorama.ansitowin32.StreamWrapper object>, flush=False)

Displays text at a given position. If clear_eol is True, also clear the end of line. Additionally you can
specify all the parameters of a regular print() if you need to.

Parameters

• text (str) – The text to display. Please note that in that case text is a single string.

• row (int) – The row position in the terminal window.

• column (int) – The column position in the terminal window.

• clear_eol (bool) – If True this clears the end of the line (everything after the last
character displayed by that method).

• end (str) – end sub string added to the printed text. Usually a carriage return.

• file (stream) –

• flush (bool) –

Important: The cursor is only moved for printing the text. It is returned to its previous position after.

Note: The position respect the row/column convention accross the library. It is reversed compared to the
blessed module.

Example:

screen.display_at('This is centered',
int(screen.height/2),
int(screen.width/2),
clear_eol=True,
end=''

)

Note: This method is part of the Legacy Direct Display rendering stack and is incompatible with the
methods identified as being part of the Improved Screen Management stack.

display_line(*text, end=’\n’, file=<colorama.ansitowin32.StreamWrapper object>, flush=False)
A wrapper to Python’s print() builtin function except it will always add an ANSI sequence to clear the end
of the line. Making it more suitable to use in a user_update callback.

The reason is that with line with variating length, if you use run() but not clear(), some characters will
remain on screen because run(), for performances concerns does not clear the entire screen. It just bring
the cursor back to the top left corner of the screen. So if you want to benefit from the increase performances
you should use display_line().

Parameters

• *text (str|objects) – objects that can serialize to str. The ANSI sequence to clear
the end of the line is always appended to the the text.

• end (str) – end sub string added to the printed text. Usually a carriage return.

• file (stream) –

3.6. engine 473

pygamelib Documentation, Release 1.3.0

• flush (bool) –

Example:

screen.display_line(f'This line will display correctly: {elapsed_time}')
That line will have trailing characters that are not cleared after redraw
if you don't use clear().
print(f'That one won't: {elapsed_time}')

New in version 1.2.0.

Note: This method is part of the Legacy Direct Display rendering stack and is incompatible with the
methods identified as being part of the Improved Screen Management stack.

display_sprite(sprite, filler= [0m, file=<colorama.ansitowin32.StreamWrapper object>,
flush=False)

Displays a sprite at the current cursor position. If a Sprixel is empty, then it’s going to be replaced by
filler.

Parameters

• sprite (Sprite) – The sprite object to display.

• filler (Sprixel) – A sprixel object to replace all empty sprixels in sprite.

• file (stream) –

• flush – print() parameter to flush the stream after printing

Examples:

screen.display_sprite(panda_sprite)

New in version 1.3.0.

Note: This method is part of the Legacy Direct Display rendering stack and is incompatible with the
methods identified as being part of the Improved Screen Management stack.

display_sprite_at(sprite, row=0, column=0, filler= [0m, file=<colorama.ansitowin32.StreamWrapper
object>, flush=False)

Displays a sprite at a given position. If a Sprixel is empty, then it’s going to be replaced by filler.

Parameters

• sprite (Sprite) – The sprite object to display.

• row (int) – The row position in the terminal window.

• column (int) – The column position in the terminal window.

• filler (Sprixel) – A sprixel object to replace all empty sprixels in sprite.

• file (stream) –

• flush (bool) – print() parameter to flush the stream after printing

Example:

474 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

screen.display_sprite_at(panda_sprite,
int(screen.height/2),
int(screen.width/2)
)

New in version 1.3.0.

Note: This method is part of the Legacy Direct Display rendering stack and is incompatible with the
methods identified as being part of the Improved Screen Management stack.

force_render()
Force the immediate rendering of the display buffer.

If you just want to mark the frame buffer for rendering before the next update use
trigger_rendering() instead.

Example:

screen.force_render()

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

force_update()
Same as force_render() but also force the immediate screen update.

Example:

screen.force_update()

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

get(row: int, column: int)
Get an element from the display buffer at the specified screen coordinates.

The element is returned from the display buffer (pre-rendering).

Parameters

• row (int) – The row of the element to get.

• column (int) – The column of the element to get.

Example:

board = Board(size=[20,20])
screen.place(board, 2, 2)
my_board = screen.get(2,2)

3.6. engine 475

pygamelib Documentation, Release 1.3.0

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

handle_notification(subject, attribute=None, value=None)
When a Screen object is notified, it set the display buffer to be rendered before the next update.

hcenter
Return the horizontal center of the screen as an int.

Example:

screen.place('horizontally centered', 0, screen.hcenter)

height
This property returns the height of the terminal window in number of characters.

need_rendering
This property return True if the display buffer has been updated since the last rendering cycle and the
screen needs to re-render the frame buffer.

It returns False otherwise.

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

place(element=None, row=None, column=None, rendering_pass=1)
Place an element on the screen.

This method places an element in the screen display buffer. The element is then going to be rendered in
the frame buffer before being printed on screen.

The following elements can be placed on screen:

• All BoardItem derivatives.

476 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• All BoardComplexItem derivatives.

• Board object.

• Text objects.

• Sprite objects.

• Sprixel objects.

• Regular Python str.

• Any object that expose a render_to_buffer() method.

Here is the required signature for render_to_buffer:

render_to_buffer(self, buffer, row, column, buffer_height, buffer_width)

The buffer parameter will always be a numpy array, row and column are the position to render to. Finally
buffer_height and buffer_width are the dimension of the buffer.

The buffer is rendered in 2 passes. By default all elements are rendered in pass 1. But if for some reason
something needs to be drawn over other elements (like if a dialog/popup is needed for example), the
element can be set to be rendered only during the second pass.

Parameters

• element (various) – The element to place.

• row (int) – The row to render to.

• column (int) – The column to render to.

• rendering_pass (int) – When to render the element. You can have any number of
rendering passes but you have to be careful of performances. Higher passses render on top
of lower passes. You can see the render passes as plane to write on. The default pass is 1.

Warning: to be rendered on the second+ pass an element needs to implement render_to_buffer(. . .).
This excludes all standard types (but not Text). Regular Python strings and object that can be print()
can still be used in the first pass.

Example:

screen.place(my_sprite, 0, 0)

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

render()
Render the display buffer into the frame buffer.

Example:

screen.render()
screen.update()

3.6. engine 477

pygamelib Documentation, Release 1.3.0

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

trigger_rendering()
Trigger the frame buffer for rendering at the next update.

Example:

screen.trigger_rendering()

New in version 1.3.0.

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Direct Display stack.

update()
Update the screen. Update means write the frame buffer on screen.

Example:

mygame = Game()
sc = core.SpriteCollection.load_json_file('title_screens.spr')
mygame.screen.place(sc['welcome_screen'], 0, 0)
mygame.screen.update()

New in version 1.3.0.

478 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Note: This method is part of the Improved Screen Management rendering stack and is incompatible
with the methods identified as being part of the Legacy Direct Display stack.

vcenter
Return the vertical center of the screen as an int.

Example:

screen.place('vertically centered', screen.vcenter, 0)

width
This property returns the width of the terminal window in number of characters.

3.7 gfx

The gfx (for graphics) sub-module holds all the classes related to the graphics system.

3.7.1 core

Animation

class pygamelib.gfx.core.Animation(display_time=0.05, auto_replay=True, frames=None,
animated_object=None, refresh_screen=None, ini-
tial_index=None, parent=None)

Bases: object

The Animation class is used to give the ability to have more than one model for a BoardItem. A Board-
Item can have an animation and all of them that are available to the Game object can be animated through
Game.animate_items(lvl_number). To benefit from that, BoardItem.animation must be set explicitely. An ani-
mation is controlled via the same state system than the Actuators.

The frames are all stored in a list called frames, that you can access through Animation.frames.

Parameters

• display_time (float) – The time each frame is displayed

• auto_replay (bool) – controls the auto replay of the animation, if false once the ani-
mation is played it stays on the last frame of the animation.

• frames (array[str| Sprixel | Sprite] | SpriteCollection) – an array of “frames”
(string, sprixel, sprite) or a sprite collection

• animated_object (BoardItem) – The object to animate. This parameter is depre-
cated. Please use parent instead. It is only kept for backward compatibility. The parent
parameter always takes precedence over this one.

• parent (BoardItem) – The parent object. It is also the object to animate. Important:
We cannot animate anything else that BoardItems and subclasses.

• refresh_screen (function) – The callback function that controls the redrawing of
the screen. This function reference should come from the main game.

3.7. gfx 479

pygamelib Documentation, Release 1.3.0

Important: When a SpriteCollection is used as the frames parameter the sprites’ names are ordered so
the frames are displayed in correct order. This means that ‘walk_1’ is going to be displayed before ‘walk_2’.
Otherwise SpriteCollection is un-ordered.

Example

def redraw_screen(game_object):
game_object.clear_screen()
game_object.display_board()

item = BoardItem(model=Sprite.ALIEN, name='Friendly Alien')
By default BoardItem does not have any animation, we have to
explicitly create one
item.animation = Animation(display_time=0.1, parent=item,

refresh_screen=redraw_screen)

__init__(display_time=0.05, auto_replay=True, frames=None, animated_object=None, re-
fresh_screen=None, initial_index=None, parent=None)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([display_time, auto_replay, . . .]) Initialize self.
add_frame(frame) Add a frame to the animation.
current_frame() Return the current frame.
load(data) Load a serialized Animation object.
next_frame() Update the parent’s model, sprixel or sprite with the

next frame of the animation.
pause() Set the animation state to PAUSED.
play_all() Play the entire animation once.
remove_frame(index) Remove a frame from the animation.
reset() Reset the Animation to the first frame.
search_frame(frame) Search a frame in the animation.
serialize() Serialize the Animation object.
start() Set the animation state to constants.RUNNING.
stop() Set the animation state to STOPPED.

Attributes

dtanimate The time elapsed since the last frame was displayed.

add_frame(frame)
Add a frame to the animation.

The frame has to be a string (that includes sprites from the Sprite module and squares from the Utils
module).

Raise an exception if frame is not a string.

Parameters frame (str|:class:Sprite‘|:class:‘Sprixel) – The frame to add to the animation.

Raise pygamelib.base.PglInvalidTypeException

480 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

item.animation.add_frame(Sprite.ALIEN)
item.animation.add_frame(Sprite.ALIEN_MONSTER)

current_frame()
Return the current frame.

Example:

item.model = item.animation.current_frame()

dtanimate
The time elapsed since the last frame was displayed.

classmethod load(data)
Load a serialized Animation object.

Parameters data (dict) – The serialized Animation object.

Returns The loaded Animation object.

Return type Animation

next_frame()
Update the parent’s model, sprixel or sprite with the next frame of the animation.

That method takes care of automatically resetting the animation if the last frame is reached if the state is
constants.RUNNING.

If the the state is PAUSED it still update the parent.model and returning the current frame. It does NOT
actually go to next frame.

If parent is not a sub class of BoardItem an exception is raised.

Raise PglInvalidTypeException

Example:

item.animation.next_frame()

Warning: If you use Sprites as frames, you need to make sure your Animation is attached to a
BoardComplexItem.

pause()
Set the animation state to PAUSED.

Example:

item.animation.pause()

play_all()
Play the entire animation once.

That method plays the entire animation only once, there is no auto replay as it blocks the game (for the
moment).

If the the state is PAUSED or STOPPED, the animation does not play and the method return False.

If parent is not a sub class of BoardItem an exception is raised.

3.7. gfx 481

pygamelib Documentation, Release 1.3.0

If screen_refresh is not defined or is not a function an exception is raised.

Raise PglInvalidTypeException

Example:

item.animation.play_all()

remove_frame(index)
Remove a frame from the animation.

That method remove the frame at the specified index and return it if it exists.

If the index is out of bound an exception is raised. If the index is not an int an exception is raised.

Parameters index (int) – The index of the frame to remove.

Return type str

Raise IndexError, PglInvalidTypeException

Example:

item.animation.remove_frame(item.animation.search_frame(
Sprite.ALIEN_MONSTER)

)

reset()
Reset the Animation to the first frame.

Example:

item.animation.reset()

search_frame(frame)
Search a frame in the animation.

That method is returning the index of the first occurrence of “frame”.

Raise an exception if frame is not a string.

Parameters frame (str) – The frame to find.

Return type int

Raise PglInvalidTypeException

Example:

item.animation.remove_frame(
item.animation.search_frame(Sprite.ALIEN_MONSTER)

)

serialize()
Serialize the Animation object.

The refresh_screen callback function is not serialized. Neither is the parent.

Returns A dictionary containing the Animation object’s data.

Return type dict

start()
Set the animation state to constants.RUNNING.

482 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

If the animation state is not constants.RUNNING, animation’s next_frame() function return the last frame
returned.

Example:

item.animation.start()

stop()
Set the animation state to STOPPED.

Example:

item.animation.stop()

Font

class pygamelib.gfx.core.Font(font_name: str = None, search_directories: list = None)
Bases: object

New in version 1.3.0.

The Font class allow to load and manipulate a pygamelib “font”. A font consist of a sprite collection and a
configuration file.

If you want to create your own font, please have a look at the font creation tutorial.

In general the Font class is not used directly but passed to a Text object. The text is then rendered using the
font.

For performance consideration, it is advised to load the font once and to reuse the object in multiple text objects.

Glyphs are cached (particularly if you change the colors) so it is always beneficial to reuse a font object.

Example:

myfont = Font("8bits")
If you print() mytext, it will use the terminal font and print in cyan.
But if you Sreen.place() it, it will render using the 8bits sprite font.
mytext = Text("Here's a cool text", fg_color = Color(0,255,255), font=myfont)

__init__(font_name: str = None, search_directories: list = None)→ None

Parameters

• font_name (str) – The name of the font to load upon object construction.

• search_directories (list) – A list of directories to search for the font. The items
of the list are strings representing a relative or absolute path.

Important: The search directories must contain a “fonts” directory, that itself contains the font at the
correct format.

Note: Version 1.3.0 comes with a pygamelib specific font called 8bits. It also comes with a handfull of
fonts imported from the figlet fonts. Please go to http://www.figlet.org/ for more information.

The conversion script will be made available in the Pygamelib Github organization (https://github.com/
pygamelib).

3.7. gfx 483

http://www.figlet.org/
https://github.com/pygamelib
https://github.com/pygamelib

pygamelib Documentation, Release 1.3.0

Example:

myfont = Font("8bits")

Methods

__init__(font_name, search_directories)
param font_name The name of the font

to load upon object construction.

glyph(glyph_name, fg_color, bg_color) This method take a glyph name in parameter and re-
turns its representation as a Sprite.

load(font_name) Load a font by name.

Attributes

colorable Returns the “colorability” of the font as specified in
the font config file.

glyphs_map Returns the glyph map of the font as specified in the
font config file.

height Returns the height of the font as specified in the font
config file.

horizontal_spacing Returns the horizontal spacing recommended by the
font (as specified in the font config file).

monospace Returns if the font is monospace as specified in the
font config file.

name Return the name of the font.
scalable Returns the scalability of the font as specified in the

font config file.
vertical_spacing Returns the vertical spacing recommended by the

font (as specified in the font config file).

colorable
Returns the “colorability” of the font as specified in the font config file.

Return type bool

glyph(glyph_name: str = None, fg_color: pygamelib.gfx.core.Color = None, bg_color:
pygamelib.gfx.core.Color = None)→ pygamelib.gfx.core.Sprite

This method take a glyph name in parameter and returns its representation as a Sprite.

The glyph name is usually the name of a character (like “a”) but it is not mandatory and can be anything.
The default glyph (returned when no glyph matches the requested glyph) is called “default” for example.

Parameters glyph_name (str) – The glyph name

Returns A glyphe as a Sprite

Return type Sprite

Example:

myfont = Font("8bits")
row = 5

(continues on next page)

484 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

(continued from previous page)

column = 10
for letter in "this is a text":

glyph = myfont.glyph(letter)
screen.place(glyph, row, column)
column += glyph.width + myfont.horizontal_spacing()

Please note that in real life you would just do this
mytext = Text("this is a text", font=myfont)
screen.place(mytext, row, column)

glyphs_map
Returns the glyph map of the font as specified in the font config file.

Return type dict

height
Returns the height of the font as specified in the font config file.

Return type int

Example:

screen.place(text, last_row + myfont.height, first_text_column)

horizontal_spacing
Returns the horizontal spacing recommended by the font (as specified in the font config file).

As a user of the font class using the Font class to change the look of some text, you will rarely use that
value directly (it is directly used by Text.render_to_buffer()).

If your goal is to use the Font class to do glyph rendering as you see fit, use the horizontal spacing value
to place each glyph relatively to the one on its left or right.

Return type int

load(font_name: str = None)→ None
Load a font by name. Once the font is loaded glyphs can be accessed through the glyph() method.

This method is automatically called is the Font constructor is called with a font name.

Parameters font_name (str) – The name of the font to load upon object construction.

Example:

The 2 following examples do exactly the same thing.
Example 1: instantiate and load
myfont = Font()
myfont.load("8bits")
Example 2: load from instantiation
myfont2 = Font("8bits")
At that point myfont and myfont2 are exactly the same (and there is no
good justification to instantiate or load the font twice).

monospace
Returns if the font is monospace as specified in the font config file.

Return type bool

name
Return the name of the font. The name is the string that was used to load the font.

Example:

3.7. gfx 485

pygamelib Documentation, Release 1.3.0

myfont = Font("8bits")
if myfont.name() != "8bits":

print("Something very wrong just occurred!")

scalable
Returns the scalability of the font as specified in the font config file.

Return type bool

vertical_spacing
Returns the vertical spacing recommended by the font (as specified in the font config file).

Return type int

Example:

screen.place(
text,
last_row + myfont.height() + myfont.vertical_spacing(),
first_text_column

)

SpriteCollection

class pygamelib.gfx.core.SpriteCollection(data=None)
Bases: collections.UserDict

SpriteCollection is a dictionnary class that derives collections.UserDict.

Its main goal is to provide an easy to use object to load and save sprite files. On top of traditional dict method,
it provides the following capabilities:

• loading and writing from and to JSON files,

• data serialization,

• shortcut to add sprites to the dictionnary.

A SpriteCollection is an unordered indexed list of Sprites (i.e a dictionnary).

Sprites are indexed by their names in that collection.

Example:

Load a sprite file
sprites_village1 = SpriteCollection.load_json_file('gfx/village1.spr')
display the Sprites with their name
for sprite_name in sprites_village1:

print(f'{sprite_name}:\n{sprites_village1[sprite_name]}')
Add an empty sprite with name 'house_placeholder'
sprites_village1.add(Sprite(name='house_placeholder'))
This is absolutely equivalent to:
sprites_village1['house_placeholder'] = Sprite(name='house_placeholder')
And now rewrite the sprite file with the new placeholder house
sprites_village1.to_json_file('gfx/village1.spr')

__init__(data=None)
Initialize self. See help(type(self)) for accurate signature.

486 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Methods

__init__([data]) Initialize self.
add(sprite) Add a Sprite to the collection.
clear()
copy()
fromkeys(iterable[, value])
get(k[,d])
items()
keys()
load(data) Load serialized data and return a new SpriteCollec-

tion object.
load_json_file(filename) Load a JSON sprite file into a new SpriteCollection

object.
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised.
popitem() as a 2-tuple; but raise KeyError if D is empty.
rename(old_key, new_key) Rename a key in the collection.
serialize() Return a serialized version of the SpriteCollection.
setdefault(k[,d])
to_json_file(filename) Export the SpriteCollection object in JSON and

writes it on the disk.
update([E,]**F) If E present and has a .keys() method, does: for k in

E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is
followed by: for k, v in F.items(): D[k] = v

values()

add(sprite)
Add a Sprite to the collection. This method is simply a shortcut to the usual dictionnary affectation. The
collection requires the name of the Sprite to be the key. That method does that automatically.

Parameters sprite (Sprite) – A Sprite object to add to the collection.

Warning: As SpriteCollection index Sprites by their name if you change the Sprite’s name after
adding it to the collection you will need to manually update the keys.

Example:

sprites_village1 = SpriteCollection.load_json_file('gfx/village1.spr')
new_village = SpriteCollection()
new_village.add(copy.deepcopy(sprites_village1.get('bakery')))
print(new_village['bakery'])

clear()→ None. Remove all items from D.

copy()

classmethod fromkeys(iterable, value=None)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D’s items

3.7. gfx 487

pygamelib Documentation, Release 1.3.0

keys()→ a set-like object providing a view on D’s keys

classmethod load(data)
Load serialized data and return a new SpriteCollection object.

Parameters data (str) – Serialized data that need to be expanded into objects.

Returns A new SpriteCollection object.

Return type SpriteCollection

Example:

sprites_village1 = SpriteCollection.load(
sprites_village_template.serialize()

)

static load_json_file(filename)
Load a JSON sprite file into a new SpriteCollection object.

Parameters filename (str) – The complete path (relative or absolute) to the sprite file.

Returns A new SpriteCollection object.

Return type SpriteCollection

Example:

sprites_village1 = SpriteCollection.load_json_file('gfx/village1.spr')

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

rename(old_key, new_key)
Rename a key in the collection.

This methods also takes care of renaming the Sprite associated with the old key name.

Parameters

• old_key (str) – The key to rename

• new_key (str) – The new key name

Example:

my_collection.rename('panda', 'panda walk 01')

serialize()
Return a serialized version of the SpriteCollection. The serialized data can be pass to the JSON module to
export.

Returns The SpriteCollection object serialized as a dictionnary.

Return type dict

Example:

data = sprites_village1.serialize()

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

488 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

to_json_file(filename)
Export the SpriteCollection object in JSON and writes it on the disk.

Parameters filename (str) – The complete path (relative or absolute) to the sprite file to
write.

Example:

sprites_village1.to_json_file('gfx/village1.spr')

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D’s values

Sprite

class pygamelib.gfx.core.Sprite(sprixels=None, default_sprixel=None, parent=None, size=[2,
2], name=None)

Bases: pygamelib.base.PglBaseObject

The Sprite object represent a 2D “image” that can be used to represent any complex item. Obviously, a sprite
in the pygamelib is not really an image, it is a series of glyphs (or characters) with colors (foreground and
background) information.

A Sprite object is a 2D array of Sprixel.

If you use the climage python module, you can load the generated result into a Sprite through
Sprite.load_from_ansi_file().

Parameters

• sprixels (list) – A 2D array of Sprixel.

• default_sprixel (Sprixel) – A default Sprixel to complete lines that are not long
enough. By default, it’s an empty Sprixel.

• parent (BoardComplexItem (suggested)) – The parent object of this Sprite. If it’s left
to None, the BoardComplexItem constructor takes ownership of the sprite.

• size (list) – A 2 elements list that represent the width and height ([width, height]) of
the Sprite. It is only needed if you create an empty Sprite. If you load from a file or provide
an array of sprixels it’s obviously calculated automatically. Default value: [2, 2].

• name (str) – The name of sprite. If none is given, an UUID will be automatically gener-
ated.

Example:

void = Sprixel()
This represent a panda
panda_sprite = Sprite(

sprixels=[
[void, void, void, void, void, void, void, void],
[

Sprixel.black_rect(),
Sprixel.black_rect(),
void,
void,
void,

(continues on next page)

3.7. gfx 489

pygamelib Documentation, Release 1.3.0

(continued from previous page)

void,
Sprixel.black_rect(),
Sprixel.black_rect(),

],
[

Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),

],
[

Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.black_rect(),
Sprixel.black_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.black_rect(),
Sprixel.black_rect(),

],
[

Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.red_rect(),
Sprixel.red_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),

],
[

void,
void,
Sprixel.black_rect(),
Sprixel.black_rect(),
Sprixel.black_rect(),
Sprixel.black_rect(),
void,
void,

],
[

void,
void,
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.white_rect(),
Sprixel.black_rect(),
Sprixel.black_rect(),

],
[

void,
void,

(continues on next page)

490 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

(continued from previous page)

Sprixel.black_rect(),
Sprixel.black_rect(),
void,
void,
void,
void,

],
],

)

__init__(sprixels=None, default_sprixel=None, parent=None, size=[2, 2], name=None)
Like the object class, this class constructor takes no parameter.

Methods

__init__([sprixels, default_sprixel, . . .]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
calculate_size() Calculate the size of the sprite and update the size

variable.
copy() Returns a (deep) copy of the sprite.
detach(observer) Detach an observer from this instance.
empty() Empty the sprite and fill it with default sprixels.
flip_horizontally() Flip the sprite horizontally.
flip_vertically() Flip the sprite vertically (i.e upside/down).
from_text(text_object) Create a Sprite from a Text object.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Create a new Sprite object based on serialized data.
load_from_ansi_file(filename[, de-
fault_sprixel])

Load an ANSI encoded file into a Sprite object.

modulate(color, ratio) Modulate the sprite colors with the color in parame-
ters.

notify([modifier]) Notify all the observers that a change occurred.
render_to_buffer(buffer, row, column, . . .) Render the sprite from the display buffer to the frame

buffer.
scale([ratio]) Scale a sprite up and down using the nearest neighbor

algorithm.
serialize() Serialize a Sprite into a dictionary.
set_sprixel(row, column, value) Set a specific sprixel in the sprite to the given value.
set_transparency(state) This method enable transparent background to all the

sprite’s sprixels.
sprixel([row, column]) Return a sprixel at a specific position within the

sprite.
store_screen_position(row, column) Store the screen position of the object.
tint(color, ratio) Tint a copy of the sprite with the color.

Attributes

3.7. gfx 491

pygamelib Documentation, Release 1.3.0

height Property that returns the height of the Sprite.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
width Property that returns the width of the Sprite.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

calculate_size()
Calculate the size of the sprite and update the size variable.

The size is immediately returned.

It is done separately for concerns about performances of doing that everytime the size is requested.

Return type list

Example:

spr_size = spr.calculate_size()
if spr_size != spr.size:

raise PglException(
'perturbation_in_the_Force',
'Something is very wrong with the sprite!'

)

copy()
Returns a (deep) copy of the sprite.

New in version 1.3.0.

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

492 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

empty()
Empty the sprite and fill it with default sprixels.

Example:

player_sprite.empty()

flip_horizontally()
Flip the sprite horizontally.

This method performs a symmetry versus the vertical axis.

At the moment, glyph are not inverted. Only the position of the sprixels.

The flipped sprite is returned (original sprite is not modified).

Return type Sprite

Example:

reflection_sprite = player_sprite.flip_horizontally()

flip_vertically()
Flip the sprite vertically (i.e upside/down).

At the moment, glyph are not inverted. Only the position of the sprixels. There is one exception however,
as climage uses the ‘’ utf8 glyph as a marker, that specific glyph is inverted to ‘’ and vice versa.

The flipped sprite is returned (original sprite is not modified).

Return type Sprite

Example:

reflection_sprite = player_sprite.flip_vertically()

classmethod from_text(text_object)
Create a Sprite from a Text object.

Parameters text_object (Text) – A text object to transform into Sprite.

Example:

The Text object allow for easy manipulation of text
village_name = base.Text('Khukdale',fg_red, bg_green)
It can be converted into a Sprite to be displayed on the Board
village_sign = board_items.Tile(sprite=Sprite.from_text(village_name))
And can be used as formatted text
notifications.push(f'You enter the dreaded village of {village_name}')

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

3.7. gfx 493

pygamelib Documentation, Release 1.3.0

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

height
Property that returns the height of the Sprite.

New in version 1.3.0.

Contrary to Sprite.size[1], this property always calls Sprite.calculate_size() before returning the height.

classmethod load(data)
Create a new Sprite object based on serialized data.

New in version 1.3.0.

Parameters data (dict) – Data loaded from a JSON sprite file (deserialized).

Return type Sprite

Example:

new_sprite = Sprite.load(json_parsed_data)

classmethod load_from_ansi_file(filename, default_sprixel=None)
Load an ANSI encoded file into a Sprite object.

This class method can load a file produced by the climage python module and load it into a Sprite class.
Each character is properly decoded into a Sprixel with model, background and foreground colors.

A Sprite is rectangular (at least for the moment), so in case the file is not shaped as a rectangle, this method
automatically fills the void with a default sprixel (to make sure all lines in the sprite have the same length).
By default, it fills the table with None “values” but you can specify a default sprixel.

The reasons the default sprixel is set to None is because None values in a sprite are not translated into a
component in BoardComplexItem (i.e no sub item is generated).

Parameters

• filename (str) – The path to a file to load.

• default_sprixel (None | Sprixel) – The default Sprixel to fill a non rectangular
shaped sprite.

Example:

player_sprite = gfx_core.Sprite.load_from_ansi_file('gfx/models/player.ans')

modulate(color: pygamelib.gfx.core.Color, ratio: float = 0.5)
Modulate the sprite colors with the color in parameters.

New in version 1.3.0.

This method tint all the sprixels of the sprite with the color at the specified ratio. The original sprite IS
modified.

If you want to keep the original sprite intact consider using tint().

Parameters

• color (Color) – The modulation color.

• ratio (float) – The modulation ratio between 0.0 and 1.0 (default: 0.5)

Returns None

494 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

When this method is called, the observers are notified of the change with the
pygamelib.core.Sprite.color:modulated event. No arguments are passed along this event.

Example:

player_sprites = core.SpriteCollection.load_json_file("gfx/player.spr")
After that, the sprite is quite not "normal" anymore...
player_sprites["normal"].modulate(core.Color(0, 255, 0), 0.3)

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

render_to_buffer(buffer, row, column, buffer_height, buffer_width)
Render the sprite from the display buffer to the frame buffer.

New in version 1.3.0.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

scale(ratio=1.0)
Scale a sprite up and down using the nearest neighbor algorithm.

New in version 1.3.0.

Parameters ratio (float) – The scaling ration.

Returns An upscaled/downscaled sprite.

Return type Sprite

Note: The sprites generated with pgl-converter.py don’t scale well yet if the –unicode flag is active

Example:

3.7. gfx 495

pygamelib Documentation, Release 1.3.0

bigger_sprite = original_sprite.scale(2)

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a Sprite into a dictionary.

New in version 1.3.0.

Returns The class as a dictionary

Return type dict

Example:

json.dump(sprite.serialize())

set_sprixel(row, column, value)
Set a specific sprixel in the sprite to the given value.

Parameters

• row (int) – The row of the sprite (WARNING: internal sprite coordinates)

• column (int) – The column of the sprite (same warning)

• value (Sprixel) – The sprixel to set at [row, column]

When a sprixel is changed, the observers are notified of the change with the
pygamelib.gfx.core.Sprite.sprixel:changed event. A structure is passed as the value parameter. This
structure has 3 members: row, column and sprixel.

Example:

my_sprite.set_sprixel(1, 2, Sprixel("#",fg_color=green))

set_transparency(state)
This method enable transparent background to all the sprite’s sprixels.

New in version 1.3.0.

Parameters state – a boolean to enable or disable background transparency

When the transparency is changed, the observers are notified of the change with the
pygamelib.gfx.core.Sprite.transparency:changed event. The new transparency state is passed as the
value parameter.

Example:

player_sprite.set_transparency(True)

496 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Warning: This set background transparency on all sprixels, make sure you are not using background
colors as part of your sprite before doing that. It can also be used as a game/rendering mechanic.
Just make sure you know what you do. As a reminder, by default, sprixels with no background have
transparent background enable.

sprixel(row=0, column=None)
Return a sprixel at a specific position within the sprite.

If the column is set to None, the whole row is returned.

Parameters

• row (int) – The row to access within the sprite.

• column (int) – The column to access within the sprite.

Returns Sprixel

Example:

Return the entire line at row index 2
scanline = house_sprite.sprixel(2)
Return the specific sprixel at sprite internal coordinate 2,3
house_sprixel = house_sprite.sprixel(2, 3)

Warning: For performance consideration sprixel() does not check the size of its matrix. This method
is called many times during rendering and 2 calls to len() in a row are adding up pretty quickly. It
checks the boundary of the sprite using the cached size. Make sure it is up to date!

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

tint(color: pygamelib.gfx.core.Color, ratio: float = 0.5)
Tint a copy of the sprite with the color.

New in version 1.3.0.

This method creates a copy of the sprite and tint all its sprixels with the color at the specified ratio. It then
returns the new sprite. The original sprite is NOT modified.

Parameters

• color (Color) – The tint color.

• ratio (float) – The tint ration between 0.0 and 1.0 (default: 0.5)

Returns Sprite

Example:

3.7. gfx 497

pygamelib Documentation, Release 1.3.0

player_sprites = core.SpriteCollection.load_json_file("gfx/player.spr")
player_sprites["sick"] = player_sprites["normal"].tint(

core.Color(0, 255, 0), 0.3
)

width
Property that returns the width of the Sprite.

New in version 1.3.0.

Contrary to Sprite.size[0], this property always calls Sprite.calculate_size() before returning the width.

Sprixel

class pygamelib.gfx.core.Sprixel(model=”, bg_color=None, fg_color=None,
is_bg_transparent=None)

Bases: pygamelib.base.PglBaseObject

A sprixel is the representation of 1 cell of the sprite or one cell on the Board. It is not really a pixel but it is
the closest notion we’ll have. A Sprixel has a background color, a foreground color and a model. All regular
BoardItems can now use a sprixel instead of a model (but simple model is still supported of course).

In the terminal, a sprixel is represented by a single character.

If the background color and the is_bg_transparent are None, the sprixel will be automatically configured with
transparent background. In that case, as we cannot really achieve transparency in the console, the sprixel will
take the background color of whatever it is overlapping.

Important: BREAKING CHANGE: in version 1.3.0 background and foreground colors use the new Color
object. Therefor, Sprixel does not accept ANSI sequences anymore for the bg_color and fg_color parameters.

Example:

player = Player(sprixel=Sprixel(
'#',
Color(128,56,32),
Color(255,255,0),
))

__init__(model=”, bg_color=None, fg_color=None, is_bg_transparent=None)

Parameters

• model (str) – The model, it can be any string. Preferrably a single character.

• bg_color (Color) – A Color object to configure the background color.

• fg_color (Color) – A Color object to configure the foreground color.

• is_bg_transparent (bool) – Set the background of the Sprixel to be transparent. It
tells the engine to replace the background of the Sprixel by the background color of the
overlapped sprixel.

Methods

498 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

__init__([model, bg_color, fg_color, . . .])
param model The model, it can be any

string. Preferrably a single character.

attach(observer) Attach an observer to this instance.
black_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.BLACK_RECT.
black_square() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.BLACK_SQUARE.

blue_rect() This class method returns a sprixel that is the equiv-
alent of pygamelib.assets.graphics.BLUE_RECT.

blue_square() This class method returns a sprixel that is the equiva-
lent of pygamelib.assets.graphics.BLUE_SQUARE.

copy() Returns a (deep) copy of the sprixel.
cyan_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.CYAN_RECT.
cyan_square() This class method returns a sprixel that is the equiva-

lent of pygamelib.assets.graphics.CYAN_SQUARE.
detach(observer) Detach an observer from this instance.
from_ansi(string[, model]) Takes an ANSI string, parse it and return a Sprixel.
green_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.GREEN_RECT.
green_square() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.GREEN_SQUARE.

handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Create a new Sprixel object based on serialized data.
magenta_rect() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.MAGENTA_RECT.

magenta_square() This class method returns a
sprixel that is the equivalent of
pygamelib.assets.graphics.MAGENTA_SQUARE.

notify([modifier]) Notify all the observers that a change occurred.
red_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.RED_RECT.
red_square() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.RED_SQUARE.
render_to_buffer(buffer, row, column, . . .) Render the sprixel from the display buffer to the

frame buffer.
serialize() Serialize a Sprixel into a dictionary.
store_screen_position(row, column) Store the screen position of the object.
white_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.WHITE_RECT.
white_square() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.WHITE_SQUARE.

yellow_rect() This class method returns a sprixel that is the equiva-
lent of pygamelib.assets.graphics.YELLOW_RECT.

Continued on next page

3.7. gfx 499

pygamelib Documentation, Release 1.3.0

Table 99 – continued from previous page
yellow_square() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.YELLOW_SQUARE.

Attributes

bg_color A property to get/set the background color of the
Sprixel.

fg_color A property to get/set the foreground color of the
Sprixel.

length Return the true length of the model.
model A property to get/set the model of the Sprixel.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

bg_color
A property to get/set the background color of the Sprixel.

Parameters value (Color) – The new color

When the bg_color is changed, the observers are notified of the change with the
pygamelib.gfx.core.Sprixel.bg_color:changed event. The new bg_color is passed as the value pa-
rameter.

Example:

Access the sprixel's color
sprix.bg_color
Set the sprixel's background color to some blue
sprix.bg_color = Color(0,128,255)

classmethod black_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLACK_RECT. The
difference is that BLACK_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

500 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

sprixel = Sprixel.black_rect()

classmethod black_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLACK_SQUARE.
The difference is that BLACK_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.black_square()

classmethod blue_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLUE_RECT. The
difference is that BLUE_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.blue_rect()

classmethod blue_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLUE_SQUARE.
The difference is that BLUE_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.blue_square()

copy()
Returns a (deep) copy of the sprixel.

New in version 1.3.0.

classmethod cyan_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.CYAN_RECT. The
difference is that CYAN_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.cyan_rect()

classmethod cyan_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.CYAN_SQUARE.
The difference is that CYAN_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.cyan_square()

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

3.7. gfx 501

pygamelib Documentation, Release 1.3.0

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

fg_color
A property to get/set the foreground color of the Sprixel.

Parameters value (Color) – The new color

When the fg_color is changed, the observers are notified of the change with the
pygamelib.gfx.core.Sprixel.fg_color:changed event. The new fg_color is passed as the value parameter.

Example:

Access the sprixel's color
sprix.fg_color
Set the sprixel's foreground color to some green
sprix.fg_color = Color(0,255,128)

static from_ansi(string, model=’’)
Takes an ANSI string, parse it and return a Sprixel.

Parameters

• string (str) – The ANSI string to parse.

• model (str) – The character used to represent the sprixel in the ANSI sequence. Default
is “”

Example:

new_sprixel = Sprixel.from_ansi(
"\x1b[48;2;139;22;19m\x1b[38;2;160;26;23m\x1b[0m"

)

Warning: This has mainly be tested with ANSI string generated by climage. If you find any issue,
please report it

classmethod green_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.GREEN_RECT. The
difference is that GREEN_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.green_rect()

classmethod green_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.GREEN_SQUARE.
The difference is that GREEN_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.green_square()

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

502 Chapter 3. Tutorials

https://github.com/pygamelib/pygamelib/issues

pygamelib Documentation, Release 1.3.0

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

length
Return the true length of the model.

New in version 1.3.0.

With UTF8 and emojis the length of a string as returned by python’s len() function is often very wrong.
For example, the len(“x1b[48;2;139;22;19mx1b[38;2;160;26;23mx1b[0m”) returns 39 when it should re-
turn 1.

This method returns the actual printing/display size of the sprixel’s model.

Note: This is a read only value. It is automatically updated when the model is changed.

Example:

if sprix.length > 2:
print(

f"Warning: that sprixel {sprix} will break the rest of the "
"board's alignement"
)

classmethod load(data)
Create a new Sprixel object based on serialized data.

New in version 1.3.0.

Parameters data (dict) – Data loaded from JSON data (deserialized).

Return type Sprixel

Example:

new_sprite = Sprixel.load(json_parsed_data['default_sprixel'])

classmethod magenta_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.MAGENTA_RECT.
The difference is that MAGENTA_RECT is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.magenta_rect()

classmethod magenta_square()
This class method returns a sprixel that is the equivalent of

3.7. gfx 503

pygamelib Documentation, Release 1.3.0

pygamelib.assets.graphics.MAGENTA_SQUARE. The difference is that MAGENTA_SQUARE is a
string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.magenta_square()

model
A property to get/set the model of the Sprixel.

Parameters value (str) – The new model

When the model is changed, the observers are notified of the change with the
pygamelib.gfx.core.Sprixel.model:changed event. The new model is passed as the value parameter.

Example:

Get the sprixel's model
sprix.model
Set the sprixel's model to "@"
sprix.model = "@"

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

classmethod red_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.RED_RECT. The
difference is that RED_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.red_rect()

classmethod red_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.RED_SQUARE.
The difference is that RED_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.red_square()

render_to_buffer(buffer, row, column, buffer_height, buffer_width)
Render the sprixel from the display buffer to the frame buffer.

504 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

New in version 1.3.0.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a Sprixel into a dictionary.

New in version 1.3.0.

Returns The class as a dictionary

Return type dict

Example:

json.dump(sprixel.serialize())

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

classmethod white_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.WHITE_RECT. The
difference is that WHITE_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.white_rect()

3.7. gfx 505

pygamelib Documentation, Release 1.3.0

classmethod white_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.WHITE_SQUARE.
The difference is that WHITE_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.white_square()

classmethod yellow_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.YELLOW_RECT.
The difference is that YELLOW_RECT is a string and this one is a Sprixel that can be manipulated more
easily.

Note: Yellow is often rendered as brown.

Example:

sprixel = Sprixel.yellow_rect()

classmethod yellow_square()
This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.YELLOW_SQUARE. The difference is that YELLOW_SQUARE is a
string and this one is a Sprixel that can be manipulated more easily.

Note: Yellow is often rendered as brown.

Example:

sprixel = Sprixel.yellow_square()

Color

class pygamelib.gfx.core.Color(r=0, g=0, b=0)
Bases: pygamelib.base.PglBaseObject

New in version 1.3.0.

A color represented by red, green and blue (RGB) components. Values are integer between 0 and 255 (both
included).

Parameters

• r (int) – The red component of the color.

• g (int) – The green component of the color.

• b (int) – The blue component of the color.

Example:

color is blue
color = Color(0, 0, 255)
and now color is pink
color.r = 255

506 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

__init__(r=0, g=0, b=0)
Like the object class, this class constructor takes no parameter.

Methods

__init__([r, g, b]) Like the object class, this class constructor takes no
parameter.

attach(observer) Attach an observer to this instance.
blend(other_color[, fraction]) Blend the color with another one.
copy() Returns a (deep) copy of this color.
detach(observer) Detach an observer from this instance.
from_ansi(string) Create and return a Color object based on an ANSI

color string.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Create a new Color object based on serialized data.
notify([modifier]) Notify all the observers that a change occurred.
random() Create and return a new random color.
randomize() Set a random value for each of the components of an

existing color.
serialize() Serialize a Color into a dictionary.
store_screen_position(row, column) Store the screen position of the object.

Attributes

b The b property controls the intensity of the blue
color.

g The g property controls the intensity of the green
color.

r The r property controls the intensity of the red color.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

b

3.7. gfx 507

pygamelib Documentation, Release 1.3.0

The b property controls the intensity of the blue color. You can set it to an integer between 0 and 255 (both
included).

When this property is set, the observers are notified with the pygamelib.gfx.core.Color.b:changed event.
The value of the event is the new value of the property.

Example:

color = Color(128, 128, 0)
print(f"Value for b is {color.b}")
color.b = 255
print(f"New value for b is {color.b}")

blend(other_color, fraction=0.5)
Blend the color with another one. Fraction controls the amount of other_color that is included (0 means
no inclusion at all).

Parameters

• other_color (Color) – The color to blend with.

• fraction (float) – The blending modulation factor between 0 and 1.

Returns A new Color object that contains the blended color.

Return type Color

Example:

a = Color(200, 200, 200)
b = Color(25, 25, 25)
c is going to be Color(112, 112, 112)
c = a.blend(b, 0.5)

copy()
Returns a (deep) copy of this color.

Example:

red = Color(255, 0, 0)
red2 = red.copy()

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

classmethod from_ansi(string)
Create and return a Color object based on an ANSI color string.

Important: The string must be RGB, i.e ‘[38;2;RED;GREEN;BLUEm’ or
‘[48;2;RED;GREEN;BLUEm’ for foreground and background colors. This method will return
None if the color string is not RGB. It is also important to understand that Color is independent from the

508 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

foreground of background, it is just a color. Therefor ‘[38;2;89;32;93m’ and ‘[48;2;89;32;93m’ will both
be parsed into Color(89, 32, 93).

Parameters string (str) – The ANSI color string to convert.

Example:

color = Color.from_ansi()

g
The g property controls the intensity of the green color. You can set it to an integer between 0 and 255
(both included).

When this property is set, the observers are notified with the pygamelib.gfx.core.Color.g:changed event.
The value of the event is the new value of the property.

Example:

color = Color(128, 128, 0)
print(f"Value for g is {color.g}")
color.g = 255
print(f"New value for g is {color.g}")

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data)
Create a new Color object based on serialized data.

If data is None, None is returned.

If a color component is missing from data, it is set to 0 (see examples).

Raises an exception if the color components are not integer.

Parameters data (dict) – Data loaded from JSON data (deserialized).

Returns Either a Color object or None if data where empty.

Return type Color | NoneType

Raise PglInvalidTypeException

Example:

3.7. gfx 509

pygamelib Documentation, Release 1.3.0

Loading from parsed JSON data
new_color = Color.load(json_parsed_data['default_sprixel']['fg_color'])

Loading from incomplete data
color = Color.load({'red':25,'green':35})
Result in the following Color object:
Color(25, 35, 0)

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

r
The r property controls the intensity of the red color. You can set it to an integer between 0 and 255 (both
included).

When this property is set, the observers are notified with the pygamelib.gfx.core.Color.r:changed event.
The value of the event is the new value of the property.

Example:

color = Color(128, 128, 0)
print(f"Value for r is {color.r}")
color.r = 255
print(f"New value for r is {color.r}")

classmethod random()
Create and return a new random color.

Return type Color

Example:

my_color = Color.random()

randomize()
Set a random value for each of the components of an existing color.

When this method is called, the observers are notified with the pygamelib.gfx.core.Color.randomized
event. The value of the event is the new color.

Returns None

Return type NoneType

Example:

510 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

color = Color()
color.randomize()

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a Color into a dictionary.

Returns The class as a dictionary

Return type dict

Example:

json.dump(color.serialize())

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

3.7.2 ui

Warning: The UI module is in alpha version. Some things might change over time.

The ui module contains the classes to easily build full screen Terminal User Interface (TUI) for your games (or
applications).

Important: It works exclusively with the screen buffer system (place, delete, render, update, etc.). It doesn’t work
with Screen functions tagged “direct display” like display_at().

3.7. gfx 511

pygamelib Documentation, Release 1.3.0

Box

class pygamelib.gfx.ui.Box(width: int, height: int, title: str = ”, config: pygamelib.gfx.ui.UiConfig
= None, fill: bool = False, filling_sprixel: pygamelib.gfx.core.Sprixel
= None, title_alignment: int = 30000101)

Bases: object

A simple object to draw a box on screen.

The Box object’s looks and feel is highly configurable through the UiConfig object.

__init__(width: int, height: int, title: str = ”, config: pygamelib.gfx.ui.UiConfig = None, fill: bool =
False, filling_sprixel: pygamelib.gfx.core.Sprixel = None, title_alignment: int = 30000101)

The box constructor takes the following parameters.

Parameters

• width (int) – The width of the box.

• height (int) – The height of the box.

• title (str | Text) – The title of the box (encased in the top border).

• config (UiConfig) – The configuration object.

• fill (bool) – A tag to tell the box object to fill its inside (or not).

• filling_sprixel (Sprixel) – If fill is True, the filling Sprixel is used to fill the
inside of the box.

• title_alignment (int) – The alignment of the title in the top bar. It is a
constant from the constant module and can be ALIGN_LEFT, ALIGN_RIGHT and
ALIGN_CENTER. THIS FEATURE IS NOT YET IMPLEMENTED.

Todo: Implement the title alignment.

Example:

config = UiConfig(bg_color=None)
box = Box(30, 10, 'This is a box')
screen.place(box, 20, 20)
screen.update()

Methods

__init__(width, height, title, config, fill, . . .) The box constructor takes the following parameters.
render_to_buffer(buffer, row, column, . . .) Render the box from the display buffer to the frame

buffer.

Attributes

config Get and set the config object (UiConfig).
height Get and set the height of the box, only accept int.
title Get and set the title, only accepts str or Text.
width Get and set the width of the box, only accept int.

512 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

config
Get and set the config object (UiConfig).

height
Get and set the height of the box, only accept int.

render_to_buffer(buffer, row, column, buffer_height, buffer_width)→ None
Render the box from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

title
Get and set the title, only accepts str or Text.

width
Get and set the width of the box, only accept int.

ColorPickerDialog

class pygamelib.gfx.ui.ColorPickerDialog(title: str = None, config:
pygamelib.gfx.ui.UiConfig = None)

Bases: pygamelib.gfx.ui.Dialog

The ColorPickerDialog is a dialog wrapper around the ColorPicker widget.

It serves the same purpose: present a way to easily select a custom color to the user.

It does it as an immediately usable dialog.

The show() method returns the Color selected by the user. If the user pressed the ESC key, it returns None.

Key mapping:

• ESC: Exit from the show() method and return None.

• ENTER: Exit from the show() method. Returns the currently selected color.

• UP / DOWN: Increase/decrease the currently selected channel by 1.

• PAGE_UP / PAGE_DOWN: Increase/decrease the currently selected channel by 10.

• LEFT / RIGHT: Navigate between color channels.

Like all dialogs, it is automatically destroyed on exit of the show() method. It is also deleted from the screen
buffer.

__init__(title: str = None, config: pygamelib.gfx.ui.UiConfig = None)→ None
The constructor only take the configuration as parameter.

Parameters config (UiConfig) – The configuration object.

Example:

3.7. gfx 513

pygamelib Documentation, Release 1.3.0

color_dialog = ColorPickerDialog(conf)
color_dialog.set_color(core.Color(128, 128, 128))
screen.place(color_dialog, 10, 10)
new_color = color_dialog.show()

Methods

__init__(title, config) The constructor only take the configuration as pa-
rameter.

render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the
frame buffer.

set_color(color) Set the color shown in the dialog.
set_selection(selection) Set the channel selection.
show() Show the dialog and execute the event loop.

Attributes

config Get and set the config object (UiConfig).
title Get / set the dialog title, it needs to be a str.
user_input Facility to store and retrieve the user input.

config
Get and set the config object (UiConfig).

render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

set_color(color: pygamelib.gfx.core.Color)→ None
Set the color shown in the dialog.

Parameters color (Color) – The color to edit.

Example:

color_dialog.set_color(core.Color(128, 128, 128))

set_selection(selection: int = 0)
Set the channel selection.

Parameters selection (int) – The number of the channel to select (0 = red, 1 = green and
2 = blue).

Example:

514 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

color_dialog.set_selection(1)

show()
Show the dialog and execute the event loop. Until this method returns, all keyboards event are processed
by the local event loop. This is also true if called from the main event loop.

This event loop returns the edited Color or None if the user pressed the ESC key.

Returns The editor color.

Return type Color

Example:

new_color = color_dialog.show()

title
Get / set the dialog title, it needs to be a str.

user_input
Facility to store and retrieve the user input.

ColorPicker

class pygamelib.gfx.ui.ColorPicker(orientation: int = None, config: pygamelib.gfx.ui.UiConfig
= None)

Bases: object

The ColorPicker widget is a simple object to select the red, green and blue components of a color.

It provides the API to set/get each color channel independently as well as the mechanism to select and draw a
selection box around one specific channel to give the user a visual cue about what he is modifying.

__init__(orientation: int = None, config: pygamelib.gfx.ui.UiConfig = None)→ None
The constructor is really simple and takes only 2 arguments.

Parameters

• orientation (int) – One of the 2 orientation constants pygamelib.
constants.ORIENTATION_HORIZONTAL or pygamelib.constants.
ORIENTATION_VERTICAL

• config (UiConfig) – The configuration object.

The default orientation is horizontal.

Warning: The orientation parameter is ignored for the moment.

Example:

color_picker = ColorPicker(constants.ORIENTATION_HORIZONTAL, conf)
screen.place(color_picker, 10, 10)
screen.update()

Methods

3.7. gfx 515

pygamelib Documentation, Release 1.3.0

__init__(orientation, config) The constructor is really simple and takes only 2 ar-
guments.

render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the
frame buffer.

Attributes

blue Get / set the blue component of the color, the value
needs to be an int between 0 and 255.

color Get / set the edited color.
green Get / set the green component of the color, the value

needs to be an int between 0 and 255.
red Get / set the red component of the color, the value

needs to be an int between 0 and 255.
selection Get / set the selection, it needs to be an int between

0 and 2 included.

blue
Get / set the blue component of the color, the value needs to be an int between 0 and 255.

color
Get / set the edited color.

The setter automatically forward the individual red, green and blue values to to the proper properties of
that widget.

Parameters value (Color) – The color object.

Example:

current_color = color_picker.color
current_color.r += 10
color_picker.color = current_color

green
Get / set the green component of the color, the value needs to be an int between 0 and 255.

red
Get / set the red component of the color, the value needs to be an int between 0 and 255.

render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

selection
Get / set the selection, it needs to be an int between 0 and 2 included.

516 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

0 correspond to the red channel, 1 to the green channel and 2 to the blue channel.

When this widget is rendered a Box will be rendered around the specified channel.

Dialog

class pygamelib.gfx.ui.Dialog(config=None)
Bases: object

Dialog is a virtual class that can be subclassed to create actual dialogs.

All classes that inherits from Dialog have the following constraints:

• They need to implement a show() method.

• They are automatically rendered on the second pass by the Screen object.

It stores the UiConfig object and provide a helper attribute for user inputs.

__init__(config=None)→ None
This constructor takes only one parameter.

Parameters config (UiConfig.) – The config object.

Methods

__init__([config]) This constructor takes only one parameter.
show() This is a virtual method, calling it directly will only

raise a NotImplementedError.

Attributes

config Get and set the config object (UiConfig).
user_input Facility to store and retrieve the user input.

config
Get and set the config object (UiConfig).

show()
This is a virtual method, calling it directly will only raise a NotImplementedError. Each class that inheritate
Dialog needs to implement show().

user_input
Facility to store and retrieve the user input.

FileDialog

class pygamelib.gfx.ui.FileDialog(path: pathlib.Path = None, width: int = 20, height: int = 10,
title: str = ’File dialog’, show_hidden_files: bool = False,
filter: str = ’*’, config: pygamelib.gfx.ui.UiConfig = None)

Bases: pygamelib.gfx.ui.Dialog

The FileDialog is a file selection dialog: it allow the user to select a file on disk in a relatively easy way. File
can then be use for any purpose by the program, like for “save as” or “open” features.

The show() method returns the path selected by the user.

3.7. gfx 517

pygamelib Documentation, Release 1.3.0

Key mapping:

• ESC: set the path to None and exit from the show() method.

• ENTER: Exit from the show() method. Returns the currently selected path.

• BACKSPACE / DELETE: delete a character (both keys have the same result).

• UP / DOWN: Navigate between the files.

• LEFT / RIGHT: Navigate between the directories.

• All other keys input characters in the input field.

In all cases, when the dialog is closed, a path is returned. It can be a file name entered by the user or an existing
file. The returned value can also be None if the user pressed ESC. There is no guarantee that the returned path
is correct. Please, check it before doing anything with it.

Like all dialogs, it is automatically destroyed on exit of the show() method. It is also deleted from the screen
buffer.

__init__(path: pathlib.Path = None, width: int = 20, height: int = 10, title: str = ’File dialog’,
show_hidden_files: bool = False, filter: str = ’*’, config: pygamelib.gfx.ui.UiConfig =
None)→ None

Parameters

• path (pathlib.Path) – The path to start in. This path is made absolute by the con-
structor.

• width (int) – The width of the file dialog widget (in number of screen cells).

• height (int) – The height of the file dialog widget (in number of screen cells).

• title (str) – The title of the dialog (written in the upper border).

• show_hidden_files (bool) – Does the file dialog needs to show the hidden files or
not.

• filter (str) – A string that will be used to filter the files shown to the user. For example
“*.spr”.

• config (UiConfig) – The configuration object.

Example:

file_dialog = FileDialog(Path("."), 30, 10, "Open file", False, conf)
screen.place(file_dialog, 10, 10)
file = file_dialog.show()

Methods

__init__(path, width, height, title, . . .)
param path The path to start in. This

path is made absolute by the

render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the
frame buffer.

show() Show the dialog and execute the event loop.

518 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Attributes

config Get and set the config object (UiConfig).
filter Get/set the current file filter.
path Get/set the current path.
show_hidden_files Get/set the property, if True the file dialog is going

to show hidden files, and , if False, it won’t.
user_input Facility to store and retrieve the user input.

config
Get and set the config object (UiConfig).

filter
Get/set the current file filter.

Returns The dialog’s current filter.

Return type str

path
Get/set the current path.

Returns The dialog’s current path.

Return type pathlib.Path

render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

show()→ pathlib.Path
Show the dialog and execute the event loop. Until this method returns, all keyboards event are processed
by the local event loop. This is also true if called from the main event loop.

This event loop returns a pathlib.Path object or None if the user pressed the ESC key. The path can
point to an existing file or not.

Example:

fields = multi_input.show()

show_hidden_files
Get/set the property, if True the file dialog is going to show hidden files, and , if False, it won’t.

Returns The dialog’s current show_hidden_files value.

Return type bool

user_input
Facility to store and retrieve the user input.

3.7. gfx 519

pygamelib Documentation, Release 1.3.0

GridSelectorDialog

class pygamelib.gfx.ui.GridSelectorDialog(choices: list = None, max_height: int = None,
max_width: int = None, title: str = None, con-
fig: pygamelib.gfx.ui.UiConfig = None)

Bases: pygamelib.gfx.ui.Dialog

The GridSelectorDialog is an easy wrapper around the GridSelector object. It offers a simple interface for
the programmer to present a GridSelector to the user and retrieve its selection.

The show() method returns the path selected by the user.

Key mapping:

• ESC: set the selected item to an empty Sprixel and exit from the show() method.

• ENTER: Exit from the show() method. Returns the currently selected sprixel.

• UP / DOWN / LEFT / RIGHT: Navigate between the files.

• PAGE_UP / PAGE_DOWN: Go to previous / next page if there’s any.

In all cases, when the dialog is closed, a Sprixel is returned.

Like all dialogs, it is automatically destroyed on exit of the show() method. It is also deleted from the screen
buffer.

__init__(choices: list = None, max_height: int = None, max_width: int = None, title: str = None,
config: pygamelib.gfx.ui.UiConfig = None)→ None

Parameters

• choices (list) – A list of choices to present to the user. The elements of the list needs
to be str or Sprixel.

• max_height (int) – The maximum height of the grid selector.

• max_width (int) – The maximum width of the grid selector.

• config (UiConfig) – The configuration object.

Example:

choices = ["@","#","$","%","&","*","[","]"]
grid_dialog = GridSelector(choices, 10, 30, conf)
screen.place(grid_dialog, 10, 10)
grid_dialog.show()

Methods

__init__(choices, max_height, max_width, . . .)
param choices A list of choices to

present to the user. The elements of
the

render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the
frame buffer.

show() Show the dialog and execute the event loop.

520 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Attributes

config Get and set the config object (UiConfig).
grid_selector Get / set the GridSelector object, it has to be a

GridSelector object.
title Get / set the title of the dialog, it needs to be a str.
user_input Facility to store and retrieve the user input.

config
Get and set the config object (UiConfig).

grid_selector
Get / set the GridSelector object, it has to be a GridSelector object.

render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

show()
Show the dialog and execute the event loop. Until this method returns, all keyboards event are processed
by the local event loop. This is also true if called from the main event loop.

This event loop returns the selected item as a Sprixel or None if the user pressed the ESC key.

Returns The selected item.

Return type Sprixel

Example:

item = grid_dialog.show()

title
Get / set the title of the dialog, it needs to be a str.

user_input
Facility to store and retrieve the user input.

GridSelector

class pygamelib.gfx.ui.GridSelector(choices: list = None, max_height: int =
None, max_width: int = None, config:
pygamelib.gfx.ui.UiConfig = None)

Bases: object

The GridSelector is a widget that present a list of elements as a grid to the user.

It also provides the API to draw and manage the cursor and to retrieve the selected element.

3.7. gfx 521

pygamelib Documentation, Release 1.3.0

Warning: In the first version of that widget, only the characters that have a length of 1 are supported. This
excludes some UTF8 characters and most of the emojis.

__init__(choices: list = None, max_height: int = None, max_width: int = None, config:
pygamelib.gfx.ui.UiConfig = None)→ None

Parameters

• choices (list) – A list of choices to present to the user. The elements of the list needs
to be str or Sprixel.

• max_height (int) – The maximum height of the grid selector.

• max_width (int) – The maximum width of the grid selector.

• config (UiConfig) – The configuration object.

Example:

choices = ["@","#","$","%","&","*","[","]"]
grid_selector = GridSelector(choices, 10, 30, conf)
screen.place(grid_selector, 10, 10)
screen.update()

Methods

__init__(choices, max_height, max_width, con-
fig) param choices A list of choices to

present to the user. The elements of
the

current_sprixel() Returns the currently selected sprixel.
cursor_down() Move the selection cursor one row down.
cursor_left() Move the selection cursor one column to the left.
cursor_right() Move the selection cursor one column to the right.
cursor_up() Move the selection cursor one row up.
items_per_page() Returns the number of items per page.
nb_pages() Returns the number of pages.
page_down() Change the current page to the one immediately

down (current_page + 1).
page_up() Change the current page to the one immediately up

(current_page - 1).
render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the

frame buffer.

Attributes

choices Get and set the list of choices, it has to be a list of
Sprixel or str.

current_choice Get and set the currently selected item’s index (the
current choice), it needs to be an int.

Continued on next page

522 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 116 – continued from previous page
current_page Get and set the current page of the grid selector, it

needs to be an int.
max_height Get and set the maximum height of the grid selector,

it needs to be an int.
max_width Get and set the maximum width of the grid selector,

it needs to be an int.

choices
Get and set the list of choices, it has to be a list of Sprixel or str.

current_choice
Get and set the currently selected item’s index (the current choice), it needs to be an int. Use
current_sprixel() to get the actual current item.

current_page
Get and set the current page of the grid selector, it needs to be an int.

current_sprixel()→ pygamelib.gfx.core.Sprixel
Returns the currently selected sprixel.

cursor_down()→ None
Move the selection cursor one row down.

cursor_left()→ None
Move the selection cursor one column to the left.

cursor_right()→ None
Move the selection cursor one column to the right.

cursor_up()→ None
Move the selection cursor one row up.

items_per_page()→ int
Returns the number of items per page.

max_height
Get and set the maximum height of the grid selector, it needs to be an int.

max_width
Get and set the maximum width of the grid selector, it needs to be an int.

nb_pages()→ int
Returns the number of pages.

page_down()→ None
Change the current page to the one immediately down (current_page + 1).

page_up()→ None
Change the current page to the one immediately up (current_page - 1).

render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

3.7. gfx 523

pygamelib Documentation, Release 1.3.0

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

LineInputDialog

class pygamelib.gfx.ui.LineInputDialog(title=None, label=’Input a value:’, default=”, fil-
ter=50000002, config=None)

Bases: pygamelib.gfx.ui.Dialog

The LineInputDialog allows the user to enter and edit a single line of text.

This dialog can be configured to accept either anything printable or only digits.

The show() method returns the user input.

Key mapping:

• ESC: set the user input to “” and exit from the show() method.

• ENTER: Exit from the show() method. Returns the user input.

• BACKSPACE / DELETE: delete a character (both keys have the same result)

• All other keys input characters in the input field.

In all cases, when the dialog is closed, the user input is returned.

Like all dialogs, it is automatically destroyed on exit of the show() method. It is also deleted from the screen
buffer.

__init__(title=None, label=’Input a value:’, default=”, filter=50000002, config=None)→ None

Parameters

• title (str) – The short title of the dialog. Only used when the dialog is not borderless.

• label (str | base.Text) – The label of the dialog (usually a one line instruction).

• default (str) – The default value in the input field.

• filter (constants.PRINTABLE_FILTER | constants.INTEGER_FILTER) –
Sets the type of accepted input. It comes from the constants module.

• config (UiConfig) – The configuration object.

Example:

line_input = LineInputDialog(
"Name the pet",
"Enter the name of your pet:",
"Stupido",

)
screen.place(line_input, 10, 10)
pet_name = line_input.show()

Methods

524 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

__init__([title, label, default, filter, config])
param title The short title of the dialog.

Only used when the dialog is not

render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the
frame buffer.

show() Show the dialog and execute the event loop.

Attributes

config Get and set the config object (UiConfig).
label Get and set the label of the dialog, it has to be a str

or base.Text.
title Get and set the title of the dialog, it has to be a str.
user_input Facility to store and retrieve the user input.

config
Get and set the config object (UiConfig).

label
Get and set the label of the dialog, it has to be a str or base.Text.

render_to_buffer(buffer, row, column, buffer_height, buffer_width)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

show()
Show the dialog and execute the event loop. Until this method returns, all keyboards event are processed
by the local event loop. This is also true if called from the main event loop.

This event loop returns the either “” or what is displayed in the input field.

Example:

value = line_input.show()

title
Get and set the title of the dialog, it has to be a str.

user_input
Facility to store and retrieve the user input.

3.7. gfx 525

pygamelib Documentation, Release 1.3.0

Menu

class pygamelib.gfx.ui.Menu(title: pygamelib.base.Text = None, entries: list = None, padding: int
= 1, config: pygamelib.gfx.ui.UiConfig = None)

Bases: object

The Menu object consists of a list of other Menu objects and/or MenuAction objects.

It has a title that is used in a MenuBar and the list of its entries is displayed when the menu is expanded.

A Menu object can contains an arbitrary number of entries with an arbitrary depth of submenus.

__init__(title: pygamelib.base.Text = None, entries: list = None, padding: int = 1, config:
pygamelib.gfx.ui.UiConfig = None)→ None

The constructor takes the following parameters.

Parameters

• title (str | Text) – The title of the action (i.e: its label)

• entries (list) – A list of MenuAction or other Menu objects.

• padding (int) – The horizontal padding, i.e the number of space characters added to
the left and right of the title.

• config (UiConfig) – The configuration object.

Example

menubar = MenuBar(config=UiConfig.instance(game=Game.instance()))
file_menu = Menu(

"File",
[

MenuAction("Open", open_file),
MenuAction("Save", save_file),
MenuAction("Save as", save_file_as),
MenuAction("Quit", exit_application),

]
)
menubar.add_entry(file_menu)
menubar.add_entry(MenuAction("Help", display_help))
screen.place(menubar, 0, 0)
screen.update()

Methods

__init__(title, entries, padding, config) The constructor takes the following parameters.
activate() Activates the menu.
add_entry(entry) Add an entry to the menu.
collapse() Collapse the menu.
current_entry() Return the currently selected menu entry.
expand() Expand the menu.
menu_width() Calculate and return the maximum width of the menu

based on the widest element.
render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the

frame buffer.
select_next() Select the next entry in the menu.

Continued on next page

526 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 119 – continued from previous page
select_previous() Select the previous entry in the menu.
title_width() Return the actual width of the menu title.

Attributes

config Get / set the config of the Menu, it needs to be a
UiConfig.

entries Get / set the entries of the Menu, it needs to be a list
of MenuAction objects.

padding Get / set the padding before and after the menu, it
needs to be an int.

selected Get / set the selected status of the Menu, it needs to
be a boolean.

title Get / set the title of the Menu, it needs to be a Text
object or a python str.

activate()
Activates the menu. This method contains its own event loop a bit like the show() methods of Dialogs. It
expands the menu if it wasn’t already the case and listen to keyboard key strokes.

• SPACE or ENTER activates (i.e execute) menu actions.

• DOWN select the next entry.

• UP select the previous entry.

• ESC or LEFT close the menu.

• RIGHT activate (i.e expand) a submenu.

Example:

menu.activate()

add_entry(entry)
Add an entry to the menu. An entry can be a MenuAction or a Menu. Entries are displayed in the order
of there additions from left to right.

Important: The config of the entry is overwritten by the config of the Menu. That is why it’s not
mandatory for Menu and MenuAction.

Parameters entry (MenuAction | Menu) – The entry to add.

Example:

menu.add_entry(Menu('File'))
menu.add_entry(MenuAction('Exit', quit_application))

collapse()
Collapse the menu. A menu is automatically collapsed after activation.

Example:

3.7. gfx 527

pygamelib Documentation, Release 1.3.0

file_menu.collapse()

config
Get / set the config of the Menu, it needs to be a UiConfig.

current_entry()
Return the currently selected menu entry.

It can be either a Menu object or a MenuAction object.

entries
Get / set the entries of the Menu, it needs to be a list of MenuAction objects.

expand()
Expand the menu. A menu is automatically expanded when activated.

Example:

file_menu.expand()

menu_width()→ int
Calculate and return the maximum width of the menu based on the widest element. This includes the
padding.

Returns the menu width.

Return type int

padding
Get / set the padding before and after the menu, it needs to be an int.

The padding is only used when the menu is nested into another menu.

render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

select_next()
Select the next entry in the menu.

The selected entry is rendered differently to give a visual feedback to the user. Please see the UiConfig
class for the styling option available to the Menu object.

Example:

menu.select_next()

select_previous()
Select the previous entry in the menu.

The selected entry is rendered differently to give a visual feedback to the user. Please see the UiConfig
class for the styling option available to the Menu object.

528 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

menu.select_previous()

selected
Get / set the selected status of the Menu, it needs to be a boolean.

This changes the representation (way it’s drawn) of the menu entry.

title
Get / set the title of the Menu, it needs to be a Text object or a python str.

The title is used in the MenuBar. In the following image, the title of the expanded menu is “File”.

title_width()→ int
Return the actual width of the menu title. This takes into account the padding.

Example:

menu.title_width()

MenuAction

class pygamelib.gfx.ui.MenuAction(title: pygamelib.base.Text = None, action=None,
parameter=None, padding: int = 1, config:
pygamelib.gfx.ui.UiConfig = None)

Bases: object

A menu action is a menu entry that executes a callback when activated. Usually a Menuaction represents an
action from the user interface like open file, save, quit, etc.

Therefor a MenuAction is fairly simple, at its simplest it has a title and a callable reference to a function.

An action cannot be used by itself but can be added to a MenuBar or a Menu.

Like everything in the UI module, MenuAction are styled through a UiConfig object. Unlike the other classes
of that module however, the configuration object is not mandatory when instanciating this class. The reason is
that the MenuBar object impose the configuration to its managed MenuAction and Menu.

__init__(title: pygamelib.base.Text = None, action=None, parameter=None, padding: int = 1, config:
pygamelib.gfx.ui.UiConfig = None)→ None

The constructor takes the following parameters.

Parameters

• title (str | Text) – The title of the action (i.e: its label)

3.7. gfx 529

pygamelib Documentation, Release 1.3.0

• action (callable) – A reference to a callable function that is going to be executed
when the action is activated. If set to None, nothing will happen when the action is acti-
vated.

• parameter (Any) – A parameter that is passed to the callback action if not None.

• padding (int) – The horizontal padding, i.e the number of space characters added to
the left and right of the action.

• config (UiConfig) – The configuration object.

Example

menubar = MenuBar(config=UiConfig.instance())
file_menu = Menu(

"File",
[

MenuAction("Open", open_file),
MenuAction("Save", save_file),
MenuAction("Save as", save_file_as),
MenuAction("Quit", exit_application),

]
)
menubar.add_entry(file_menu)
menubar.add_entry(MenuAction("Help", display_help))
screen.place(menubar, 0, 0)
screen.update()

Methods

__init__(title[, action, parameter]) The constructor takes the following parameters.
activate() Execute and return the result of the callback.
render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the

frame buffer.
title_width() Return the actual width of the action’s title.

Attributes

action Get / set the action’s callback, it needs to be a
callable.

config Get / set the config of the MenuAction, it needs to be
a UiConfig.

padding Get / set the padding before and after the menu ac-
tion, it needs to be an int.

selected Get / set the selected of the MenuAction, it needs to
be a boolean.

title Get / set the title of the action, it needs to be a str or
a Text object.

action
Get / set the action’s callback, it needs to be a callable.

activate()
Execute and return the result of the callback.

530 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

file_save_action.activate()

config
Get / set the config of the MenuAction, it needs to be a UiConfig.

padding
Get / set the padding before and after the menu action, it needs to be an int.

render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

selected
Get / set the selected of the MenuAction, it needs to be a boolean.

This changes the representation (way it’s drawn) of the menu entry.

title
Get / set the title of the action, it needs to be a str or a Text object.

The title is used in the Menu. In the following image, the title of the first action in the expanded menu is
“Open”, followed by “Save”.

title_width()
Return the actual width of the action’s title. This takes into account the padding.

Example:

menu_action.title_width()

3.7. gfx 531

pygamelib Documentation, Release 1.3.0

MenuBar

class pygamelib.gfx.ui.MenuBar(entries: list = None, spacing: int = 2, config:
pygamelib.gfx.ui.UiConfig = None)

Bases: object

The MenuBar widget is exactly that: an horizontal bar that can hold Menu or MenuAction objects.

Contrary to these 2 classes, MenuBar does not have an activate() method. The reason is that the menubar cannot
block rendering with its own event loop as it is supposed to be showned at all times. So the management of
interactions are left to the programmer to implement.

A typical implementation would look like this:

Example:

First create a menubar
menubar = MenuBar(config=UiConfig.instance(game=Game.instance()))

Then create a Menu
file_menu = Menu(

"File",
[

MenuAction("Open", open_file),
MenuAction("Save", save_file),
MenuAction("Save as", save_file_as),
MenuAction("Quit", exit_application),

]
)
menubar.add_entry(file_menu)
menubar.add_entry(MenuAction("Help", display_help))

Place the menubar on screen
screen.place(menubar, 0, 0)
screen.update()

Then, somewhere in an event loop, manage the inputs for example in the user
update function
def user_update(game, inkey, elapsed_time):

if inkey == engine.key.DOWN:
if menubar.current_entry() is not None:

menubar.current_entry().activate()
elif inkey == engine.key.LEFT:

menubar.select_previous()
elif inkey == engine.key.RIGHT:

menubar.select_next()
elif inkey.name == "KEY_ENTER":

if menubar.current_entry() is not None:
menubar.current_entry().activate()

elif inkey.name == "KEY_ESCAPE":
menubar.close()

__init__(entries: list = None, spacing: int = 2, config: pygamelib.gfx.ui.UiConfig = None)→ None
The constructor takes the following parameters.

Parameters

• entries (list) – A list of MenuAction or Menu objects.

• spacing – The horizontal spacing between entries.

532 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• config (UiConfig) – The configuration object.

Methods

__init__(entries, spacing, config) The constructor takes the following parameters.
add_entry(entry) Add an entry to the menu bar.
close() Close and unselect menu entries/submenu.
current_entry() Return the currently selected menu entry.
length() Returns the total length of the menubar.
render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the

frame buffer.
select_next() Select the next element in the menubar.
select_previous() Select the previous element in the menubar.

Attributes

config Get / set the config of the MenuBar, it needs to be a
UiConfig.

current_index Get / set the currently selected menu entry, it needs
to be an int.

entries Get / set the entries of the MenuBar, it needs to be a
list of MenuAction or Menu objects.

spacing Get / set the spacing between menu entries, it needs
to be an int.

add_entry(entry)
Add an entry to the menu bar. An entry can be a MenuAction or a Menu. Entries are displayed in the
order of there additions from left to right.

Important: The config of the entry is overwritten by the config of the MenuBar. That is why it’s not
mandatory for Menu and MenuAction.

Parameters entry (MenuAction | Menu) – The entry to add.

Example:

menubar.add_entry(Menu('File'))
menubar.add_entry(MenuAction('Exit', quit_application))

close()
Close and unselect menu entries/submenu.

Please call that method when the menu bar loses focus.

config
Get / set the config of the MenuBar, it needs to be a UiConfig.

Important: The MenuBar’s config is imposed on the managed items (Menu and MenuAction).

3.7. gfx 533

pygamelib Documentation, Release 1.3.0

current_entry()
Return the currently selected menu entry.

It can be either a Menu object or a MenuAction object.

current_index
Get / set the currently selected menu entry, it needs to be an int. When setting the current_index, if the
previous index was corresponding to a selected entry, said entry is first unselected.

entries
Get / set the entries of the MenuBar, it needs to be a list of MenuAction or Menu objects.

length()→ int
Returns the total length of the menubar. This is computed everytime the method is called and it includes
the spacing.

render_to_buffer(buffer, row: int, column: int, buffer_height: int, buffer_width: int)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

select_next()
Select the next element in the menubar.

Example

if user_input.name == 'KEY_RIGHT':
menubar.select_next()

select_previous()
Select the previous element in the menubar.

Example

if user_input.name == 'KEY_RIGHT':
menubar.select_previous()

spacing
Get / set the spacing between menu entries, it needs to be an int.

MessageDialog

class pygamelib.gfx.ui.MessageDialog(data: list = None, width: int = 20, height: int = None,
adaptive_height: bool = True, alignment: int = None,
title: str = None, config: pygamelib.gfx.ui.UiConfig =
None)

Bases: pygamelib.gfx.ui.Dialog

The message dialog is a popup that can display multiple lines of text.

534 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

It supports formatted text (base.Text), python strings, pygamelib.gfx.core.Sprixel, core.
Sprite and more generally anything that can be rendered on screen (i.e: posess a render_to_buffer(self, buffer
, row, column, buffer_height, buffer_width) method).

Each line can be aligned separately using constants.ALIGN_RIGHT, constants.ALIGN_LEFT or
constants.ALIGN_CENTER. Please see add_line().

It also implements the show() virtual method of Dialog. This method is blocking and has its own event loop.
It does not return anything.

ESC or ENTER close the dialog.

For the moment, the full message dialog needs to be displayed on screen. There is no pagination, but it is going
to be implemented in a future release.

As all dialogs it also has a user_input property that reflects the user input. It is not used here however.

Like all dialogs, it is automatically destroyed on exit of the show() method. It is also deleted from the screen
buffer.

Todo: Implements pagination.

__init__(data: list = None, width: int = 20, height: int = None, adaptive_height: bool = True,
alignment: int = None, title: str = None, config: pygamelib.gfx.ui.UiConfig = None) →
None

Parameters

• data (list) – A list of data to display inside the MessageDialog. Elements in the list can
contain various data types like base.Text, python strings, pygamelib.gfx.core.
Sprixel, core.Sprite

• width (int) – The width of the message dialog widget (in number of screen cells).

• height (int) – The height of the message dialog widget (in number of screen cells).

• adaptive_height (bool) – If True, the dialog height will be automatically adapted
to match the content size.

• alignment (int) – The alignment to apply to the data parameter. Please use the con-
stants.ALIGN_* constants. The default value is constants.ALIGN_LEFT

• title (str) – The short title of the dialog. Only used when the dialog is not borderless.

• config (UiConfig) – The configuration object.

Example:

msg = MessageDialog(
[

base.Text('HELP', core.Color(0,125,255), style=constants.BOLD),
base.Text('----', core.Color(0,125,255), style=constants.BOLD),
'',

],
20,
5,
True,
constants.ALIGN_CENTER,

)
msg.add_line('This is aligned on the right', constants.ALGIN_RIGHT)
msg.add_line('This is aligned on the left')

(continues on next page)

3.7. gfx 535

pygamelib Documentation, Release 1.3.0

(continued from previous page)

screen.place(msg, 10, 10)
msg.show()

Methods

__init__(data, width, height, . . .)
param data A list of data to display in-

side the MessageDialog. Elements in

add_line(data[, alignment]) Add a line to the message dialog.
render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the

frame buffer.
show() Show the dialog and execute the event loop.

Attributes

config Get and set the config object (UiConfig).
height Get and set the height of the message dialog, it has

to be an int.
title Get and set the title of the dialog, it has to be a str.
user_input Facility to store and retrieve the user input.

add_line(data, alignment=30000011)→ None
Add a line to the message dialog.

The line can be any type of data that can be rendered on screen. This means that any object that expose a
render_to_buffer(self, buffer, row, column, buffer_height, buffer_width) method can be added as a “line”.
Python strings are also obviously accepted.

Here is a non-exhaustive list of supported types:

• Text,

• python strings (str),

• Sprixel,

• Sprite,

• most board items,

• etc.

Parameters

• data (various) – The data to add to the message dialog.

• alignment (constants.ALIGN_RIGHT | constants.ALIGN_LEFT |
constants.ALIGN_CENTER) – The alignment of the line to add.

Example:

536 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

msg.add_line(
base.Text(

'This is centered and very red',
core.Color(255,0,0),

),
constants.ALGIN_CENTER,

)

config
Get and set the config object (UiConfig).

height
Get and set the height of the message dialog, it has to be an int.

render_to_buffer(buffer, row, column, buffer_height, buffer_width)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

show()→ None
Show the dialog and execute the event loop. Until this method returns, all keyboards event are processed
by the local event loop. This is also true if called from the main event loop.

This event loop returns the key pressed .

Example:

key_pressed = msg.show()
if key_pressed.name = 'KEY_ENTER':

// do something
else:

print('Good bye')

title
Get and set the title of the dialog, it has to be a str.

user_input
Facility to store and retrieve the user input.

MultiLineInputDialog

class pygamelib.gfx.ui.MultiLineInputDialog(fields=[{’label’: ’Input a value:’, ’default’:
”, ’filter’: 50000002}], title: str = None, con-
fig=None)

Bases: pygamelib.gfx.ui.Dialog

The MultiLineInputDialog behave essentially like the LineInputDialog but is more configurable to allow
the user to enter and edit a multiple lines of text.

Each field of this dialog can be individually configured to accept either anything printable or only digits.

3.7. gfx 537

pygamelib Documentation, Release 1.3.0

The show() method returns the user input.

Key mapping:

• ESC: set the user input to “” and exit from the show() method.

• ENTER: Exit from the show() method. Returns the user input.

• BACKSPACE / DELETE: delete a character (both keys have the same result).

• TAB: cycle through the fields.

• All other keys input characters in the input field.

In all cases, when the dialog is closed, the user input is returned.

Like all dialogs, it is automatically destroyed on exit of the show() method. It is also deleted from the screen
buffer.

__init__(fields=[{’label’: ’Input a value:’, ’default’: ”, ’filter’: 50000002}], title: str = None, con-
fig=None)→ None

Parameters

• fields (list) – A list of dictionnary that represent the fields to present to the user.
Please see bellow for a description of the dictionnary.

• title (str) – The short title of the dialog. Only used when the dialog is not borderless.

• config (UiConfig) – The configuration object.

The fields needs to be a list that contains dictionaries. Each of the dictionaries needs to contain 3 fields:

• “label”: A one line instruction displayed over the field. This is a string.

• “default”: A string that is going to pre-fill the input field.

• “filter”: A filter to configure the acceptable inputs.

The filters are coming from the constants module and can be either constants.INTEGER_FILTER or
constants.PRINTABLE_FILTER.

Example:

fields = [
{

"label": "Enter the height of the new sprite:",
"default": "",
"filter": constants.INTEGER_FILTER,

},
{

"label": "Enter the width of the new sprite:",
"default": "",
"filter": constants.INTEGER_FILTER,

},
{

"label": "Enter the name of the new sprite:",
"default": f"Sprite {len(sprite_list)}",
"filter": constants.PRINTABLE_FILTER,

},
]
multi_input = MultiLineInput(fields, conf)
screen.place(multi_input, 10, 10)
completed_fields = multi_input.show()

538 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Methods

__init__([fields, config])
param fields A list of dictionnary that

represent the fields to present to the

render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the
frame buffer.

show() Show the dialog and execute the event loop.

Attributes

config Get and set the config object (UiConfig).
fields Get and set the fields of the dialog, see the construc-

tor for the format or this list.
title Get and set the title of the dialog, it has to be a str.
user_input Facility to store and retrieve the user input.

config
Get and set the config object (UiConfig).

fields
Get and set the fields of the dialog, see the constructor for the format or this list.

render_to_buffer(buffer, row, column, buffer_height, buffer_width)→ None
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

show()
Show the dialog and execute the event loop. Until this method returns, all keyboards event are processed
by the local event loop. This is also true if called from the main event loop.

This event loop returns a list of dictionaries with the content of each fields. The list of dictionaries is the
same than the fields constructor parameter but each key has an additional ‘user_input’ field that contains
the user input.

If the fields parameter was:

[
{

"label": "Input a value:",
"default": "",
"filter": constants.PRINTABLE_FILTER,

}
]

3.7. gfx 539

pygamelib Documentation, Release 1.3.0

The returned value would be:

[
{

"label": "Input a value:",
"default": "",
"filter": constants.PRINTABLE_FILTER,
"user_input": "some input",

}
]

Example:

fields = multi_input.show()

title
Get and set the title of the dialog, it has to be a str.

user_input
Facility to store and retrieve the user input.

ProgressBar

class pygamelib.gfx.ui.ProgressBar(value=0, maximum=100, width=20, progress_marker=’’,
empty_marker=’ ’, config=None)

Bases: object

A simple horizontal progress bar widget.

__init__(value=0, maximum=100, width=20, progress_marker=’’, empty_marker=’ ’, config=None)

Parameters

• value (int) – The initial value parameter. It represents the progression.

• maximum (int) – The maximum value held by the progress bar. Any value over the
maximum is ignored.

• width (int) – The width of the progress bar widget (in number of screen cells).

• progress_marker (pygamelib.gfx.core.Sprixel) – The progress marker is
displayed on progression. It is the sprixel that fills the bar. Please see below.

• empty_marker (pygamelib.gfx.core.Sprixel) – The empty marker is dis-
played instead of the progress marker when the bar should be empty (when the value
is too low to fill the bar for example). Please see below.

• config (UiConfig) – The configuration object.

Here is a representation of were the progress and empty markers are used.

Progress marker
|

[=====--------------]
|

Empty marker

Example:

540 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Create a default progress bar with the default configuration
progress_bar = ProgressBar(config=UiConfig.instance())
Place the progress bar in the middle of the screen
screen.place(

progress_bar, screen.vcenter, screen.hcenter - int(progress_bar.width)
)
for progress in range(progress_bar.maximum + 1):

Do something useful
progress_bar.value = progress
screen.update()

Methods

__init__([value, maximum, width, . . .])
param value The initial value parame-

ter. It represents the progression.

render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the
frame buffer.

Attributes

config Get and set the config object (UiConfig).
empty_marker Get and set the empty marker, preferrably a

Sprixel but could be a str.
maximum Get and set the maximum possible progress, it has to

be an int.
progress_marker Get and set the progress marker, preferrably a

Sprixel but could be a str.
value Get and set the current progress value, it has to be an

int.

config
Get and set the config object (UiConfig).

empty_marker
Get and set the empty marker, preferrably a Sprixel but could be a str.

maximum
Get and set the maximum possible progress, it has to be an int.

progress_marker
Get and set the progress marker, preferrably a Sprixel but could be a str.

render_to_buffer(buffer, row, column, buffer_height, buffer_width)
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

3.7. gfx 541

pygamelib Documentation, Release 1.3.0

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

value
Get and set the current progress value, it has to be an int.

ProgressDialog

class pygamelib.gfx.ui.ProgressDialog(label=Progress dialog[0m, value=0, maximum=100,
width=20, progress_marker=’’, empty_marker=’ ’,
adaptive_width=True, destroy_on_complete=True,
config=None)

Bases: pygamelib.gfx.ui.Dialog

ProgressDialog is a progress bar widget as a dialog (or popup). The main difference with a progress bar with
borders is that it is automatically rendered on the second pass by the screen object (therefore, is visible on top
of other graphical elements).

This dialog requires external interactions so it is the only dialog widget that does not provide a useful show()
implementation. As a matter of fact, show do nothing at all.

ProgressDialog is mainly a label, a box and a ProgressBar bundled together.

__init__(label=Progress dialog[0m, value=0, maximum=100, width=20, progress_marker=’’,
empty_marker=’ ’, adaptive_width=True, destroy_on_complete=True, config=None)

The constructor accepts the following parameters.

Parameters

• label (str | base.Text) – A label to display on top of the progress bar.

• value (int) – The initial value parameter. It represents the progression.

• maximum (int) – The maximum value held by the progress bar. Any value over the
maximum is ignored.

• width (int) – The width of the progress bar widget (in number of screen cells).

• progress_marker (pygamelib.gfx.core.Sprixel) – The progress marker is
displayed on progression. It is the sprixel that fills the bar. Please see below.

• empty_marker (pygamelib.gfx.core.Sprixel) – The empty marker is dis-
played instead of the progress marker when the bar should be empty (when the value
is too low to fill the bar for example). Please see below.

• adaptive_width (bool) – If True, the dialog will automatically adapt to the size of
the label.

• destroy_on_complete – If True, the dialog will remove itself from the screen when
complete (i.e: when value == maximum)

• config (UiConfig) – The configuration object.

Example:

Create a default progress bar with the default configuration
progress_dial = ProgressDialog(

"Please wait while I'm doing something super duper important",
config=UiConfig.instance(),

(continues on next page)

542 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

(continued from previous page)

)
Place the progress bar in the middle of the screen
screen.place(

progress_dial, screen.vcenter, screen.hcenter - int(progress_bar.width)
)
for progress in range(progress_dial.maximum + 1):

Do something useful
progress_dial.value = progress
screen.update()

Methods

__init__([label, value, maximum, width, . . .]) The constructor accepts the following parameters.
render_to_buffer(buffer, row, column, . . .) Render the object from the display buffer to the

frame buffer.
show() The show method does nothing in the ProgressDia-

log.

Attributes

config Get and set the config object (UiConfig).
label Get and set the label of the dialog, it has to be a str

or base.Text.
maximum Get and set the maximum possible progress, it has to

be an int.
user_input Facility to store and retrieve the user input.
value Get and set the current progress value, it has to be an

int.

config
Get and set the config object (UiConfig).

label
Get and set the label of the dialog, it has to be a str or base.Text.

maximum
Get and set the maximum possible progress, it has to be an int.

render_to_buffer(buffer, row, column, buffer_height, buffer_width)
Render the object from the display buffer to the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

3.7. gfx 543

pygamelib Documentation, Release 1.3.0

show()
The show method does nothing in the ProgressDialog. It is a notable exception and the only dialog widget
in the UI module to do that.

user_input
Facility to store and retrieve the user input.

value
Get and set the current progress value, it has to be an int.

UiConfig

class pygamelib.gfx.ui.UiConfig(game=None, box_vertical_border=’ ’,
box_horizontal_border=’ ’, box_top_left_corner=’’,
box_top_right_corner=’’, box_bottom_left_corner=’’,
box_bottom_right_corner=’’, box_vertical_and_right=’ ’,
box_vertical_and_left=’’, fg_color=Color(255, 255, 255),
bg_color=Color(0, 128, 128), fg_color_inactive=Color(128,
128, 128), bg_color_selected=Color(128, 128, 128),
bg_color_not_selected=None, fg_color_selected=Color(0,
255, 0), fg_color_not_selected=Color(255, 255, 255),
bg_color_menu_not_selected=Color(128, 128, 128), bor-
der_fg_color=Color(255, 255, 255), border_bg_color=None,
borderless_dialog=True)

Bases: object

A configuration object for the UI module. TEST

This object’s purpose is to configure the look and feel of the UI widgets. It does nothing by itself.

Parameters

• game (Game) – The game object.

• box_vertical_border (str) – The vertical border of a box.

• box_horizontal_border (str) – The horizontal border of a box.

• box_top_left_corner (str) – The top left corner of a box.

• box_top_right_corner (str) – The top right corner of a box.

• box_bottom_left_corner (str) – The bottom left corner of a box.

• box_bottom_right_corner (str) – The bottom right corner of a box.

• box_vertical_and_right (str) – The left junction between two boxes.

• box_vertical_and_left (str) – The right junction between two boxes.

• fg_color (Color) – The foreground color (for text and content).

• bg_color (Color) – The background color (for text and content).

• fg_color_inactive (Color) – The foreground color for inactive items like menu
entries.

• bg_color_selected (Color) – The background color (for selected text and content).

• bg_color_not_selected (Color) – The background color (for non selected text and
content).

• fg_color_selected (Color) – The foreground color (for selected text and content).

544 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• fg_color_not_selected (Color) – The foreground color (for non selected text and
content).

• bg_color_menu_not_selected (Color) – The menu background color (for ex-
panded menu items).

• border_fg_color (Color) – The foreground color (for borders).

• border_bg_color (Color) – The background color (for borders).

• borderless_dialog (bool) – Is the dialog borderless or not.

Example:

config_ui_red = UiConfig(
fg_color=Color(255,0,0),
border_fg_color=Color(255,0,0)

)

__init__(game=None, box_vertical_border=’ ’, box_horizontal_border=’ ’,
box_top_left_corner=’’, box_top_right_corner=’’, box_bottom_left_corner=’’,
box_bottom_right_corner=’’, box_vertical_and_right=’ ’, box_vertical_and_left=’’,
fg_color=Color(255, 255, 255), bg_color=Color(0, 128, 128),
fg_color_inactive=Color(128, 128, 128), bg_color_selected=Color(128, 128,
128), bg_color_not_selected=None, fg_color_selected=Color(0, 255, 0),
fg_color_not_selected=Color(255, 255, 255), bg_color_menu_not_selected=Color(128,
128, 128), border_fg_color=Color(255, 255, 255), border_bg_color=None, border-
less_dialog=True)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([game, box_vertical_border, . . .]) Initialize self.
instance(*args, **kwargs) Returns the instance of the UiConfig object

classmethod instance(*args, **kwargs)
Returns the instance of the UiConfig object

Creates an UiConfig object on first call an then returns the same instance on further calls. Useful for a
default configuration. It accepts all the parameters from the constructor.

Returns Instance of Game object

3.7.3 particles

New in version 1.3.0.

Starting with version 1.3.0, the pygamelib now provides a particle system. It is for now a first limited version and it
has a number of limitations.

First, the particles are “non interactive” objects. They are not affected by board items or anything drawn on screen nor
can they affect them. All particles are drawn on top of an already rendered screen.

This means no fancy particle physics out of the box. It doesn’t means that it is not doable. It just means that it is not
existing out of the box.

3.7. gfx 545

pygamelib Documentation, Release 1.3.0

Second, although I did my best to make the particle system as efficient as possible, drawing a lot of moving elements
in the terminal is very slow. So be mindful of the performances when using it.

Now despite the limitations, the particle system still allow to do some very cool stuff. Here is a video example:

This is the benchmark of the particle system, the code is available on Ghithub.

Important: Like the UI module, the particles system works exclusively with the screen buffer system (place, delete,
render, update, etc.). It doesn’t work with Screen functions tagged “direct display” like display_at().

CircleEmitter

class pygamelib.gfx.particles.CircleEmitter(emitter_properties:
pygamelib.gfx.particles.EmitterProperties =
None)

Bases: pygamelib.gfx.particles.ParticleEmitter

The CircleEmitter differs from the ParticleEmitter in only one thing: it emits its particle in a circular
shape, like this:

Aside from that specificity it’s exactly the same as a regular particle emitter.

__init__(emitter_properties: pygamelib.gfx.particles.EmitterProperties = None)→ None
The CircleEmitter takes the same parameters than the ParticleEmitter and make use of Emitter-
Properties.radius.

The radius is used as the initial distance from the center of the circle (i.e the emitter’s position).

Methods

__init__(emitter_properties) The CircleEmitter takes the same parameters than
the ParticleEmitter and make use of Emitter-
Properties.radius.

apply_force(force) Apply a force to all alive particles.
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
emit(amount) Emit a certain amount of particles.
finished() Returns True if the emitter is finished.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load a particle emitter from serialized data.
notify([modifier]) Notify all the observers that a change occurred.
render_to_buffer(buffer, row, column, . . .) Render all the particles of that emitter in the frame

buffer.
resize_pool(new_size) In substance, this method is an alias for

ParticleEmitter.particle_pool.
resize().

serialize() Serialize the particle emitter.
store_screen_position(row, column) Store the screen position of the object.
toggle_active() Toggle the emitter’s state between active and inac-

tive.
Continued on next page

546 Chapter 3. Tutorials

https://github.com/pygamelib/pygamelib/tree/master/examples/benchmark-particle-system

pygamelib Documentation, Release 1.3.0

Table 134 – continued from previous page
update() Update all the particles in the pool.

Attributes

active Access and set the active property.
column Access and set the column property (i.e: x).
particle_pool This property holds this emitter’s instance of a

ParticlePool.
row Access and set the row property (i.e: y).
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
x Access and set the x property (i.e: column).
y Access and set the y property (i.e: row).

active
Access and set the active property.

An emitter only emits particles if he is active. Emitted particles keeps being updated even if the emitter is
not active anymore, for obvious reasons.

apply_force(force: pygamelib.base.Vector2D)
Apply a force to all alive particles.

The force needs to be a Vector2D.

Parameters force (Vector2D) – The force to apply to the particles.

Example:

my_emitter.apply_force(base.Vector2D(0,0.3)) # slight wind.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

column
Access and set the column property (i.e: x).

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

3.7. gfx 547

pygamelib Documentation, Release 1.3.0

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

emit(amount: int = None)
Emit a certain amount of particles.

The emitter will request particles from the particle pool. This in turn will trigger the recycling of dead
particles if needed.

Calling this method faster than the configured emit_rate is not going to emit more particles. An emitter
cannot emit particles faster than its emit_rate.

If amount is None, the emitter emits emit_number particles.

Parameters amount (int) – The amount (number) of particles to be emitted.

Example:

my_emitter.emit(50)

finished()
Returns True if the emitter is finished.

A finished emitter has both:

• Reach the end of its lifespan (i.e lifespan == 0)

• And all particles are finished too.

This means that an emitter will, in most cases, not be finished as soon as its lifespan reaches 0 but a bit
after. When all of its managed particles are dead.

This is on purpose for both aesthetic reasons (avoiding particles sudden removal) and for optimization
(counting active particles is a O(n) operation and can be very long when there’s a lot of particles so we
want to do it only when necessary).

Example:

if my_emitter.finished():
screen.delete(my_emitter.row, my_emitter.column)

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

548 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

classmethod load(data)
Load a particle emitter from serialized data.

Parameters data (dict) – The serialized data.

Returns The loaded particle emitter.

Return type ParticleEmitter

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

particle_pool
This property holds this emitter’s instance of a ParticlePool.

render_to_buffer(buffer, row, column, buffer_height, buffer_width)
Render all the particles of that emitter in the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

resize_pool(new_size: int = None)
In substance, this method is an alias for ParticleEmitter.particle_pool.resize(). How-
ever, called without parameter, it will try to resize the particle pool to emit_number * particle_lifespan. It
will do so only if the resulting number is greater than the current particle pool size.

Parameters new_size (int) – The desired new size of the pool.

Example:

my_emitter.resize_pool(3000)

row
Access and set the row property (i.e: y).

screen_column
A property to get/set the screen column.

3.7. gfx 549

pygamelib Documentation, Release 1.3.0

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize the particle emitter.

Returns A dictionary containing all the emitter’s properties.

Return type dict

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

toggle_active()
Toggle the emitter’s state between active and inactive.

An inactive emitter does not emit new particles but keeps processing particles that have already been
emitted.

Example:

if not my_emitter.active:
my_emitter.toggle_active()

update()
Update all the particles in the pool.

Updating a particle means applying particle_acceleration to every particle and then call Particle.
update().

Example:

my_emitter.update()

x
Access and set the x property (i.e: column).

y
Access and set the y property (i.e: row).

550 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

ColorParticle

class pygamelib.gfx.particles.ColorParticle(row: int = 0, column: int = 0, ve-
locity: pygamelib.base.Vector2D =
None, lifespan: int = None, sprixel:
pygamelib.gfx.particles.ParticleSprixel
= None, start_color:
pygamelib.gfx.core.Color = None,
stop_color: pygamelib.gfx.core.Color =
None)

Bases: pygamelib.gfx.particles.Particle

This class is an extension of Particle. It adds the possibility to gradually go from a starting color to an end
color over time. It is linked with the lifespan of the particle.

__init__(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifes-
pan: int = None, sprixel: pygamelib.gfx.particles.ParticleSprixel = None, start_color:
pygamelib.gfx.core.Color = None, stop_color: pygamelib.gfx.core.Color = None)→ None

The constructor takes the following parameters.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

• sprixel (Sprixel) – The sprixel that represent the particle when drawn on screen.

• start_color (Color) – The color of the particle at the beginning of its lifespan.

• stop_color (Color) – The color of the particle at the end of its lifespan.

Example:

single_particle = ColorParticle(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,
start_color=core.Color(255, 0, 0),
stop_color=core.Color(0, 255, 0),

)

Methods

__init__(row, column, velocity, lifespan, . . .) The constructor takes the following parameters.
apply_force(force) Apply a force to the particle’s acceleration vector.
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
finished() Return True if the particle is done living (i.e its lifes-

pan is lesser or equal to 0).
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

Continued on next page

3.7. gfx 551

pygamelib Documentation, Release 1.3.0

Table 136 – continued from previous page
load(data) Load a ColorParticle from a dictionary.
notify([modifier]) Notify all the observers that a change occurred.
render(sprixel) Render the particle as a Sprixel.
reset(row, column, velocity, lifespan) Reset a particle in its initial state.
reset_lifespan(lifespan) Reset the particle lifespan (including the initial lifes-

pan).
serialize() Serialize a ColorParticle into a dictionary.
store_screen_position(row, column) Store the screen position of the object.
terminate() Terminate a particle, i.e sets its lifespan to -1.
update() The update method perform the calculations required

to process the new particle position.

Attributes

column Access and set the column property.
row Access and set the row property.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
x Access and set the x property.
y Access and set the y property.

apply_force(force: pygamelib.base.Vector2D)→ None
Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the apply_force() method of
the emitter class.

Parameters force (Vector2D) – The force to apply.

Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

column
Access and set the column property. Equivalent to the x property.

552 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

finished()→ bool
Return True if the particle is done living (i.e its lifespan is lesser or equal to 0). It returns False otherwise.

Return type bool

Example:

if not my_particle.finished():
my_particle.update()

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data)
Load a ColorParticle from a dictionary.

Parameters data (dict) – The dictionary to load from

Returns The loaded ColorParticle

Return type ColorParticle

Example:

particle = ColorParticle.load(json.load(open("particle.json")))

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

3.7. gfx 553

pygamelib Documentation, Release 1.3.0

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

render(sprixel: pygamelib.gfx.core.Sprixel = None)
Render the particle as a Sprixel. This method is called by the ParticleEmitter render_to_buffer
method.

It takes a Sprixel as a parameter. This Sprixel is given by the ParticleEmitter.render_to_buffer() method
and if it is not None, the particle will render itself into that Sprixel and return it.

Important: This method must be called after everything else as rendered or else there will be Sprixel
that will be overwritten during their rendering cycle. Other elements could also have their Sprixel
corrupted and replaced by the particle’s one.

Parameters sprixel (Sprixel) – A sprixel already rendered in the screen buffer.

Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])

reset(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifespan: int = None)
Reset a particle in its initial state. This is particularly useful for the reuse of particles.

This method takes almost the same parameters than the constructor.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

Example:

single_particle.reset(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,

)

reset_lifespan(lifespan: int = 20)→ None
Reset the particle lifespan (including the initial lifespan).

Parameters lifespan (int) – The particle lifespan in number of movements/turns.

Example:

554 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

my_particle.reset_lifespan(10)

row
Access and set the row property. Equivalent to the y property.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a ColorParticle into a dictionary.

Returns The class as a dictionary

Return type dict

Example:

json.dump(particle.serialize())

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

terminate()→ None
Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF you are managing the particle
through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:

p.terminate()

update()
The update method perform the calculations required to process the new particle position. It mainly adds
the acceleration to the velocity vector and update the position accordingly.

After calling update() the acceleration is “consumed” in the velocity and therefor reset.

The update() method takes no parameters and returns nothing.

3.7. gfx 555

pygamelib Documentation, Release 1.3.0

Example:

my_particle.update()

x
Access and set the x property. Equivalent to the column property.

y
Access and set the y property. Equivalent to the row property.

ColorPartitionParticle

class pygamelib.gfx.particles.ColorPartitionParticle(row: int = 0, col-
umn: int = 0, velocity:
pygamelib.base.Vector2D
= None, lifespan: int =
None, partition: list = None,
partition_blending_table:
list = None, start_color:
pygamelib.gfx.core.Color
= None, stop_color:
pygamelib.gfx.core.Color =
None)

Bases: pygamelib.gfx.particles.PartitionParticle

This class is basically the same as ColorParticle but its base class is PartitionParticle instead of
Particle. Everything else is the same.

It serves the same purpose as the ColorParticle with the added partition particle capabilities.

__init__(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifespan:
int = None, partition: list = None, partition_blending_table: list = None, start_color:
pygamelib.gfx.core.Color = None, stop_color: pygamelib.gfx.core.Color = None)→ None

The constructor takes the following parameters.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

• partition (list) – The partition of the particle.

• partition_blending_table (list) – The blending table of the particle.

• start_color (Color) – The color of the particle at the beginning of its lifespan.

• stop_color (Color) – The color of the particle at the end of its lifespan.

Example:

single_particle = RandomColorPartitionParticle(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),

(continues on next page)

556 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

(continued from previous page)

lifespan=10,
)

Methods

__init__(row, column, velocity, lifespan, . . .) The constructor takes the following parameters.
apply_force(force) Apply a force to the particle’s acceleration vector.
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
finished() Return True if the particle is done living (i.e its lifes-

pan is lesser or equal to 0).
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load a ColorPartitionParticle from a dictionary.
notify([modifier]) Notify all the observers that a change occurred.
render(sprixel) This method first calls the Particle.render() method.
reset(row, column, velocity, lifespan) Reset a particle in its initial state.
reset_lifespan(lifespan) Reset the particle lifespan (including the initial lifes-

pan).
serialize() Serialize a ColorPartitionParticle into a dictionary.
store_screen_position(row, column) Store the screen position of the object.
terminate() Terminate a particle, i.e sets its lifespan to -1.
update() This method first calls the Particle.update() method,

then calculates the quadrant position, i.e: the actual
position of the particle within a console character.

Attributes

column Access and set the column property.
row Access and set the row property.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
x Access and set the x property.
y Access and set the y property.

apply_force(force: pygamelib.base.Vector2D)→ None
Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the apply_force() method of
the emitter class.

Parameters force (Vector2D) – The force to apply.

Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

3.7. gfx 557

pygamelib Documentation, Release 1.3.0

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

column
Access and set the column property. Equivalent to the x property.

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

finished()→ bool
Return True if the particle is done living (i.e its lifespan is lesser or equal to 0). It returns False otherwise.

Return type bool

Example:

if not my_particle.finished():
my_particle.update()

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data)
Load a ColorPartitionParticle from a dictionary.

Parameters data (dict) – The dictionary to load from

558 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The loaded ColorPartitionParticle

Return type ColorPartitionParticle

Example:

particle = ColorPartitionParticle.load(json.load(open("particle.json")))

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

render(sprixel: pygamelib.gfx.core.Sprixel = None)
This method first calls the Particle.render() method. Then it updates the rendered particle’s model based
on the blending table.

Parameters sprixel (Sprixel) – A sprixel already rendered in the screen buffer.

Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])

reset(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifespan: int = None)
Reset a particle in its initial state. This is particularly useful for the reuse of particles.

This method takes almost the same parameters than the constructor.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

Example:

single_particle.reset(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,

)

3.7. gfx 559

pygamelib Documentation, Release 1.3.0

reset_lifespan(lifespan: int = 20)→ None
Reset the particle lifespan (including the initial lifespan).

Parameters lifespan (int) – The particle lifespan in number of movements/turns.

Example:

my_particle.reset_lifespan(10)

row
Access and set the row property. Equivalent to the y property.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a ColorPartitionParticle into a dictionary.

Returns The class as a dictionary

Return type dict

Example:

json.dump(particle.serialize())

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

terminate()→ None
Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF you are managing the particle
through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:

p.terminate()

560 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

update()
This method first calls the Particle.update() method, then calculates the quadrant position, i.e: the actual
position of the particle within a console character. It then updates the particle’s model based on this internal
position.

Example:

my_particle.update()

x
Access and set the x property. Equivalent to the column property.

y
Access and set the y property. Equivalent to the row property.

EmitterProperties

class pygamelib.gfx.particles.EmitterProperties(row: int = 0, column: int = 0,
variance: float = 2.0, emit_number:
int = 1, emit_rate: float = 0.1,
lifespan: int = 200, parent=None,
particle_velocity=None, parti-
cle_acceleration=None, parti-
cle_lifespan: float = 5.0, ra-
dius: float = 1.0, particle:
pygamelib.gfx.particles.Particle =
None)

Bases: object

EmitterProperties is a class that hold configuration variables for a particle emitter. The idea is that it’s easier to
carry around for multiple emitters with the same configuration than multiple values in the emitter’s constructor.

It holds all possible parmeters for all types of emitters. Emitters uses only the ones that they really need.

Important: In most cases these values are copied by the emitter’s constructor. So changing the values during
an emitter’s alive cycle is not going to do anything.

Note: This class should be a @dataclass. However, support for keyword only data classes is specific to python
3.10+. So for now, it is a regular class.

__init__(row: int = 0, column: int = 0, variance: float = 2.0, emit_number: int = 1,
emit_rate: float = 0.1, lifespan: int = 200, parent=None, particle_velocity=None, par-
ticle_acceleration=None, particle_lifespan: float = 5.0, radius: float = 1.0, particle:
pygamelib.gfx.particles.Particle = None)→ None

Parameters

• row (int) – The row where the emitter is. It is only important for the first rendering
cycle. After that, the emitter will know its position on screen.

• column (int) – The row where the emitter is. It is only important for the first rendering
cycle. After that, the emitter will know its position on screen.

• variance (float) – The variance is the amount of randomness that is allowed when
emitting a particle. The exact use of this parameter is specific to each emitter.

3.7. gfx 561

pygamelib Documentation, Release 1.3.0

• emit_number (int) – The number of particle emitted at each timer tick.

• emit_rate (float) – The rate of emission in seconds. This value needs to be under-
stood as “the emitter will emit emit_number particles every emit_rate seconds”.

• lifespan (int) – The lifespan of the emitter in number of emission cycle. If lifespan
is set to 1 for example, the emitter will only emit one burst of particles.

• parent (BoardItem) – A parent board item. If you do that manually, you will probably
want to set it specifically for each emitter.

• particle_velocity (Vector2D) – The initial particle velocity. Please read the
documentation of each emitter for the specific use of particle velocity.

• particle_acceleration (Vector2D) – The initial particle acceleration. Please
read the documentation of each emitter for the specific use of particle acceleration.

• particle_lifespan (int) – The lifespan of the particle in number of cycles.

• radius (float) – For emitter that supports it (like the CircleEmitter), sets the radius of
emission (which translate into a velocity vector for each particle).

• particle (Particle) – The particle that the emitter will emit. This can be a class
reference or a fully instantiated particle. Emitters will copy it in the particle pool.

Example:

props = EmitterProperties(emit_number=10, emit_rate=0.1, lifespan=10)

Methods

__init__(row, column, variance, emit_number,
. . .) param row The row where the emitter

is. It is only important for the first

load(data) Load an EmitterProperties from a dictionary.
serialize() Serialize an EmitterProperties into a dictionary.

classmethod load(data)
Load an EmitterProperties from a dictionary.

Parameters data (dict) – The dictionary to load from.

Returns The EmitterProperties object

Return type EmitterProperties

Example:

emitter_properties = EmitterProperties.load(
json.load(open("emitter_properties.json"))

)

serialize()
Serialize an EmitterProperties into a dictionary.

Returns The class as a dictionary

Return type dict

562 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

json.dump(emitter_properties.serialize())

ParticleEmitter

class pygamelib.gfx.particles.ParticleEmitter(emitter_properties=None)
Bases: pygamelib.base.PglBaseObject

The particle emitter is a key piece of the pygamelib’s particle system: it’s the part that actually do something!

The emitter takes care of managing the particles’ life cycle. It emits, move, apply forces, update and draw
particles on screen. It also provide convenient methods to manage the particle pool or apply forces to all active
particles in the pool.

Particle emitters are configured with EmitterProperties. This is a convenient way to place multiple
emitters with the same configuration. For example, if you create a “torch fire” emitter, you can use the same
properties to create multiple emitters. It’s less cumbersome than having the parameters tied to an instance of the
emitter.

Here is an example of that taken from examples/benchmark-particle-system:

Example:

The torch fire properties
emt_props = particles.EmitterProperties(

screen.vcenter, # Position is not important as it will be updated by the
screen.hcenter, # ParticleEmitter.render_to_buffer method.
lifespan=150,
variance=0.3,
emit_number=10,
emit_rate=0.1,
particle=particles.ColorPartitionParticle(

start_color=core.Color(45, 151, 227),
stop_color=core.Color(7, 2, 40),

),
particle_lifespan=5,
radius=0.4,

)
Now create multiple emitters at different position with the same properties.
for c in [[20, 24], [20, 35], [20, 122], [20, 133]]:

bench_state.particle_emitters.append(particles.CircleEmitter(emt_props))
screen.place(

bench_state.particle_emitters[-1],
screen.vcenter - int(bench_state.altar_sprite.height / 2) + c[0],
c[1],
2, # Always set your emitters to be rendered on the second pass.

)

Important: The entire particle system is build around the Screen Buffer system and is completely incompati-
ble with the direct display system. If you want to use the particle system you have to use Screen.place() and the
other methods of the Screen Buffer system.

An emitter should always be placed on screen and set to render on the second rendering pass.

It is important if you want to avoid artifacts (like particles being rendered only under the position of the emitter).

3.7. gfx 563

pygamelib Documentation, Release 1.3.0

The particles by themselves are not able to render on screen, the emitter is doing that job for them.

It also means that the particles are rendered and displayed over a screen that is already rendered. Therefor, by
default and for the moment, they cannot interact with elements on screen or items in a board. It also means that
there is no built in particle physics (for the moment).

__init__(emitter_properties=None)→ None
The constructor takes the following parameter:

Parameters emitter_properties (EmitterProperties) – The properties of that par-
ticle emitter.

Methods

__init__([emitter_properties]) The constructor takes the following parameter:
apply_force(force) Apply a force to all alive particles.
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
emit(amount) Emit a certain amount of particles.
finished() Returns True if the emitter is finished.
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load a particle emitter from serialized data.
notify([modifier]) Notify all the observers that a change occurred.
render_to_buffer(buffer, row, column, . . .) Render all the particles of that emitter in the frame

buffer.
resize_pool(new_size) In substance, this method is an alias for

ParticleEmitter.particle_pool.
resize().

serialize() Serialize the particle emitter.
store_screen_position(row, column) Store the screen position of the object.
toggle_active() Toggle the emitter’s state between active and inac-

tive.
update() Update all the particles in the pool.

Attributes

active Access and set the active property.
column Access and set the column property (i.e: x).
particle_pool This property holds this emitter’s instance of a

ParticlePool.
row Access and set the row property (i.e: y).
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
x Access and set the x property (i.e: column).
y Access and set the y property (i.e: row).

active
Access and set the active property.

An emitter only emits particles if he is active. Emitted particles keeps being updated even if the emitter is
not active anymore, for obvious reasons.

564 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

apply_force(force: pygamelib.base.Vector2D)
Apply a force to all alive particles.

The force needs to be a Vector2D.

Parameters force (Vector2D) – The force to apply to the particles.

Example:

my_emitter.apply_force(base.Vector2D(0,0.3)) # slight wind.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

column
Access and set the column property (i.e: x).

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

emit(amount: int = None)→ None
Emit a certain amount of particles.

The emitter will request particles from the particle pool. This in turn will trigger the recycling of dead
particles if needed.

Calling this method faster than the configured emit_rate is not going to emit more particles. An emitter
cannot emit particles faster than its emit_rate.

If amount is None, the emitter emits emit_number particles.

Parameters amount (int) – The amount (number) of particles to be emitted.

Example:

my_emitter.emit(50)

3.7. gfx 565

pygamelib Documentation, Release 1.3.0

finished()
Returns True if the emitter is finished.

A finished emitter has both:

• Reach the end of its lifespan (i.e lifespan == 0)

• And all particles are finished too.

This means that an emitter will, in most cases, not be finished as soon as its lifespan reaches 0 but a bit
after. When all of its managed particles are dead.

This is on purpose for both aesthetic reasons (avoiding particles sudden removal) and for optimization
(counting active particles is a O(n) operation and can be very long when there’s a lot of particles so we
want to do it only when necessary).

Example:

if my_emitter.finished():
screen.delete(my_emitter.row, my_emitter.column)

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data)
Load a particle emitter from serialized data.

Parameters data (dict) – The serialized data.

Returns The loaded particle emitter.

Return type ParticleEmitter

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

566 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

particle_pool
This property holds this emitter’s instance of a ParticlePool.

render_to_buffer(buffer, row, column, buffer_height, buffer_width)
Render all the particles of that emitter in the frame buffer.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

resize_pool(new_size: int = None)
In substance, this method is an alias for ParticleEmitter.particle_pool.resize(). How-
ever, called without parameter, it will try to resize the particle pool to emit_number * particle_lifespan. It
will do so only if the resulting number is greater than the current particle pool size.

Parameters new_size (int) – The desired new size of the pool.

Example:

my_emitter.resize_pool(3000)

row
Access and set the row property (i.e: y).

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize the particle emitter.

Returns A dictionary containing all the emitter’s properties.

Return type dict

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

3.7. gfx 567

pygamelib Documentation, Release 1.3.0

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

toggle_active()
Toggle the emitter’s state between active and inactive.

An inactive emitter does not emit new particles but keeps processing particles that have already been
emitted.

Example:

if not my_emitter.active:
my_emitter.toggle_active()

update()
Update all the particles in the pool.

Updating a particle means applying particle_acceleration to every particle and then call Particle.
update().

Example:

my_emitter.update()

x
Access and set the x property (i.e: column).

y
Access and set the y property (i.e: row).

ParticlePool

class pygamelib.gfx.particles.ParticlePool(size: int = None, emitter_properties:
pygamelib.gfx.particles.EmitterProperties
= None)

Bases: object

The particle pool is a structure that holds a large number of particles and make them available to the emitters.

Its main role is to optimize the performances (both speed and memory usage). It works by pre-instantiating a
desired number of particles according to the EmitterProperties that is given to the constructor.

The particle pool is optimized to avoid searching for available particles. It sets its own size to avoid relying on
anything but its last known particle made available to the emitter. So unless for specific behavior, it is probably
a good idea to let it sets its own size.

It also recycle particles that are finished() to avoid a constant cycle of creation/destruction of a large amount
of particle objects.

__init__(size: int = None, emitter_properties: pygamelib.gfx.particles.EmitterProperties = None)→
None

The constructor takes the following parameters:

Parameters

568 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• size (int) – The size of the pool in number of particles. For this to be efficient, be sure
to have enough particles to cover for enough cycles before your first emitted particles are
finished. The ParticleEmitter uses the following rule to size the pool: emit_rate *
particle_lifespan. It is the default value if size is not specified.

• emitter_properties (EmitterProperties) – The properties of the particles
that needs to be pre-instantiated.

Example:

my_particle_pool = ParticlePool(500, my_properties)

Methods

__init__(size, emitter_properties) The constructor takes the following parameters:
count_active_particles() Returns the number of active particle (i.e not fin-

ished) in the pool.
get_particles(amount) Returns the requested amount of particles.
resize(new_size) Resize the particle pool to a new size.

Attributes

pool A read-only property that returns the particle pool
tuple.

count_active_particles()→ int
Returns the number of active particle (i.e not finished) in the pool.

Important: The only way to know the amount of alive particles is to go through the entire pool. Be aware
of the performance impact on large particle pools.

Returns the number of active particles.

Return type int

Example:

if emitter.particles.count_active_particles() > 0:
emitter.apply_force(gravity)

get_particles(amount: int = None)→ tuple
Returns the requested amount of particles.

It is important to know that no particle is created during that call. This method returns available particles
in the pool. Particles are recycled after they “died”.

If amount is not specified the pool returns EmitterProperties.emit_number particles.

Parameters amount (int) – The amount of particles to return.

Returns A tuple containing the desired amount of particles.

Return type tuple

3.7. gfx 569

pygamelib Documentation, Release 1.3.0

Example:

fresh_particles = my_particle_pool.get_particles(30)

pool
A read-only property that returns the particle pool tuple.

resize(new_size: int)
Resize the particle pool to a new size.

If the new size is greater than the old one, the pool will be filled by pre-instanciated particles. If it’s shorter
however, the extra particles will be destroyed.

Parameters new_size (int) – The new size of the pool.

Example:

Resize the particle pool to hold 100 particles.
my_particle_pool.resize(100)

Particle

class pygamelib.gfx.particles.Particle(row: int = 0, column: int = 0, ve-
locity: pygamelib.base.Vector2D =
None, lifespan: int = None, sprixel:
pygamelib.gfx.particles.ParticleSprixel = None)

Bases: pygamelib.base.PglBaseObject

New in version 1.3.0.

The Particle class is the base class that is inherited from by all other particles. It is mostly a “data class” in the
sense that it is a class used for calculations but is not able to render on screen by itself. All operations are pure
data operations until the emitter draw the particles.

Altought the Particle class can be used on its own, it is most likely to be used as a template for a particle emitter.

__init__(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifespan: int =
None, sprixel: pygamelib.gfx.particles.ParticleSprixel = None)→ None

The constructor takes the following parameters.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

• sprixel (Sprixel) – The sprixel that represent the particle when drawn on screen.

Example:

single_particle = Particle(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,

(continues on next page)

570 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

(continued from previous page)

sprixel=core.Sprixel(graphics.GeometricShapes.BLACK_CIRCLE)
)

Methods

__init__(row, column, velocity, lifespan, . . .) The constructor takes the following parameters.
apply_force(force) Apply a force to the particle’s acceleration vector.
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
finished() Return True if the particle is done living (i.e its lifes-

pan is lesser or equal to 0).
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load a Particle from a dictionary.
notify([modifier]) Notify all the observers that a change occurred.
render(sprixel) Render the particle as a Sprixel.
reset(row, column, velocity, lifespan) Reset a particle in its initial state.
reset_lifespan(lifespan) Reset the particle lifespan (including the initial lifes-

pan).
serialize() Serialize a Particle into a dictionary.
store_screen_position(row, column) Store the screen position of the object.
terminate() Terminate a particle, i.e sets its lifespan to -1.
update() The update method perform the calculations required

to process the new particle position.

Attributes

column Access and set the column property.
row Access and set the row property.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
x Access and set the x property.
y Access and set the y property.

apply_force(force: pygamelib.base.Vector2D)→ None
Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the apply_force() method of
the emitter class.

Parameters force (Vector2D) – The force to apply.

Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

3.7. gfx 571

pygamelib Documentation, Release 1.3.0

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

column
Access and set the column property. Equivalent to the x property.

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

finished()→ bool
Return True if the particle is done living (i.e its lifespan is lesser or equal to 0). It returns False otherwise.

Return type bool

Example:

if not my_particle.finished():
my_particle.update()

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data)
Load a Particle from a dictionary.

Parameters data (dict) – The dictionary to load from

572 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Returns The loaded Particle

Return type Particle

Example:

particle = Particle.load(json.load(open("particle.json")))

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

render(sprixel: pygamelib.gfx.core.Sprixel = None)
Render the particle as a Sprixel. This method is called by the ParticleEmitter render_to_buffer
method.

It takes a Sprixel as a parameter. This Sprixel is given by the ParticleEmitter.render_to_buffer() method
and if it is not None, the particle will render itself into that Sprixel and return it.

Important: This method must be called after everything else as rendered or else there will be Sprixel
that will be overwritten during their rendering cycle. Other elements could also have their Sprixel
corrupted and replaced by the particle’s one.

Parameters sprixel (Sprixel) – A sprixel already rendered in the screen buffer.

Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])

reset(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifespan: int = None)
Reset a particle in its initial state. This is particularly useful for the reuse of particles.

This method takes almost the same parameters than the constructor.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

3.7. gfx 573

pygamelib Documentation, Release 1.3.0

Example:

single_particle.reset(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,

)

reset_lifespan(lifespan: int = 20)→ None
Reset the particle lifespan (including the initial lifespan).

Parameters lifespan (int) – The particle lifespan in number of movements/turns.

Example:

my_particle.reset_lifespan(10)

row
Access and set the row property. Equivalent to the y property.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a Particle into a dictionary.

Returns The class as a dictionary

Return type dict

Example:

json.dump(particle.serialize())

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

terminate()→ None
Terminate a particle, i.e sets its lifespan to -1.

574 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF you are managing the particle
through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:

p.terminate()

update()→ None
The update method perform the calculations required to process the new particle position. It mainly adds
the acceleration to the velocity vector and update the position accordingly.

After calling update() the acceleration is “consumed” in the velocity and therefor reset.

The update() method takes no parameters and returns nothing.

Example:

my_particle.update()

x
Access and set the x property. Equivalent to the column property.

y
Access and set the y property. Equivalent to the row property.

ParticleSprixel

class pygamelib.gfx.particles.ParticleSprixel(model=”, bg_color=None,
fg_color=None,
is_bg_transparent=None)

Bases: pygamelib.gfx.core.Sprixel

New in version 1.3.0.

The ParticleSprixel is nothing more than a Sprixel. Its only role is to help differentiate rendered sprixels for
Partition Particles.

__init__(model=”, bg_color=None, fg_color=None, is_bg_transparent=None)

Parameters

• model (str) – The model, it can be any string. Preferrably a single character.

• bg_color (Color) – A Color object to configure the background color.

• fg_color (Color) – A Color object to configure the foreground color.

• is_bg_transparent (bool) – Set the background of the Sprixel to be transparent. It
tells the engine to replace the background of the Sprixel by the background color of the
overlapped sprixel.

Methods

3.7. gfx 575

pygamelib Documentation, Release 1.3.0

__init__([model, bg_color, fg_color, . . .])
param model The model, it can be any

string. Preferrably a single character.

attach(observer) Attach an observer to this instance.
black_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.BLACK_RECT.
black_square() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.BLACK_SQUARE.

blue_rect() This class method returns a sprixel that is the equiv-
alent of pygamelib.assets.graphics.BLUE_RECT.

blue_square() This class method returns a sprixel that is the equiva-
lent of pygamelib.assets.graphics.BLUE_SQUARE.

copy() Returns a (deep) copy of the sprixel.
cyan_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.CYAN_RECT.
cyan_square() This class method returns a sprixel that is the equiva-

lent of pygamelib.assets.graphics.CYAN_SQUARE.
detach(observer) Detach an observer from this instance.
from_ansi(string[, model]) Takes an ANSI string, parse it and return a Sprixel.
green_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.GREEN_RECT.
green_square() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.GREEN_SQUARE.

handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Create a new Sprixel object based on serialized data.
magenta_rect() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.MAGENTA_RECT.

magenta_square() This class method returns a
sprixel that is the equivalent of
pygamelib.assets.graphics.MAGENTA_SQUARE.

notify([modifier]) Notify all the observers that a change occurred.
red_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.RED_RECT.
red_square() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.RED_SQUARE.
render_to_buffer(buffer, row, column, . . .) Render the sprixel from the display buffer to the

frame buffer.
serialize() Serialize a Sprixel into a dictionary.
store_screen_position(row, column) Store the screen position of the object.
white_rect() This class method returns a sprixel that is the equiv-

alent of pygamelib.assets.graphics.WHITE_RECT.
white_square() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.WHITE_SQUARE.

yellow_rect() This class method returns a sprixel that is the equiva-
lent of pygamelib.assets.graphics.YELLOW_RECT.

Continued on next page

576 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Table 147 – continued from previous page
yellow_square() This class method returns a

sprixel that is the equivalent of
pygamelib.assets.graphics.YELLOW_SQUARE.

Attributes

bg_color A property to get/set the background color of the
Sprixel.

fg_color A property to get/set the foreground color of the
Sprixel.

length Return the true length of the model.
model A property to get/set the model of the Sprixel.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

bg_color
A property to get/set the background color of the Sprixel.

Parameters value (Color) – The new color

When the bg_color is changed, the observers are notified of the change with the
pygamelib.gfx.core.Sprixel.bg_color:changed event. The new bg_color is passed as the value pa-
rameter.

Example:

Access the sprixel's color
sprix.bg_color
Set the sprixel's background color to some blue
sprix.bg_color = Color(0,128,255)

classmethod black_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLACK_RECT. The
difference is that BLACK_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

3.7. gfx 577

pygamelib Documentation, Release 1.3.0

sprixel = Sprixel.black_rect()

classmethod black_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLACK_SQUARE.
The difference is that BLACK_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.black_square()

classmethod blue_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLUE_RECT. The
difference is that BLUE_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.blue_rect()

classmethod blue_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.BLUE_SQUARE.
The difference is that BLUE_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.blue_square()

copy()
Returns a (deep) copy of the sprixel.

New in version 1.3.0.

classmethod cyan_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.CYAN_RECT. The
difference is that CYAN_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.cyan_rect()

classmethod cyan_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.CYAN_SQUARE.
The difference is that CYAN_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.cyan_square()

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

578 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

fg_color
A property to get/set the foreground color of the Sprixel.

Parameters value (Color) – The new color

When the fg_color is changed, the observers are notified of the change with the
pygamelib.gfx.core.Sprixel.fg_color:changed event. The new fg_color is passed as the value parameter.

Example:

Access the sprixel's color
sprix.fg_color
Set the sprixel's foreground color to some green
sprix.fg_color = Color(0,255,128)

static from_ansi(string, model=’’)
Takes an ANSI string, parse it and return a Sprixel.

Parameters

• string (str) – The ANSI string to parse.

• model (str) – The character used to represent the sprixel in the ANSI sequence. Default
is “”

Example:

new_sprixel = Sprixel.from_ansi(
"\x1b[48;2;139;22;19m\x1b[38;2;160;26;23m\x1b[0m"

)

Warning: This has mainly be tested with ANSI string generated by climage. If you find any issue,
please report it

classmethod green_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.GREEN_RECT. The
difference is that GREEN_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.green_rect()

classmethod green_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.GREEN_SQUARE.
The difference is that GREEN_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.green_square()

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

3.7. gfx 579

https://github.com/pygamelib/pygamelib/issues

pygamelib Documentation, Release 1.3.0

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

length
Return the true length of the model.

New in version 1.3.0.

With UTF8 and emojis the length of a string as returned by python’s len() function is often very wrong.
For example, the len(“x1b[48;2;139;22;19mx1b[38;2;160;26;23mx1b[0m”) returns 39 when it should re-
turn 1.

This method returns the actual printing/display size of the sprixel’s model.

Note: This is a read only value. It is automatically updated when the model is changed.

Example:

if sprix.length > 2:
print(

f"Warning: that sprixel {sprix} will break the rest of the "
"board's alignement"
)

classmethod load(data)
Create a new Sprixel object based on serialized data.

New in version 1.3.0.

Parameters data (dict) – Data loaded from JSON data (deserialized).

Return type Sprixel

Example:

new_sprite = Sprixel.load(json_parsed_data['default_sprixel'])

classmethod magenta_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.MAGENTA_RECT.
The difference is that MAGENTA_RECT is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.magenta_rect()

classmethod magenta_square()
This class method returns a sprixel that is the equivalent of

580 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

pygamelib.assets.graphics.MAGENTA_SQUARE. The difference is that MAGENTA_SQUARE is a
string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.magenta_square()

model
A property to get/set the model of the Sprixel.

Parameters value (str) – The new model

When the model is changed, the observers are notified of the change with the
pygamelib.gfx.core.Sprixel.model:changed event. The new model is passed as the value parameter.

Example:

Get the sprixel's model
sprix.model
Set the sprixel's model to "@"
sprix.model = "@"

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

classmethod red_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.RED_RECT. The
difference is that RED_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.red_rect()

classmethod red_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.RED_SQUARE.
The difference is that RED_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.red_square()

render_to_buffer(buffer, row, column, buffer_height, buffer_width)
Render the sprixel from the display buffer to the frame buffer.

3.7. gfx 581

pygamelib Documentation, Release 1.3.0

New in version 1.3.0.

This method is automatically called by pygamelib.engine.Screen.render().

Parameters

• buffer (numpy.array) – A screen buffer to render the item into.

• row (int) – The row to render in.

• column (int) – The column to render in.

• height (int) – The total height of the display buffer.

• width (int) – The total width of the display buffer.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a Sprixel into a dictionary.

New in version 1.3.0.

Returns The class as a dictionary

Return type dict

Example:

json.dump(sprixel.serialize())

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

classmethod white_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.WHITE_RECT. The
difference is that WHITE_RECT is a string and this one is a Sprixel that can be manipulated more easily.

Example:

sprixel = Sprixel.white_rect()

582 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

classmethod white_square()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.WHITE_SQUARE.
The difference is that WHITE_SQUARE is a string and this one is a Sprixel that can be manipulated more
easily.

Example:

sprixel = Sprixel.white_square()

classmethod yellow_rect()
This class method returns a sprixel that is the equivalent of pygamelib.assets.graphics.YELLOW_RECT.
The difference is that YELLOW_RECT is a string and this one is a Sprixel that can be manipulated more
easily.

Note: Yellow is often rendered as brown.

Example:

sprixel = Sprixel.yellow_rect()

classmethod yellow_square()
This class method returns a sprixel that is the equivalent of
pygamelib.assets.graphics.YELLOW_SQUARE. The difference is that YELLOW_SQUARE is a
string and this one is a Sprixel that can be manipulated more easily.

Note: Yellow is often rendered as brown.

Example:

sprixel = Sprixel.yellow_square()

PartitionParticle

class pygamelib.gfx.particles.PartitionParticle(row: int = 0, column: int = 0, veloc-
ity: pygamelib.base.Vector2D = None,
lifespan: int = None, partition: list =
None, partition_blending_table: list =
None)

Bases: pygamelib.gfx.particles.Particle

New in version 1.3.0.

The PartitionParticle is a more precise Particle. Its main difference is that it is additive. This means that the
PartitionParticle posess the ability to complement a sprixel that is already drawn. Or to add to a sprixel that is
already drawn.

As a matter of facts, the primary goal of the PartitionParticle is to modify an already drawn sprixel to improve
the visuals/graphical effects.

For example, if two particles occupy the same space on screen, with a regular Particle the last to render is
the one that will be displayed. If one particle is represented by ‘’ and the other by ‘’, only the second will be
displayed.

In the case of PartitionParticles, an addition of the 2 sprixels will be displayed! So in the previous example the
addition of the 2 particles would result in ‘’ because ‘’ + ‘’ = ‘’.

3.7. gfx 583

pygamelib Documentation, Release 1.3.0

It comes at a cost though as the PartitionParticle is slower to render than the Particle class.

The partition particle achieve that by using a partition and a blending table. The blending table is crucial for the
performances to be not too catastrophic. The size of the blending table is directly linked to the performances of
the PartitionParticle (the bigger the blending table the slower the rendering).

The blending table is a dictionnary of strings that covers all possible operations.

Example:

partition_blending_table = {
gb.QUADRANT_UPPER_LEFT
+ gb.QUADRANT_UPPER_RIGHT: gb.UPPER_HALF_BLOCK,
gb.QUADRANT_UPPER_LEFT + gb.QUADRANT_LOWER_LEFT: gb.LEFT_HALF_BLOCK,
gb.QUADRANT_UPPER_LEFT
+ gb.QUADRANT_LOWER_RIGHT: gb.QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT,
it goes on for many lines...

}

By default, the PartitionParticle has a blending table that is using the UTF8 Blocks.QUADRANT_* characters.
If you want to use a different one, you need to define a new blending table and pass it as parameter to the
constructor.

The partition itself is a 2x2 array that contains the 4 quadrants of a character displayed in the terminal.

As an example, if a full character were a block: ‘’ the partition would be: [[’’, ‘’], [’’, ‘’]].

You can conceive the partition as the exploded version of the character/sprixel and the blending table as the rules
to blend them together.

The PartitionParticle can also be used to create reinforcement effects. For example, if the partition is composed
solely of ‘’ and the partition table only define one rule: ‘’ + ‘’ = ‘’. It is a powerful particle that can be used to
create a lot of different effects.

Important: A limit of the current implementation is that the partition table must be a 2x2 array. It cannot be
otherwise. Even if all the quadrants are the same.

__init__(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifespan: int =
None, partition: list = None, partition_blending_table: list = None)→ None

The constructor takes the following parameters.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

• partition (list) – The 2x2 array that defines the partition of the sprixel.

• partition_blending_table (list) – The blending table that defines the rules to
blend the 2 sprixels.

Example:

584 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Here we'll use the default blending table
single_particle = PartitionParticle(

row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,
self.partition = [

[
graphics.Blocks.QUADRANT_UPPER_LEFT,
graphics.Blocks.QUADRANT_UPPER_RIGHT,

],
[

graphics.Blocks.QUADRANT_LOWER_LEFT,
graphics.Blocks.QUADRANT_LOWER_RIGHT,

],
]

)

Methods

__init__(row, column, velocity, lifespan, . . .) The constructor takes the following parameters.
apply_force(force) Apply a force to the particle’s acceleration vector.
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
finished() Return True if the particle is done living (i.e its lifes-

pan is lesser or equal to 0).
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load a PartitionParticle from a dictionary.
notify([modifier]) Notify all the observers that a change occurred.
render(sprixel) This method first calls the Particle.render() method.
reset(row, column, velocity, lifespan) Reset a particle in its initial state.
reset_lifespan(lifespan) Reset the particle lifespan (including the initial lifes-

pan).
serialize() Serialize a PartitionParticle into a dictionary.
store_screen_position(row, column) Store the screen position of the object.
terminate() Terminate a particle, i.e sets its lifespan to -1.
update() This method first calls the Particle.update() method,

then calculates the quadrant position, i.e: the actual
position of the particle within a console character.

Attributes

column Access and set the column property.
row Access and set the row property.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
x Access and set the x property.
y Access and set the y property.

3.7. gfx 585

pygamelib Documentation, Release 1.3.0

apply_force(force: pygamelib.base.Vector2D)→ None
Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the apply_force() method of
the emitter class.

Parameters force (Vector2D) – The force to apply.

Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

column
Access and set the column property. Equivalent to the x property.

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

finished()→ bool
Return True if the particle is done living (i.e its lifespan is lesser or equal to 0). It returns False otherwise.

Return type bool

Example:

if not my_particle.finished():
my_particle.update()

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

586 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data)
Load a PartitionParticle from a dictionary.

Parameters data (dict) – The dictionary to load from

Returns The loaded PartitionParticle

Return type PartitionParticle

Example:

particle = PartitionParticle.load(json.load(open("particle.json")))

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

render(sprixel: pygamelib.gfx.core.Sprixel = None)
This method first calls the Particle.render() method. Then it updates the rendered particle’s model based
on the blending table.

Parameters sprixel (Sprixel) – A sprixel already rendered in the screen buffer.

Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])

reset(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifespan: int = None)
Reset a particle in its initial state. This is particularly useful for the reuse of particles.

This method takes almost the same parameters than the constructor.

Parameters

3.7. gfx 587

pygamelib Documentation, Release 1.3.0

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

Example:

single_particle.reset(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,

)

reset_lifespan(lifespan: int = 20)→ None
Reset the particle lifespan (including the initial lifespan).

Parameters lifespan (int) – The particle lifespan in number of movements/turns.

Example:

my_particle.reset_lifespan(10)

row
Access and set the row property. Equivalent to the y property.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a PartitionParticle into a dictionary.

Returns The class as a dictionary

Return type dict

Example:

json.dump(particle.serialize())

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

588 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Example:

an_object.store_screen_coordinate(3,8)

terminate()→ None
Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF you are managing the particle
through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:

p.terminate()

update()
This method first calls the Particle.update() method, then calculates the quadrant position, i.e: the actual
position of the particle within a console character. It then updates the particle’s model based on this internal
position.

Example:

my_particle.update()

x
Access and set the x property. Equivalent to the column property.

y
Access and set the y property. Equivalent to the row property.

RandomColorParticle

class pygamelib.gfx.particles.RandomColorParticle(row: int = 0, column: int = 0, ve-
locity: pygamelib.base.Vector2D =
None, lifespan: int = None, sprixel:
pygamelib.gfx.particles.ParticleSprixel
= None, color:
pygamelib.gfx.core.Color = None)

Bases: pygamelib.gfx.particles.Particle

This class is a Particle that has a random foreground color.

By default, if both the sprixel and color parameters are not specified, the model of the Sprixel is going to be
‘•’ and the color will be randomly chosen.

You can also specify a color and a model.

__init__(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifes-
pan: int = None, sprixel: pygamelib.gfx.particles.ParticleSprixel = None, color:
pygamelib.gfx.core.Color = None)→ None

The constructor takes the following parameters.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

3.7. gfx 589

pygamelib Documentation, Release 1.3.0

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

• sprixel (Sprixel) – The sprixel that represent the particle when drawn on screen.

• color (Color) – The color of the particle (if you want a specific color instead of a
random one).

Example:

single_particle = RandomColorParticle(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,

)

Methods

__init__(row, column, velocity, lifespan, . . .) The constructor takes the following parameters.
apply_force(force) Apply a force to the particle’s acceleration vector.
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
finished() Return True if the particle is done living (i.e its lifes-

pan is lesser or equal to 0).
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load a PartitionParticle from a dictionary.
notify([modifier]) Notify all the observers that a change occurred.
render(sprixel) Render the particle as a Sprixel.
reset(row, column, velocity, lifespan) Reset a particle in its initial state.
reset_lifespan(lifespan) Reset the particle lifespan (including the initial lifes-

pan).
serialize() Serialize a RandomColorParticle into a dictionary.
store_screen_position(row, column) Store the screen position of the object.
terminate() Terminate a particle, i.e sets its lifespan to -1.
update() The update method perform the calculations required

to process the new particle position.

Attributes

column Access and set the column property.
row Access and set the row property.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
x Access and set the x property.
y Access and set the y property.

apply_force(force: pygamelib.base.Vector2D)→ None
Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the apply_force() method of
the emitter class.

590 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Parameters force (Vector2D) – The force to apply.

Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

column
Access and set the column property. Equivalent to the x property.

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

finished()→ bool
Return True if the particle is done living (i.e its lifespan is lesser or equal to 0). It returns False otherwise.

Return type bool

Example:

if not my_particle.finished():
my_particle.update()

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

3.7. gfx 591

pygamelib Documentation, Release 1.3.0

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data)
Load a PartitionParticle from a dictionary.

Parameters data (dict) – The dictionary to load from

Returns The loaded PartitionParticle

Return type PartitionParticle

Example:

particle = RandomColorParticle.load(json.load(open("particle.json")))

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

render(sprixel: pygamelib.gfx.core.Sprixel = None)
Render the particle as a Sprixel. This method is called by the ParticleEmitter render_to_buffer
method.

It takes a Sprixel as a parameter. This Sprixel is given by the ParticleEmitter.render_to_buffer() method
and if it is not None, the particle will render itself into that Sprixel and return it.

Important: This method must be called after everything else as rendered or else there will be Sprixel
that will be overwritten during their rendering cycle. Other elements could also have their Sprixel
corrupted and replaced by the particle’s one.

Parameters sprixel (Sprixel) – A sprixel already rendered in the screen buffer.

Example:

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])

reset(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifespan: int = None)
Reset a particle in its initial state. This is particularly useful for the reuse of particles.

592 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

This method takes almost the same parameters than the constructor.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

Example:

single_particle.reset(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,

)

reset_lifespan(lifespan: int = 20)→ None
Reset the particle lifespan (including the initial lifespan).

Parameters lifespan (int) – The particle lifespan in number of movements/turns.

Example:

my_particle.reset_lifespan(10)

row
Access and set the row property. Equivalent to the y property.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a RandomColorParticle into a dictionary.

Returns The class as a dictionary

Return type dict

Example:

json.dump(particle.serialize())

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

3.7. gfx 593

pygamelib Documentation, Release 1.3.0

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

terminate()→ None
Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF you are managing the particle
through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:

p.terminate()

update()→ None
The update method perform the calculations required to process the new particle position. It mainly adds
the acceleration to the velocity vector and update the position accordingly.

After calling update() the acceleration is “consumed” in the velocity and therefor reset.

The update() method takes no parameters and returns nothing.

Example:

my_particle.update()

x
Access and set the x property. Equivalent to the column property.

y
Access and set the y property. Equivalent to the row property.

RandomColorPartitionParticle

class pygamelib.gfx.particles.RandomColorPartitionParticle(row: int = 0, col-
umn: int = 0, velocity:
pygamelib.base.Vector2D
= None, lifespan: int
= None, partition:
list = None, parti-
tion_blending_table:
list = None, color:
pygamelib.gfx.core.Color
= None)

Bases: pygamelib.gfx.particles.PartitionParticle

This class is basically the same as RandomColorParticle but its base class is PartitionParticle
instead of Particle. Everything else is the same.

__init__(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifes-
pan: int = None, partition: list = None, partition_blending_table: list = None, color:
pygamelib.gfx.core.Color = None)→ None

The constructor takes the following parameters.

594 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

• partition (list) – The partition of the particle.

• partition_blending_table (list) – The blending table of the particle.

• color (Color) – The color of the particle (if you want a specific color instead of a
random one).

Example:

single_particle = RandomColorPartitionParticle(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,

)

Methods

__init__(row, column, velocity, lifespan, . . .) The constructor takes the following parameters.
apply_force(force) Apply a force to the particle’s acceleration vector.
attach(observer) Attach an observer to this instance.
detach(observer) Detach an observer from this instance.
finished() Return True if the particle is done living (i.e its lifes-

pan is lesser or equal to 0).
handle_notification(subject[, attribute,
value])

A virtual method that needs to be implemented by
the observer.

load(data) Load a RandomColorPartitionParticle from a dictio-
nary.

notify([modifier]) Notify all the observers that a change occurred.
render(sprixel) This method first calls the Particle.render() method.
reset(row, column, velocity, lifespan) Reset a particle in its initial state.
reset_lifespan(lifespan) Reset the particle lifespan (including the initial lifes-

pan).
serialize() Serialize a RandomColorPartitionParticle into a dic-

tionary.
store_screen_position(row, column) Store the screen position of the object.
terminate() Terminate a particle, i.e sets its lifespan to -1.
update() This method first calls the Particle.update() method,

then calculates the quadrant position, i.e: the actual
position of the particle within a console character.

Attributes

3.7. gfx 595

pygamelib Documentation, Release 1.3.0

column Access and set the column property.
row Access and set the row property.
screen_column A property to get/set the screen column.
screen_row A property to get/set the screen row.
x Access and set the x property.
y Access and set the y property.

apply_force(force: pygamelib.base.Vector2D)→ None
Apply a force to the particle’s acceleration vector.

You are more likely to apply forces to all particles of an emitter through the apply_force() method of
the emitter class.

Parameters force (Vector2D) – The force to apply.

Example:

gravity = Vector2D(-0.2, 0.0)
my_particle.apply_force(gravity)

attach(observer)
Attach an observer to this instance. It means that until it is detached, it will be notified every time that a
notification is issued (usually on changes).

An object cannot add itself to the list of observers (to avoid infinite recursions).

Parameters observer (PglBaseObject) – An observer to attach to this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

myboard = Board()
screen = Game.instance().screen
screen will be notified of all changes in myboard
myboard.attach(screen)

column
Access and set the column property. Equivalent to the x property.

detach(observer)
Detach an observer from this instance. If observer is not in the list this returns False.

Parameters observer (PglBaseObject) – An observer to detach from this object.

Returns True or False depending on the success of the operation.

Return type bool

Example:

screen will no longer be notified of the changes in myboard.
myboard.detach(screen)

finished()→ bool
Return True if the particle is done living (i.e its lifespan is lesser or equal to 0). It returns False otherwise.

Return type bool

Example:

596 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

if not my_particle.finished():
my_particle.update()

handle_notification(subject, attribute=None, value=None)
A virtual method that needs to be implemented by the observer. By default it does nothing but each
observer needs to implement it if something needs to be done when notified.

This method always receive the notifying object as first parameter. The 2 other parameters are optional
and can be None.

You can use the attribute and value as you see fit. You are free to consider attribute as an event and value
as the event’s value.

Parameters

• subject (PglBaseObject) – The object that has changed.

• attribute (str) – The attribute that has changed, it is usually a “FQDN style” string.
This can be None.

• value (Any) – The new value of the attribute. This can be None.

classmethod load(data)
Load a RandomColorPartitionParticle from a dictionary.

Parameters data (dict) – The dictionary to load from

Returns The loaded RandomColorPartitionParticle

Return type RandomColorPartitionParticle

Example:

particle = RandomColorPartitionParticle.load(
json.load(open("particle.json"))

)

notify(modifier=None, attribute: str = None, value: Any = None)→ None
Notify all the observers that a change occurred.

Parameters

• modifier (PglBaseObject) – An optional parameter that identify the modifier object
to exclude it from the notified objects.

• attribute (str) – An optional parameter that identify the attribute that has changed.

• value (Any) – An optional parameter that identify the new value of the attribute.

Example:

This example is silly, you would usually notify other objects from inside
an object that changes a value that's important for the observers.
color = Color(255,200,125)
color.attach(some_text_object)
color.notify()

render(sprixel: pygamelib.gfx.core.Sprixel = None)
This method first calls the Particle.render() method. Then it updates the rendered particle’s model based
on the blending table.

Parameters sprixel (Sprixel) – A sprixel already rendered in the screen buffer.

Example:

3.7. gfx 597

pygamelib Documentation, Release 1.3.0

p = my_particle
buffer[p.row][p.column] = p.render(buffer[p.row][p.column])

reset(row: int = 0, column: int = 0, velocity: pygamelib.base.Vector2D = None, lifespan: int = None)
Reset a particle in its initial state. This is particularly useful for the reuse of particles.

This method takes almost the same parameters than the constructor.

Parameters

• row (int) – The initial row position of the particle on the screen.

• column (int) – The initial column position of the particle on the screen.

• velocity (Vector2D) – The initial velocity of the particle.

• lifespan (int) – The particle lifespan in number of movements/turns. A particle with
a lifespan of 3 will move for 3 turns before being finished.

Example:

single_particle.reset(
row=5,
column=5,
velocity=base.Vector2D(-0.5, 0.0),
lifespan=10,

)

reset_lifespan(lifespan: int = 20)→ None
Reset the particle lifespan (including the initial lifespan).

Parameters lifespan (int) – The particle lifespan in number of movements/turns.

Example:

my_particle.reset_lifespan(10)

row
Access and set the row property. Equivalent to the y property.

screen_column
A property to get/set the screen column.

Parameters value (int) – the screen column

Return type int

screen_row
A property to get/set the screen row.

Parameters value (int) – the screen row

Return type int

serialize()
Serialize a RandomColorPartitionParticle into a dictionary.

Returns The class as a dictionary

Return type dict

Example:

598 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

json.dump(particle.serialize())

store_screen_position(row: int, column: int)→ bool
Store the screen position of the object.

This method is automatically called by Screen.place().

Parameters

• row (int) – The row (or y) coordinate.

• column (int) – The column (or x) coordinate.

Example:

an_object.store_screen_coordinate(3,8)

terminate()→ None
Terminate a particle, i.e sets its lifespan to -1.

In that case the ParticleEmitter and ParticlePool will recycle it. That is IF you are managing the particle
through an emitter and/or a pool of course.

Example:

p = my_particle
if p.row >= screen,height or p.column >= screen.width:

p.terminate()

update()
This method first calls the Particle.update() method, then calculates the quadrant position, i.e: the actual
position of the particle within a console character. It then updates the particle’s model based on this internal
position.

Example:

my_particle.update()

x
Access and set the x property. Equivalent to the column property.

y
Access and set the y property. Equivalent to the row property.

3.8 Credits

3.8.1 Development Lead

• Arnaud Dupuis (@arnauddupuis)

3.8.2 Contributors

• Kalil de Lima (@kaozdl)

• Muhammad Syuqri (@Dansyuqri)

• Ryan Brown (@grimmjow8)

3.8. Credits 599

https://github.com/arnauddupuis
https://github.com/kaozdl
https://github.com/Dansyuqri
https://github.com/grimmjow8

pygamelib Documentation, Release 1.3.0

• Chase Miller (@Arekenaten)

• Gunjan Rawal (@gunjanraval)

• Anshul Choudhary (@achoudh5)

• Raymond Beaudoin (@synackray)

• Felipe Rodrigues (@fbidu)

• Bastien Wirtz (@bwirtz)

• Franz Osorio (@f-osorio)

• Guillermo Eijo (@guilleijo)

• Diego Cáceres (@diego-caceres)

• Spassarop (@spassarop)

• Javier Hernán Caballero García (@caballerojavier13)

• Olle Lögdahl (@ollelogdahl)

• MaryEtta Morris (@morrme)

• Peter Szabo (@szabopeter)

• Frans Ramirez (@Frans06)

• Krunal Rank (@KRHero03)

• Juan Picca (@jumapico)

• Harshini (@harshiniwho)

• Tammysalmon (@tammysalmon)

• JayC (@jayc13)

• Rikil Gajarla (@RikilG)

• Melsaa (@melsaa)

3.9 Release notes

3.9.1 1.3.0 (2022-10-07)

This release is massive. Please read the documentation for specific changes to classes. It is available at https://
pygamelib.readthedocs.io/en/latest/index.html.

Important one: the whole pygamelib has been migrated to its own Github organization: https://github.com/pygamelib
please update your links! The library’s repository is now available at https://github.com/pygamelib/pygamelib.

Main updates

• New feature: A lot of new tools have been developed for the library and are all available on the organization’s
Github: https://github.com/pygamelib.

• New feature: The pygamelib.engine.Screen class now has a new Improved Screen Management
double buffered system. This set of methods allow for a simplified management of the console screen. It is also
faster than the Legacy Direct Display system. Please read the documentation (https://pygamelib.readthedocs.io/
en/latest/pygamelib.engine.Screen.html) and the wiki on the Github repository for more about the differences.

600 Chapter 3. Tutorials

https://github.com/Arekenaten
https://github.com/gunjanraval
https://github.com/achoudh5
https://github.com/synackray
https://github.com/fbidu
https://github.com/bwirtz
https://github.com/f-osorio
https://github.com/guilleijo
https://github.com/diego-caceres
https://github.com/spassarop
https://github.com/caballerojavier13
https://github.com/ollelogdahl
https://github.com/morrme
https://github.com/szabopeter
https://github.com/Frans06
https://github.com/KRHero03
https://github.com/jumapico
https://github.com/harshiniwho
https://github.com/tammysalmon
https://github.com/jayc13
https://github.com/RikilG
https://github.com/melsaa
https://pygamelib.readthedocs.io/en/latest/index.html
https://pygamelib.readthedocs.io/en/latest/index.html
https://github.com/pygamelib
https://github.com/pygamelib/pygamelib
https://github.com/pygamelib
https://pygamelib.readthedocs.io/en/latest/pygamelib.engine.Screen.html
https://pygamelib.readthedocs.io/en/latest/pygamelib.engine.Screen.html

pygamelib Documentation, Release 1.3.0

You will probably want to switch to the new stack as soon as possible. Both systems are clearly identified in the
documentation by visible tags. Most of the new features of this release are NOT compatible with the Legacy
Direct Display system. It still received updates and new features but will probably be deprecated in future
updates.

• New feature: Introducing the pygamelib.gfx.ui module! The beginning of a module for all your
game/application user interface needs. The module is in alpha for the moment, feel free to voice your feed-
back. This module is only compatible with the Improved Screen Management.

• New feature: A new tool has been added to the library: pgl-sprite-editor. An editor to create or edit sprites and
sprite based animations.

• New feature: pygamelib.engine.Game can now be created as a Singleton through the instance()
method.

• New feature: Add a particle system to the library! It includes a number of new classes that are located in
the pygamelib.gfx.particles submodule. This module is only compatible with the Improved Screen
Management.

• New feature: introducing pygamelib.gfx.core.Font, a Sprite based font system. This release come
with an “8bits” font and a couple of font imported from FIGlet!

• New feature: Add a Color class (pygamelib.gfx.core.Color) to entirely abstract the color system.

• New feature: All objects can now be properly serialized and loaded through a streamlined process. Look for
the serialize() and load() methods.

• New feature: New base object pygamelib.base.PglBaseObject, all objects that inherits from python’s
object are now inheriting from this new one. It implements a couple of base features but the most important
is the modified Observer design pattern that is the base of a refactoring to event base communication within the
library.

• New feature: Added a new board item: pygamelib.board_item.Camera. It is a specific item that is
not shown on the board. It can be used for cinematic for example. Please read the documentation for more
information.

• New feature/improvement: The Board object has been reworked to allow for a third dimension. It now has
a new property called layer. Layers are automatically added and removed to fit the need of overlapping items.
Board.place_item() also accept a new layer parameter to set the layer (if you want to put stuff over the player
for example). An example is visible here: https://www.youtube.com/watch?v=9cOt63ZAJOk.

• Improvement: Most resources intensive array/list have been replaced by numpy arrays. This brings better per-
formances for pygamelib.engine.Board and for pygamelib.engine.Screen.

• Improvement: Add a new algorithm to the PathFinder actuator: A*.

• Improvement: pygamelib.gfx.core.Sprite can now be tinted or modulated with a color. Both opera-
tion do the same thing: change the color of the sprite by applying a color at a given ratio. However, tint()
returns a new sprite and does not modify the original sprite while modulate() returns nothing and modify
the sprite directly.

Breaking changes

• pygamelib.board_items.BoardItem constructor parameter changed: type is now item_type.

• pygamelib.board_items.BoardItem: there was a conflict with inventory_space. It was de-
fined both as a property and a method. The method has been removed and BoardItem.inventory_space is
now a proper python property. Concretely: you might have to remove parenthesis when using any_item.
inventory_space (vs the old any_item.inventory_space()).

3.9. Release notes 601

https://www.youtube.com/watch?v=9cOt63ZAJOk

pygamelib Documentation, Release 1.3.0

• The new pygamelib.gfx.core.Color replaces Terminal.on_color_rgb() and Terminal.
color_rgb(). It is much easier to use (just use the Color object and the pygamelib will manage foreground
and background differences) but it requires to change the initialization of every Sprixel and Text of your game
(sorry. . .).

• When using the new Improved Screen Management stack and partial display at the same time, you now have
to set Board.partial_display_focus. It is not breaking anything in existing code but it will not be-
have as you want is you just Screen.place() your board (that uses partial display) without setting the
partial_display_focus to the player first.

Other changes

• Improvement: pgl-editor now uses Sprixels instead of regular characters allowing for more possible customiza-
tion and features in the Board and Screen.

• Improvement: in pgl-editor it is now possible to generate a random color in the color editor.

• Improvement: All actuators now return pygamelib.constants.NO_DIR if there is no direction available
to next_move(). This makes the actuators behavior more consistent particularly when they are overloaded.

• Improvement: The RandomActuator behavior has been reworked. It now choose a direction and follow it
for a certain distance before choosing a new direction. It also detect when it is stuck an, in that case, pick a new
direction.

• Improvement: Add display_sprite() and display_sprite_at() method to Screen. These methods
can display a pygamelib.gfx.core.Sprite on screen.

• Improvement: Inventory has been improved to be more versatile and less limited. It now behaves like an en-
hanced list of objects. A rudimentary constraints system was added (for example to limit the number of certain
types of items). The new inventory is also fully plugged into the observer/notifications system.

• Improvement: All BoardItem now have configurable properties for restorable, overlappable, pickable and
can_move.

• Improvement: pygamelib.board_items.BoardComplexItem.sprite is now a @property instead
of a class variable. That property automatically call update_sprite().

• Improvement: When Game.mode is set to pygamelib.constants.MODE_RT, all pygamelib.
board_items.Movable now accumulate movement vectors (when using vectors). This means that non
unit movement patterns are now possible.

• Improvement: The new pygamelib.base.Console implements a Singleton design pattern. You can now
get a unique reference to the blessed.Terminal (the object wrapped in Console) object by calling Con-
sole.instance().

• Fixed a bug in pygamelib.engine.Screen.display_at(): it was not possible to display anything
after (below a Board). It is now possible.

• Improvement: pygamelib.base.Text has improved a lot. It can now use the Font system, has new at-
tributes and is now a PglBaseObject. Please read the documentation for more.

• Improvement: Sprixels and Sprites now have their own deepcopy operator: Sprixel.copy() and Sprite.
copy().

• Improvement: It is now possible to set the transparency of all sprixels of a sprite by using Sprite.
set_transparency().

• Fixed a bug with restorable items: now all board items can be set to be restorable.

• Fixed a bug in pgl-editor when editing large boards that require partial display. The viewport was not correctly
restored.

602 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• Fixed issues with the library’s inheritance graph.

• Fixed a bug in pygamelib.engine.Game where the partial display settings (when set at in the Game in-
stance), were not correctly passed down to the Board.

• Fixed the sphinx dependencies (for building the doc).

• Fixed the mess in the sphinx files to generate the documentation.

• Fixed an issue with linting dependencies.

• Removed legacy files from older version of the library.

I would like to thank all the contributors (https://pygamelib.readthedocs.io/en/latest/authors.html) for their work on
this massive update.

The new pygamelib logo was done by an awesome artist: Jack Tseng (https://hellojacktseng.carrd.co/ https://twitter.
com/HelloJackTseng) please have a look at their amazing work!!

3.9.2 1.2.3 (2020-09-01)

Emergency release: fix a regression introduced by v1.2.2.

3.9.3 1.2.2 (2020-09-01)

• Fix issue with imports for Python 3.6

• Fix an issue with the way pygamelib.engine.Screen test the terminal on Windows.

3.9.4 1.2.0 (2020-08-29)

• Renamed the entire library from hac-game-lib to pygamelib.

• *Breaking change:* The library has been heavily refactored and this creates some issues. Please have a look at
the migration notes

• New feature: Items that can be represented on more than one cell. We call them complex items. There’s a
lot of new complex items: ComplexPlayer and ComplexNPC of course, but also ComplexWall, ComplexDoor,
ComplexTreasure and the general purpose Tile object.

• New feature: Going, with complex item we now have a proper sprite system with the gfx.core.Sprite class.

• New feature: In addition to the regular model we now have a new concept: the Sprixel. A Sprite is made of
many Sprixels.

• New feature: New JSON based file format to save, load and distribute sprites and/or sprixels.

• New feature: All these sprites can be grouped into a SpriteCollection that in turn can be saved in our new sprite
file format.

• New feature: New Math library. This one starts small but will grow. It makes calculating the distance and
intersections easier.

• New feature: New Vector2D class to represent forces and movement as a vector. It is now possible to give a
vector to the move() method.

• New feature: Gave some love to text. There are now 2 objects dedicated to text: base.Text to manipulate text
and board_items.TextItem to easily place text on a board.

• New feature: A Screen object has been added to make the screen manipulation simpler.

3.9. Release notes 603

https://pygamelib.readthedocs.io/en/latest/authors.html
https://hellojacktseng.carrd.co/
https://twitter.com/HelloJackTseng
https://twitter.com/HelloJackTseng
https://github.com/pygamelib/pygamelib/wiki/Migrating-from-hac%E2%80%90game%E2%80%90lib-1.1.x-to-pygamelib-1.2.0

pygamelib Documentation, Release 1.3.0

• New feature: The Game object now has a run() method that act as the main game loop. It calls a user defined
update function and takes care of a lot of things. It runs until the Game.state is set to STOPPED.

• New feature: The Game object can now turn by turn or real time. All movables can be configured to have time
based or turn based movement speed.

• Improvement: The Animation class now support both regular strings (models), Sprixel and Sprite.

• Improvement: All complex items obviously support (actually requires) sprites but all regular board items now
supports sprixels.

• Improvement: Test coverage dramatically improved. It has jumped from 25% to 98%.

• Improvement: Lots of objects now have attributes to easily access and/or set properties like position (mostly
read only), width, height, etc.

• Improvement: Converted the editor to pygamelib and renamed it pgl-editor.py. Also added a multi page selector
and integrated the new graphic assets.

• Improvement: All movables can now have different vertical and horizontal “steps” parameters.

• Cleaned up the repository (it was becoming seriously messy).

• Change the prefix of all exceptions from HAc to Pgl.

• Added a NO_PLAYER constant to tell the game object that he should not expect a player object.

• Improve the generated documentation.

• Various improvements in exceptions raising across the library. Please see the documentation (that was also
updated).

• Various bug fixing in the Suparex example.

I also need to give some kudos to the kids of the Hyrule Astronomy Club for thorough testing of Suparex. They found
well hidden bug and exploitable bugs. Special thanks to Arthur who found many glitches. Congratulations to Arthur
and Hadrien that successfully exploited them to achieve extremely high scores (up to 12000!!!).

3.9.5 1.1.1 (2020-07-18)

• Fix a bug in hgl-editor: when using previously recorded parameters to create a board the editor was crashing.

• Improvement: Automatically enable partial display and map bigger than 40x40.

• Fix a bug a coordinates in Board.item()

3.9.6 1.1.0 (2020-06-12)

• Fix many issues with strings all across the library.

• Fix many issues with variables interpolation in exceptions.

• Fix a bug in Game.load_board() that was causing corruptions.

• Fix multiple typos in the documentation.

• Fix an issue with the user directory in hgl-editor

• Fix many issues with the PatrolActuator.

• New feature: partial display (dynamically display only a part of a board)

• New feature: new mono directional actuator.

604 Chapter 3. Tutorials

pygamelib Documentation, Release 1.3.0

• New feature: projectiles (can be sent and completely managed by the game object)

• New feature: new assets module to hold many non core submodules.

• New feature: Assets.Graphics that add thousands of glyphs (including emojis) to the current capacities of the
library.

• New feature: Add support for PatrolActuator in hgl-editor.

• New feature: Add support for PathFinder actuator in hgl-editor.

• New feature: Add an object parent system.

• New feature: Add a configuration system to hgl-editor.

• Improvement: Add full configuration features to the Game object.

• Improvement: Add a new example in the form of a full procedural generation platform game (see exam-
ples/suparex).

• Improvement: Improved performances particularly around the features that relies on Board.place_item(). Up to
70 times faster.

• Improvement: It is now possible to specify the first frame index in Animation.

• Improvement: Formatted all the code with black.

• Improvement: PathFinder.add_waypoint() now sets the destination if it wasn’t set before.

3.9.7 1.0.1 (2020-05-17)

• Fix a huge default save directory issue (see complete announcement) in hgl-editor.

• Fix lots of strings in hgl-editor.

• Fix a type issue in the Inventory class for the not_enough_space exception.

• Improve Board.display() performances by 15% (average).

3.9.8 1.0.0 (2020-03-20)

• Add AdvancedActuators.PathFinder @arnauddupuis

• Add test cases for BoardItem @grimmjow8 @Arekenaten

• Add test cases for Board @grimmjow8 @Arekenaten

• Add support to load files from the directories in directories.json @kaozdl

• Add a new SimpleActuators.PatrolActuator @kaozdl

• Add Animation capabilities @arnauddupuis

• Improve navigation in hgl-editor by using arrow keys @bwirtz

• Improve selection of maps in hgl-editor @gunjanraval @kaozdl

• Improve documentation for SimpleActuators.PathActuator @achoudh5

• Improve documentation for launching the test suite @bwirtz

• Migration from pip install to pipenv @kaozdl

• Fix board saving bug in hgl-editor @gunjanraval

• Fix back menu issues in hgl-editor @synackray

3.9. Release notes 605

https://github.com/arnauddupuis
https://github.com/grimmjow8
https://github.com/Arekenaten
https://github.com/grimmjow8
https://github.com/Arekenaten
https://github.com/kaozdl
https://github.com/kaozdl
https://github.com/arnauddupuis
https://github.com/bwirtz
https://github.com/gunjanraval
https://github.com/kaozdl
https://github.com/achoudh5
https://github.com/bwirtz
https://github.com/kaozdl
https://github.com/gunjanraval
https://github.com/synackray

pygamelib Documentation, Release 1.3.0

• Fix README and setup.py @fbidu

• Make the module compatible with Flake8: @bwirtz @arnauddupuis @kaozdl @f-osorio @guilleijo @diego-
caceres @spassarop

• CircleCI integration @caballerojavier13 @bwirtz

3.9.9 2019.5

• Please see the official website.

3.9.10 pre-2019.5

• Please see the Github for history.

606 Chapter 3. Tutorials

https://github.com/fbidu
https://github.com/bwirtz
https://github.com/arnauddupuis
https://github.com/kaozdl
https://github.com/f-osorio
https://github.com/guilleijo
https://github.com/diego-caceres
https://github.com/diego-caceres
https://github.com/spassarop
https://github.com/caballerojavier13
https://github.com/bwirtz
https://astro.hyrul.es/news/hac-game-lib-may-2019-update.html
https://github.com/arnauddupuis/hac-game-lib/commits/master

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

607

pygamelib Documentation, Release 1.3.0

608 Chapter 4. Indices and tables

Python Module Index

p
pygamelib.constants, 432

609

pygamelib Documentation, Release 1.3.0

610 Python Module Index

Index

Symbols
__init__() (pygamelib.actuators.Actuator method), 7
__init__() (pygamelib.actuators.Behavioral

method), 10
__init__() (pygamelib.actuators.PathActuator

method), 14
__init__() (pygamelib.actuators.PathFinder

method), 21
__init__() (pygamelib.actuators.PatrolActuator

method), 17
__init__() (pygamelib.actuators.RandomActuator

method), 28
__init__() (pygamelib.actuators.UnidirectionalActuator

method), 31
__init__() (pygamelib.assets.graphics.Blocks

method), 37
__init__() (pygamelib.assets.graphics.BoxDrawings

method), 42
__init__() (pygamelib.assets.graphics.GeometricShapes

method), 51
__init__() (pygamelib.assets.graphics.Models

method), 113
__init__() (pygamelib.base.Math method), 190
__init__() (pygamelib.base.PglBaseObject method),

192
__init__() (pygamelib.base.Text method), 195
__init__() (pygamelib.base.Vector2D method), 203
__init__() (pygamelib.board_items.Actionable

method), 207
__init__() (pygamelib.board_items.ActionableTile

method), 215
__init__() (pygamelib.board_items.BoardComplexItem

method), 224
__init__() (pygamelib.board_items.BoardItem

method), 242
__init__() (pygamelib.board_items.BoardItemComplexComponent

method), 233
__init__() (pygamelib.board_items.BoardItemVoid

method), 250

__init__() (pygamelib.board_items.Camera
method), 258

__init__() (pygamelib.board_items.Character
method), 266

__init__() (pygamelib.board_items.ComplexDoor
method), 274

__init__() (pygamelib.board_items.ComplexNPC
method), 283

__init__() (pygamelib.board_items.ComplexPlayer
method), 293

__init__() (pygamelib.board_items.ComplexTreasure
method), 301

__init__() (pygamelib.board_items.ComplexWall
method), 310

__init__() (pygamelib.board_items.Door method),
320

__init__() (pygamelib.board_items.GenericActionableStructure
method), 328

__init__() (pygamelib.board_items.GenericStructure
method), 344

__init__() (pygamelib.board_items.GenericStructureComplexComponent
method), 336

__init__() (pygamelib.board_items.Immovable
method), 352

__init__() (pygamelib.board_items.Movable
method), 360

__init__() (pygamelib.board_items.NPC method),
368

__init__() (pygamelib.board_items.Player method),
377

__init__() (pygamelib.board_items.Projectile
method), 386

__init__() (pygamelib.board_items.TextItem
method), 396

__init__() (pygamelib.board_items.Tile method),
406

__init__() (pygamelib.board_items.Treasure
method), 415

__init__() (pygamelib.board_items.Wall method),
423

611

pygamelib Documentation, Release 1.3.0

__init__() (pygamelib.engine.Board method), 433
__init__() (pygamelib.engine.Game method), 443
__init__() (pygamelib.engine.Inventory method),

459
__init__() (pygamelib.engine.Screen method), 469
__init__() (pygamelib.gfx.core.Animation method),

480
__init__() (pygamelib.gfx.core.Color method), 506
__init__() (pygamelib.gfx.core.Font method), 483
__init__() (pygamelib.gfx.core.Sprite method), 491
__init__() (pygamelib.gfx.core.SpriteCollection

method), 486
__init__() (pygamelib.gfx.core.Sprixel method), 498
__init__() (pygamelib.gfx.particles.CircleEmitter

method), 546
__init__() (pygamelib.gfx.particles.ColorParticle

method), 551
__init__() (pygamelib.gfx.particles.ColorPartitionParticle

method), 556
__init__() (pygamelib.gfx.particles.EmitterProperties

method), 561
__init__() (pygamelib.gfx.particles.Particle

method), 570
__init__() (pygamelib.gfx.particles.ParticleEmitter

method), 564
__init__() (pygamelib.gfx.particles.ParticlePool

method), 568
__init__() (pygamelib.gfx.particles.ParticleSprixel

method), 575
__init__() (pygamelib.gfx.particles.PartitionParticle

method), 584
__init__() (pygamelib.gfx.particles.RandomColorParticle

method), 589
__init__() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 594
__init__() (pygamelib.gfx.ui.Box method), 512
__init__() (pygamelib.gfx.ui.ColorPicker method),

515
__init__() (pygamelib.gfx.ui.ColorPickerDialog

method), 513
__init__() (pygamelib.gfx.ui.Dialog method), 517
__init__() (pygamelib.gfx.ui.FileDialog method),

518
__init__() (pygamelib.gfx.ui.GridSelector method),

522
__init__() (pygamelib.gfx.ui.GridSelectorDialog

method), 520
__init__() (pygamelib.gfx.ui.LineInputDialog

method), 524
__init__() (pygamelib.gfx.ui.Menu method), 526
__init__() (pygamelib.gfx.ui.MenuAction method),

529
__init__() (pygamelib.gfx.ui.MenuBar method), 532
__init__() (pygamelib.gfx.ui.MessageDialog

method), 535
__init__() (pygamelib.gfx.ui.MultiLineInputDialog

method), 538
__init__() (pygamelib.gfx.ui.ProgressBar method),

540
__init__() (pygamelib.gfx.ui.ProgressDialog

method), 542
__init__() (pygamelib.gfx.ui.UiConfig method), 545

A
A_BUTTON_BLOOD_TYPE

(pygamelib.assets.graphics.Models attribute),
141

AB_BUTTON_BLOOD_TYPE
(pygamelib.assets.graphics.Models attribute),
140

ABACUS (pygamelib.assets.graphics.Models attribute),
140

AC_CURRENT (pygamelib.assets.graphics.MiscTechnicals
attribute), 69

ACCORDION (pygamelib.assets.graphics.Models at-
tribute), 140

action (pygamelib.gfx.ui.MenuAction attribute), 530
Actionable (class in pygamelib.board_items), 206
ActionableTile (class in pygamelib.board_items),

214
activate() (pygamelib.board_items.Actionable

method), 208
activate() (pygamelib.board_items.ActionableTile

method), 216
activate() (pygamelib.board_items.GenericActionableStructure

method), 329
activate() (pygamelib.gfx.ui.Menu method), 527
activate() (pygamelib.gfx.ui.MenuAction method),

530
active (pygamelib.gfx.particles.CircleEmitter at-

tribute), 547
active (pygamelib.gfx.particles.ParticleEmitter at-

tribute), 564
actuate_npcs() (pygamelib.engine.Game method),

445
actuate_projectiles() (pygamelib.engine.Game

method), 446
Actuator (class in pygamelib.actuators), 7
add() (pygamelib.gfx.core.SpriteCollection method),

487
add_board() (pygamelib.engine.Game method), 446
add_constraint() (pygamelib.engine.Inventory

method), 460
add_directional_animation()

(pygamelib.board_items.Projectile method),
388

add_directional_model()
(pygamelib.board_items.Projectile method),

612 Index

pygamelib Documentation, Release 1.3.0

388
add_entry() (pygamelib.gfx.ui.Menu method), 527
add_entry() (pygamelib.gfx.ui.MenuBar method),

533
add_frame() (pygamelib.gfx.core.Animation method),

480
add_item() (pygamelib.engine.Inventory method),

461
add_line() (pygamelib.gfx.ui.MessageDialog

method), 536
add_menu_entry() (pygamelib.engine.Game

method), 447
add_npc() (pygamelib.engine.Game method), 447
add_projectile() (pygamelib.engine.Game

method), 448
add_waypoint() (pygamelib.actuators.PathFinder

method), 22
ADHESIVE_BANDAGE (pygamelib.assets.graphics.Models

attribute), 140
ADMISSION_TICKETS

(pygamelib.assets.graphics.Models attribute),
140

AERIAL_TRAMWAY (pygamelib.assets.graphics.Models
attribute), 140

AIRPLANE (pygamelib.assets.graphics.Models at-
tribute), 140

AIRPLANE_ARRIVAL (pygamelib.assets.graphics.Models
attribute), 140

AIRPLANE_DEPARTURE
(pygamelib.assets.graphics.Models attribute),
140

ALARM_CLOCK (pygamelib.assets.graphics.MiscTechnicals
attribute), 69

ALARM_CLOCK (pygamelib.assets.graphics.Models at-
tribute), 140

ALEMBIC (pygamelib.assets.graphics.Models attribute),
140

ALIEN (pygamelib.assets.graphics.Models attribute),
140

ALIEN_MONSTER (pygamelib.assets.graphics.Models
attribute), 140

ALL_AROUND_PROFILE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

ALTERNATIVE_KEY_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

AMBULANCE (pygamelib.assets.graphics.Models at-
tribute), 140

AMERICAN_FOOTBALL
(pygamelib.assets.graphics.Models attribute),
140

AMPHORA (pygamelib.assets.graphics.Models attribute),
140

ANATOMICAL_HEART (pygamelib.assets.graphics.Models
attribute), 140

ANCHOR (pygamelib.assets.graphics.Models attribute),
140

ANGER_SYMBOL (pygamelib.assets.graphics.Models at-
tribute), 141

ANGRY_FACE (pygamelib.assets.graphics.Models
attribute), 141

ANGRY_FACE_WITH_HORNS
(pygamelib.assets.graphics.Models attribute),
141

ANGUISHED_FACE (pygamelib.assets.graphics.Models
attribute), 141

animate_items() (pygamelib.engine.Game method),
448

Animation (class in pygamelib.gfx.core), 479
animation (pygamelib.board_items.Actionable at-

tribute), 208
animation (pygamelib.board_items.ActionableTile at-

tribute), 216
animation (pygamelib.board_items.BoardComplexItem

attribute), 225
animation (pygamelib.board_items.BoardItem at-

tribute), 243
animation (pygamelib.board_items.BoardItemComplexComponent

attribute), 234
animation (pygamelib.board_items.BoardItemVoid at-

tribute), 251
animation (pygamelib.board_items.Camera attribute),

259
animation (pygamelib.board_items.Character at-

tribute), 268
animation (pygamelib.board_items.ComplexDoor at-

tribute), 276
animation (pygamelib.board_items.ComplexNPC at-

tribute), 285
animation (pygamelib.board_items.ComplexPlayer

attribute), 294
animation (pygamelib.board_items.ComplexTreasure

attribute), 303
animation (pygamelib.board_items.ComplexWall at-

tribute), 312
animation (pygamelib.board_items.Door attribute),

321
animation (pygamelib.board_items.GenericActionableStructure

attribute), 329
animation (pygamelib.board_items.GenericStructure

attribute), 345
animation (pygamelib.board_items.GenericStructureComplexComponent

attribute), 337
animation (pygamelib.board_items.Immovable at-

tribute), 353
animation (pygamelib.board_items.Movable at-

tribute), 361

Index 613

pygamelib Documentation, Release 1.3.0

animation (pygamelib.board_items.NPC attribute),
369

animation (pygamelib.board_items.Player attribute),
378

animation (pygamelib.board_items.Projectile at-
tribute), 388

animation (pygamelib.board_items.TextItem at-
tribute), 398

animation (pygamelib.board_items.Tile attribute), 407
animation (pygamelib.board_items.Treasure at-

tribute), 416
animation (pygamelib.board_items.Wall attribute),

424
ANT (pygamelib.assets.graphics.Models attribute), 141
ANTENNA_BARS (pygamelib.assets.graphics.Models at-

tribute), 141
ANXIOUS_FACE_WITH_SWEAT

(pygamelib.assets.graphics.Models attribute),
141

APL_FUNCTIONAL_SYMBOL_ALPHA
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_ALPHA_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_BACKSLASH_BAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_CIRCLE_BACKSLASH
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_CIRCLE_DIAERESIS
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_CIRCLE_JOT
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_CIRCLE_STAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_CIRCLE_STILE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_CIRCLE_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_COMMA_BAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_DEL_DIAERESIS
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_DEL_STILE
(pygamelib.assets.graphics.MiscTechnicals

attribute), 69
APL_FUNCTIONAL_SYMBOL_DEL_TILDE

(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_DELTA_STILE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_DELTA_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_DIAMOND_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 69

APL_FUNCTIONAL_SYMBOL_DOWN_CARET_TILDE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_DOWN_SHOE_STILE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_DOWN_TACK_JOT
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_DOWN_TACK_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 70

APL_FUNCTIONAL_SYMBOL_DOWNWARDS_VANE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_EPSILON_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_GREATER_THAN_DIAERESIS
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 70

APL_FUNCTIONAL_SYMBOL_I_BEAM
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_IOTA
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_IOTA_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_JOT_DIAERESIS
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_JOT_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_LEFT_SHOE_STILE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_LEFTWARDS_VANE
(pygamelib.assets.graphics.MiscTechnicals

614 Index

pygamelib Documentation, Release 1.3.0

attribute), 70
APL_FUNCTIONAL_SYMBOL_OMEGA

(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_OMEGA_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_BACKSLASH
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_CIRCLE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_COLON
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_DEL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_DELTA
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_DIAMOND
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_DIVIDE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_DOWN_CARET
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_DOWNWARDS_ARROW
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_EQUAL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_GREATER_THAN
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_JOT
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_LEFTWARDS_ARROW
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_LESS_THAN
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_NOT_EQUAL
(pygamelib.assets.graphics.MiscTechnicals

attribute), 70
APL_FUNCTIONAL_SYMBOL_QUAD_QUESTION

(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_RIGHTWARDS_ARROW
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_SLASH
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_UP_CARET
(pygamelib.assets.graphics.MiscTechnicals
attribute), 70

APL_FUNCTIONAL_SYMBOL_QUAD_UPWARDS_ARROW
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 70

APL_FUNCTIONAL_SYMBOL_QUOTE_QUAD
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_QUOTE_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_RHO
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_RIGHTWARDS_VANE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_SEMICOLON_UNDERBAR
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 71

APL_FUNCTIONAL_SYMBOL_SLASH_BAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_SQUISH_QUAD
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_STAR_DIAERESIS
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_STILE_TILDE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_TILDE_DIAERESIS
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_UP_CARET_TILDE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_UP_SHOE_JOT
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_UP_TACK_DIAERESIS
(pygamelib.assets.graphics.MiscTechnicals at-

Index 615

pygamelib Documentation, Release 1.3.0

tribute), 71
APL_FUNCTIONAL_SYMBOL_UP_TACK_JOT

(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_UP_TACK_OVERBAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_UPWARDS_VANE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

APL_FUNCTIONAL_SYMBOL_ZILDE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

apply_force() (pygamelib.gfx.particles.CircleEmitter
method), 547

apply_force() (pygamelib.gfx.particles.ColorParticle
method), 552

apply_force() (pygamelib.gfx.particles.ColorPartitionParticle
method), 557

apply_force() (pygamelib.gfx.particles.Particle
method), 571

apply_force() (pygamelib.gfx.particles.ParticleEmitter
method), 564

apply_force() (pygamelib.gfx.particles.PartitionParticle
method), 586

apply_force() (pygamelib.gfx.particles.RandomColorParticle
method), 590

apply_force() (pygamelib.gfx.particles.RandomColorPartitionParticle
method), 596

AQUARIUS (pygamelib.assets.graphics.Models at-
tribute), 141

ARC (pygamelib.assets.graphics.MiscTechnicals at-
tribute), 71

ARIES (pygamelib.assets.graphics.Models attribute),
141

ARTICULATED_LORRY
(pygamelib.assets.graphics.Models attribute),
141

ARTIST_PALETTE (pygamelib.assets.graphics.Models
attribute), 141

ASTONISHED_FACE (pygamelib.assets.graphics.Models
attribute), 141

ATM_SIGN (pygamelib.assets.graphics.Models at-
tribute), 141

ATOM_SYMBOL (pygamelib.assets.graphics.Models at-
tribute), 141

attach() (pygamelib.actuators.Actuator method), 8
attach() (pygamelib.actuators.Behavioral method),

11
attach() (pygamelib.actuators.PathActuator method),

14
attach() (pygamelib.actuators.PathFinder method),

22
attach() (pygamelib.actuators.PatrolActuator

method), 18
attach() (pygamelib.actuators.RandomActuator

method), 28
attach() (pygamelib.actuators.UnidirectionalActuator

method), 32
attach() (pygamelib.base.PglBaseObject method),

193
attach() (pygamelib.base.Text method), 197
attach() (pygamelib.board_items.Actionable

method), 208
attach() (pygamelib.board_items.ActionableTile

method), 216
attach() (pygamelib.board_items.BoardComplexItem

method), 225
attach() (pygamelib.board_items.BoardItem method),

243
attach() (pygamelib.board_items.BoardItemComplexComponent

method), 234
attach() (pygamelib.board_items.BoardItemVoid

method), 251
attach() (pygamelib.board_items.Camera method),

259
attach() (pygamelib.board_items.Character method),

268
attach() (pygamelib.board_items.ComplexDoor

method), 276
attach() (pygamelib.board_items.ComplexNPC

method), 285
attach() (pygamelib.board_items.ComplexPlayer

method), 294
attach() (pygamelib.board_items.ComplexTreasure

method), 303
attach() (pygamelib.board_items.ComplexWall

method), 312
attach() (pygamelib.board_items.Door method), 321
attach() (pygamelib.board_items.GenericActionableStructure

method), 329
attach() (pygamelib.board_items.GenericStructure

method), 345
attach() (pygamelib.board_items.GenericStructureComplexComponent

method), 337
attach() (pygamelib.board_items.Immovable

method), 353
attach() (pygamelib.board_items.Movable method),

361
attach() (pygamelib.board_items.NPC method), 369
attach() (pygamelib.board_items.Player method),

378
attach() (pygamelib.board_items.Projectile method),

388
attach() (pygamelib.board_items.TextItem method),

398
attach() (pygamelib.board_items.Tile method), 407
attach() (pygamelib.board_items.Treasure method),

616 Index

pygamelib Documentation, Release 1.3.0

416
attach() (pygamelib.board_items.Wall method), 424
attach() (pygamelib.engine.Board method), 435
attach() (pygamelib.engine.Game method), 448
attach() (pygamelib.engine.Inventory method), 462
attach() (pygamelib.engine.Screen method), 471
attach() (pygamelib.gfx.core.Color method), 507
attach() (pygamelib.gfx.core.Sprite method), 492
attach() (pygamelib.gfx.core.Sprixel method), 500
attach() (pygamelib.gfx.particles.CircleEmitter

method), 547
attach() (pygamelib.gfx.particles.ColorParticle

method), 552
attach() (pygamelib.gfx.particles.ColorPartitionParticle

method), 557
attach() (pygamelib.gfx.particles.Particle method),

571
attach() (pygamelib.gfx.particles.ParticleEmitter

method), 565
attach() (pygamelib.gfx.particles.ParticleSprixel

method), 577
attach() (pygamelib.gfx.particles.PartitionParticle

method), 586
attach() (pygamelib.gfx.particles.RandomColorParticle

method), 591
attach() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 596
AUTO_RICKSHAW (pygamelib.assets.graphics.Models

attribute), 141
AUTOMOBILE (pygamelib.assets.graphics.Models

attribute), 141
available_space() (pygamelib.engine.Inventory

method), 462
AVOCADO (pygamelib.assets.graphics.Models attribute),

141
AXE (pygamelib.assets.graphics.Models attribute), 141

B
b (pygamelib.gfx.core.Color attribute), 507
B_BUTTON_BLOOD_TYPE

(pygamelib.assets.graphics.Models attribute),
144

BABY (pygamelib.assets.graphics.Models attribute), 141
BABY_ANGEL (pygamelib.assets.graphics.Models

attribute), 141
BABY_BOTTLE (pygamelib.assets.graphics.Models at-

tribute), 141
BABY_CHICK (pygamelib.assets.graphics.Models

attribute), 141
BABY_SYMBOL (pygamelib.assets.graphics.Models at-

tribute), 141
BACK_ARROW (pygamelib.assets.graphics.Models

attribute), 141

BACKHAND_INDEX_POINTING_DOWN
(pygamelib.assets.graphics.Models attribute),
141

BACKHAND_INDEX_POINTING_LEFT
(pygamelib.assets.graphics.Models attribute),
141

BACKHAND_INDEX_POINTING_RIGHT
(pygamelib.assets.graphics.Models attribute),
141

BACKHAND_INDEX_POINTING_UP
(pygamelib.assets.graphics.Models attribute),
141

BACKPACK (pygamelib.assets.graphics.Models at-
tribute), 141

BACON (pygamelib.assets.graphics.Models attribute),
141

BADGER (pygamelib.assets.graphics.Models attribute),
141

BADMINTON (pygamelib.assets.graphics.Models at-
tribute), 141

BAGEL (pygamelib.assets.graphics.Models attribute),
141

BAGGAGE_CLAIM (pygamelib.assets.graphics.Models
attribute), 141

BAGUETTE_BREAD (pygamelib.assets.graphics.Models
attribute), 141

BALANCE_SCALE (pygamelib.assets.graphics.Models
attribute), 142

BALD (pygamelib.assets.graphics.Models attribute), 142
BALL (pygamelib.assets.graphics.Models attribute), 142
BALLET_SHOES (pygamelib.assets.graphics.Models at-

tribute), 142
BALLOON (pygamelib.assets.graphics.Models attribute),

142
BALLOT_BOX_WITH_BALLOT

(pygamelib.assets.graphics.Models attribute),
142

BANANA (pygamelib.assets.graphics.Models attribute),
142

BANJO (pygamelib.assets.graphics.Models attribute),
142

BANK (pygamelib.assets.graphics.Models attribute), 142
BAR_CHART (pygamelib.assets.graphics.Models at-

tribute), 142
BARBER_POLE (pygamelib.assets.graphics.Models at-

tribute), 142
BASEBALL (pygamelib.assets.graphics.Models at-

tribute), 142
BASKET (pygamelib.assets.graphics.Models attribute),

142
BASKETBALL (pygamelib.assets.graphics.Models

attribute), 142
BAT (pygamelib.assets.graphics.Models attribute), 142
BATHTUB (pygamelib.assets.graphics.Models attribute),

Index 617

pygamelib Documentation, Release 1.3.0

142
BATTERY (pygamelib.assets.graphics.Models attribute),

142
BEACH_WITH_UMBRELLA

(pygamelib.assets.graphics.Models attribute),
142

BEAMING_FACE_WITH_SMILING_EYES
(pygamelib.assets.graphics.Models attribute),
142

BEAR (pygamelib.assets.graphics.Models attribute), 142
BEATING_HEART (pygamelib.assets.graphics.Models

attribute), 142
BEAVER (pygamelib.assets.graphics.Models attribute),

142
BED (pygamelib.assets.graphics.Models attribute), 142
BEER_MUG (pygamelib.assets.graphics.Models at-

tribute), 142
BEETLE (pygamelib.assets.graphics.Models attribute),

142
Behavioral (class in pygamelib.actuators), 10
BELL (pygamelib.assets.graphics.Models attribute), 142
BELL_PEPPER (pygamelib.assets.graphics.Models at-

tribute), 142
BELL_SYMBOL (pygamelib.assets.graphics.MiscTechnicals

attribute), 71
BELL_WITH_SLASH (pygamelib.assets.graphics.Models

attribute), 142
BELLHOP_BELL (pygamelib.assets.graphics.Models at-

tribute), 142
BENTO_BOX (pygamelib.assets.graphics.Models at-

tribute), 142
BENZENE_RING (pygamelib.assets.graphics.MiscTechnicals

attribute), 71
BENZENE_RING_WITH_CIRCLE

(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BEVERAGE_BOX (pygamelib.assets.graphics.Models at-
tribute), 142

bg_color (pygamelib.base.Text attribute), 197
bg_color (pygamelib.gfx.core.Sprixel attribute), 500
bg_color (pygamelib.gfx.particles.ParticleSprixel at-

tribute), 577
BICYCLE (pygamelib.assets.graphics.Models attribute),

142
BIKINI (pygamelib.assets.graphics.Models attribute),

142
BILLED_CAP (pygamelib.assets.graphics.Models

attribute), 142
BIOHAZARD (pygamelib.assets.graphics.Models at-

tribute), 142
BIRD (pygamelib.assets.graphics.Models attribute), 142
BIRTHDAY_CAKE (pygamelib.assets.graphics.Models

attribute), 143
BISON (pygamelib.assets.graphics.Models attribute),

143
black() (pygamelib.base.Text static method), 197
black_bright() (pygamelib.base.Text static

method), 198
BLACK_CIRCLE (pygamelib.assets.graphics.GeometricShapes

attribute), 54
BLACK_CIRCLE (pygamelib.assets.graphics.Models at-

tribute), 143
BLACK_CIRCLE_FOR_RECORD

(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_DIAMOND (pygamelib.assets.graphics.GeometricShapes
attribute), 54

black_dim() (pygamelib.base.Text static method), 198
BLACK_DOWN_POINTING_DOUBLE_TRIANGLE

(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_DOWN_POINTING_SMALL_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_DOWN_POINTING_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_FLAG (pygamelib.assets.graphics.Models
attribute), 143

BLACK_HEART (pygamelib.assets.graphics.Models at-
tribute), 143

BLACK_LARGE_SQUARE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_LARGE_SQUARE
(pygamelib.assets.graphics.Models attribute),
143

BLACK_LEFT_POINTING_DOUBLE_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_LEFT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 71

BLACK_LEFT_POINTING_POINTER
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_LEFT_POINTING_SMALL_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_LEFT_POINTING_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_LOWER_LEFT_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_LOWER_RIGHT_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

618 Index

pygamelib Documentation, Release 1.3.0

BLACK_MEDIUM_DOWN_POINTING_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_MEDIUM_LEFT_POINTING_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_MEDIUM_RIGHT_POINTING_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_MEDIUM_SMALL_SQUARE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_MEDIUM_SMALL_SQUARE
(pygamelib.assets.graphics.Models attribute),
143

BLACK_MEDIUM_SQUARE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_MEDIUM_SQUARE
(pygamelib.assets.graphics.Models attribute),
143

BLACK_MEDIUM_UP_POINTING_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_NIB (pygamelib.assets.graphics.Models at-
tribute), 143

BLACK_PARALLELOGRAM
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

black_rect() (pygamelib.gfx.core.Sprixel class
method), 500

black_rect() (pygamelib.gfx.particles.ParticleSprixel
class method), 577

BLACK_RECTANGLE (pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_RIGHT_POINTING_DOUBLE_TRIANGLE_WITH_VERTICAL_BAR
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 71

BLACK_RIGHT_POINTING_POINTER
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_RIGHT_POINTING_SMALL_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_RIGHT_POINTING_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_RIGHT_POINTING_TRIANGLE_WITH_DOUBLE_VERTICAL_BAR
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 71

BLACK_SMALL_SQUARE

(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_SMALL_SQUARE
(pygamelib.assets.graphics.Models attribute),
143

BLACK_SQUARE (pygamelib.assets.graphics.GeometricShapes
attribute), 54

black_square() (pygamelib.gfx.core.Sprixel class
method), 501

black_square() (pygamelib.gfx.particles.ParticleSprixel
class method), 578

BLACK_SQUARE_BUTTON
(pygamelib.assets.graphics.Models attribute),
143

BLACK_SQUARE_FOR_STOP
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_UP_POINTING_DOUBLE_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BLACK_UP_POINTING_SMALL_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_UP_POINTING_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_UPPER_LEFT_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_UPPER_RIGHT_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

BLACK_VERTICAL_RECTANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

blend() (pygamelib.gfx.core.Color method), 508
Blocks (class in pygamelib.assets.graphics), 36
BLOSSOM (pygamelib.assets.graphics.Models attribute),

143
BLOWFISH (pygamelib.assets.graphics.Models at-

tribute), 143
blue (pygamelib.gfx.ui.ColorPicker attribute), 516
blue() (pygamelib.base.Text static method), 198
BLUE_BOOK (pygamelib.assets.graphics.Models at-

tribute), 143
blue_bright() (pygamelib.base.Text static method),

198
BLUE_CIRCLE (pygamelib.assets.graphics.Models at-

tribute), 143
blue_dim() (pygamelib.base.Text static method), 198
BLUE_HEART (pygamelib.assets.graphics.Models

attribute), 143
blue_rect() (pygamelib.gfx.core.Sprixel class

method), 501

Index 619

pygamelib Documentation, Release 1.3.0

blue_rect() (pygamelib.gfx.particles.ParticleSprixel
class method), 578

BLUE_SQUARE (pygamelib.assets.graphics.Models at-
tribute), 143

blue_square() (pygamelib.gfx.core.Sprixel class
method), 501

blue_square() (pygamelib.gfx.particles.ParticleSprixel
class method), 578

BLUEBERRIES (pygamelib.assets.graphics.Models at-
tribute), 143

BOAR (pygamelib.assets.graphics.Models attribute), 143
Board (class in pygamelib.engine), 432
BoardComplexItem (class in

pygamelib.board_items), 224
BoardItem (class in pygamelib.board_items), 241
BoardItemComplexComponent (class in

pygamelib.board_items), 233
BoardItemVoid (class in pygamelib.board_items),

250
BOMB (pygamelib.assets.graphics.Models attribute), 143
BONE (pygamelib.assets.graphics.Models attribute), 143
BOOKMARK (pygamelib.assets.graphics.Models at-

tribute), 143
BOOKMARK_TABS (pygamelib.assets.graphics.Models

attribute), 143
BOOKS (pygamelib.assets.graphics.Models attribute),

143
BOOMERANG (pygamelib.assets.graphics.Models at-

tribute), 143
BOTTLE_WITH_POPPING_CORK

(pygamelib.assets.graphics.Models attribute),
143

BOTTOM_CURLY_BRACKET
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BOTTOM_HALF_INTEGRAL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 71

BOTTOM_LEFT_CORNER
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

BOTTOM_LEFT_CROP (pygamelib.assets.graphics.MiscTechnicals
attribute), 72

BOTTOM_PARENTHESIS
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

BOTTOM_RIGHT_CORNER
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

BOTTOM_RIGHT_CROP
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

BOTTOM_SQUARE_BRACKET
(pygamelib.assets.graphics.MiscTechnicals

attribute), 72
BOTTOM_SQUARE_BRACKET_OVER_TOP_SQUARE_BRACKET

(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

BOTTOM_TORTOISE_SHELL_BRACKET
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

BOUQUET (pygamelib.assets.graphics.Models attribute),
143

BOW_AND_ARROW (pygamelib.assets.graphics.Models
attribute), 143

BOWL_WITH_SPOON (pygamelib.assets.graphics.Models
attribute), 143

BOWLING (pygamelib.assets.graphics.Models attribute),
143

Box (class in pygamelib.gfx.ui), 512
BoxDrawings (class in pygamelib.assets.graphics), 39
BOXING_GLOVE (pygamelib.assets.graphics.Models at-

tribute), 143
BOY (pygamelib.assets.graphics.Models attribute), 143
BRAIN (pygamelib.assets.graphics.Models attribute),

143
BREAD (pygamelib.assets.graphics.Models attribute),

143
BREAST_FEEDING (pygamelib.assets.graphics.Models

attribute), 143
BRICK (pygamelib.assets.graphics.Models attribute),

143
BRIDGE_AT_NIGHT (pygamelib.assets.graphics.Models

attribute), 144
BRIEFCASE (pygamelib.assets.graphics.Models at-

tribute), 144
BRIEFS (pygamelib.assets.graphics.Models attribute),

144
BRIGHT_BUTTON (pygamelib.assets.graphics.Models

attribute), 144
BROCCOLI (pygamelib.assets.graphics.Models at-

tribute), 144
BROKEN_CIRCLE_WITH_NORTHWEST_ARROW

(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

BROKEN_HEART (pygamelib.assets.graphics.Models at-
tribute), 144

BROOM (pygamelib.assets.graphics.Models attribute),
144

BROWN_CIRCLE (pygamelib.assets.graphics.Models at-
tribute), 144

BROWN_HEART (pygamelib.assets.graphics.Models at-
tribute), 144

BROWN_SQUARE (pygamelib.assets.graphics.Models at-
tribute), 144

BUBBLE_TEA (pygamelib.assets.graphics.Models
attribute), 144

BUCKET (pygamelib.assets.graphics.Models attribute),

620 Index

pygamelib Documentation, Release 1.3.0

144
buffer (pygamelib.engine.Screen attribute), 471
BUG (pygamelib.assets.graphics.Models attribute), 144
BUILDING_CONSTRUCTION

(pygamelib.assets.graphics.Models attribute),
144

BULLET (pygamelib.assets.graphics.GeometricShapes
attribute), 54

BULLET_TRAIN (pygamelib.assets.graphics.Models at-
tribute), 144

BULLSEYE (pygamelib.assets.graphics.GeometricShapes
attribute), 54

BURRITO (pygamelib.assets.graphics.Models attribute),
144

BUS (pygamelib.assets.graphics.Models attribute), 144
BUS_STOP (pygamelib.assets.graphics.Models at-

tribute), 144
BUST_IN_SILHOUETTE

(pygamelib.assets.graphics.Models attribute),
144

BUSTS_IN_SILHOUETTE
(pygamelib.assets.graphics.Models attribute),
144

BUTTER (pygamelib.assets.graphics.Models attribute),
144

BUTTERFLY (pygamelib.assets.graphics.Models at-
tribute), 144

C
CACTUS (pygamelib.assets.graphics.Models attribute),

144
calculate_size() (pygamelib.gfx.core.Sprite

method), 492
CALENDAR (pygamelib.assets.graphics.Models at-

tribute), 144
CALL_ME_HAND (pygamelib.assets.graphics.Models at-

tribute), 144
CAMEL (pygamelib.assets.graphics.Models attribute),

144
Camera (class in pygamelib.board_items), 258
CAMERA (pygamelib.assets.graphics.Models attribute),

144
CAMERA_WITH_FLASH

(pygamelib.assets.graphics.Models attribute),
144

CAMPING (pygamelib.assets.graphics.Models attribute),
144

can_move() (pygamelib.board_items.Actionable
method), 208

can_move() (pygamelib.board_items.ActionableTile
method), 217

can_move() (pygamelib.board_items.BoardComplexItem
method), 226

can_move() (pygamelib.board_items.BoardItem
method), 244

can_move() (pygamelib.board_items.BoardItemComplexComponent
method), 235

can_move() (pygamelib.board_items.BoardItemVoid
method), 252

can_move() (pygamelib.board_items.Camera
method), 260

can_move() (pygamelib.board_items.Character
method), 268

can_move() (pygamelib.board_items.ComplexDoor
method), 276

can_move() (pygamelib.board_items.ComplexNPC
method), 285

can_move() (pygamelib.board_items.ComplexPlayer
method), 294

can_move() (pygamelib.board_items.ComplexTreasure
method), 303

can_move() (pygamelib.board_items.ComplexWall
method), 312

can_move() (pygamelib.board_items.Door method),
321

can_move() (pygamelib.board_items.GenericActionableStructure
method), 329

can_move() (pygamelib.board_items.GenericStructure
method), 345

can_move() (pygamelib.board_items.GenericStructureComplexComponent
method), 337

can_move() (pygamelib.board_items.Immovable
method), 353

can_move() (pygamelib.board_items.Movable
method), 361

can_move() (pygamelib.board_items.NPC method),
370

can_move() (pygamelib.board_items.Player method),
378

can_move() (pygamelib.board_items.Projectile
method), 388

can_move() (pygamelib.board_items.TextItem
method), 398

can_move() (pygamelib.board_items.Tile method),
408

can_move() (pygamelib.board_items.Treasure
method), 417

can_move() (pygamelib.board_items.Wall method),
425

CANCER (pygamelib.assets.graphics.Models attribute),
144

CANDLE (pygamelib.assets.graphics.Models attribute),
144

CANDY (pygamelib.assets.graphics.Models attribute),
144

CANNED_FOOD (pygamelib.assets.graphics.Models at-
tribute), 144

Index 621

pygamelib Documentation, Release 1.3.0

CANOE (pygamelib.assets.graphics.Models attribute),
144

CAPRICORN (pygamelib.assets.graphics.Models at-
tribute), 144

CARD_FILE_BOX (pygamelib.assets.graphics.Models
attribute), 145

CARD_INDEX (pygamelib.assets.graphics.Models
attribute), 145

CARD_INDEX_DIVIDERS
(pygamelib.assets.graphics.Models attribute),
145

CAROUSEL_HORSE (pygamelib.assets.graphics.Models
attribute), 145

CARP_STREAMER (pygamelib.assets.graphics.Models
attribute), 145

CARPENTRY_SAW (pygamelib.assets.graphics.Models
attribute), 145

CARROT (pygamelib.assets.graphics.Models attribute),
145

CASTLE (pygamelib.assets.graphics.Models attribute),
145

CAT (pygamelib.assets.graphics.Models attribute), 145
CAT_FACE (pygamelib.assets.graphics.Models at-

tribute), 145
CAT_WITH_TEARS_OF_JOY

(pygamelib.assets.graphics.Models attribute),
145

CAT_WITH_WRY_SMILE
(pygamelib.assets.graphics.Models attribute),
145

CHAINS (pygamelib.assets.graphics.Models attribute),
145

CHAIR (pygamelib.assets.graphics.Models attribute),
145

change_level() (pygamelib.engine.Game method),
449

Character (class in pygamelib.board_items), 266
CHART_DECREASING (pygamelib.assets.graphics.Models

attribute), 145
CHART_INCREASING (pygamelib.assets.graphics.Models

attribute), 145
CHART_INCREASING_WITH_YEN

(pygamelib.assets.graphics.Models attribute),
145

CHECK_BOX_WITH_CHECK
(pygamelib.assets.graphics.Models attribute),
145

CHECK_MARK (pygamelib.assets.graphics.Models
attribute), 145

CHECK_MARK_BUTTON
(pygamelib.assets.graphics.Models attribute),
145

check_sanity() (pygamelib.engine.Board method),
435

CHEESE_WEDGE (pygamelib.assets.graphics.Models at-
tribute), 145

CHEQUERED_FLAG (pygamelib.assets.graphics.Models
attribute), 145

CHERRIES (pygamelib.assets.graphics.Models at-
tribute), 145

CHERRY_BLOSSOM (pygamelib.assets.graphics.Models
attribute), 145

CHESS_PAWN (pygamelib.assets.graphics.Models
attribute), 145

CHESTNUT (pygamelib.assets.graphics.Models at-
tribute), 145

CHICKEN (pygamelib.assets.graphics.Models attribute),
145

CHILD (pygamelib.assets.graphics.Models attribute),
145

CHILDREN_CROSSING
(pygamelib.assets.graphics.Models attribute),
145

CHIPMUNK (pygamelib.assets.graphics.Models at-
tribute), 145

CHOCOLATE_BAR (pygamelib.assets.graphics.Models
attribute), 145

choices (pygamelib.gfx.ui.GridSelector attribute), 523
CHOPSTICKS (pygamelib.assets.graphics.Models

attribute), 145
CHRISTMAS_TREE (pygamelib.assets.graphics.Models

attribute), 145
CHURCH (pygamelib.assets.graphics.Models attribute),

145
CIGARETTE (pygamelib.assets.graphics.Models at-

tribute), 145
CINEMA (pygamelib.assets.graphics.Models attribute),

145
CIRCLE_WITH_ALL_BUT_UPPER_LEFT_QUADRANT_BLACK

(pygamelib.assets.graphics.GeometricShapes
attribute), 54

CIRCLE_WITH_LEFT_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

CIRCLE_WITH_LOWER_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 54

CIRCLE_WITH_RIGHT_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

CIRCLE_WITH_UPPER_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

CIRCLE_WITH_UPPER_RIGHT_QUADRANT_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

CIRCLE_WITH_VERTICAL_FILL
(pygamelib.assets.graphics.GeometricShapes

622 Index

pygamelib Documentation, Release 1.3.0

attribute), 55
CIRCLED_HORIZONTAL_BAR_WITH_NOTCH

(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

CIRCLED_M (pygamelib.assets.graphics.Models at-
tribute), 146

CIRCLED_TRIANGLE_DOWN
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

CircleEmitter (class in pygamelib.gfx.particles),
546

CIRCUS_TENT (pygamelib.assets.graphics.Models at-
tribute), 146

CITYSCAPE (pygamelib.assets.graphics.Models at-
tribute), 146

CITYSCAPE_AT_DUSK
(pygamelib.assets.graphics.Models attribute),
146

CL_BUTTON (pygamelib.assets.graphics.Models at-
tribute), 146

CLAMP (pygamelib.assets.graphics.Models attribute),
146

CLAPPER_BOARD (pygamelib.assets.graphics.Models
attribute), 146

CLAPPING_HANDS (pygamelib.assets.graphics.Models
attribute), 146

CLASSICAL_BUILDING
(pygamelib.assets.graphics.Models attribute),
146

clear() (pygamelib.engine.Screen method), 471
clear() (pygamelib.gfx.core.SpriteCollection method),

487
clear_buffers() (pygamelib.engine.Screen

method), 471
clear_cell() (pygamelib.engine.Board method), 435
clear_constraints()

(pygamelib.engine.Inventory method), 462
clear_frame_buffer() (pygamelib.engine.Screen

method), 471
clear_screen() (pygamelib.engine.Game method),

449
CLEAR_SCREEN_SYMBOL

(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

clear_session_logs() (pygamelib.engine.Game
method), 449

clear_waypoints()
(pygamelib.actuators.PathFinder method),
23

CLINKING_BEER_MUGS
(pygamelib.assets.graphics.Models attribute),
146

CLINKING_GLASSES (pygamelib.assets.graphics.Models
attribute), 146

CLIPBOARD (pygamelib.assets.graphics.Models at-
tribute), 146

CLOCKWISE_VERTICAL_ARROWS
(pygamelib.assets.graphics.Models attribute),
146

close() (pygamelib.gfx.ui.MenuBar method), 533
CLOSED_BOOK (pygamelib.assets.graphics.Models at-

tribute), 146
CLOSED_MAILBOX_WITH_LOWERED_FLAG

(pygamelib.assets.graphics.Models attribute),
146

CLOSED_MAILBOX_WITH_RAISED_FLAG
(pygamelib.assets.graphics.Models attribute),
146

CLOSED_UMBRELLA (pygamelib.assets.graphics.Models
attribute), 146

CLOUD (pygamelib.assets.graphics.Models attribute),
146

CLOUD_WITH_LIGHTNING
(pygamelib.assets.graphics.Models attribute),
146

CLOUD_WITH_LIGHTNING_AND_RAIN
(pygamelib.assets.graphics.Models attribute),
146

CLOUD_WITH_RAIN (pygamelib.assets.graphics.Models
attribute), 146

CLOUD_WITH_SNOW (pygamelib.assets.graphics.Models
attribute), 146

CLOWN_FACE (pygamelib.assets.graphics.Models
attribute), 146

CLUB_SUIT (pygamelib.assets.graphics.Models at-
tribute), 146

CLUTCH_BAG (pygamelib.assets.graphics.Models
attribute), 146

COAT (pygamelib.assets.graphics.Models attribute), 146
COCKROACH (pygamelib.assets.graphics.Models at-

tribute), 146
COCKTAIL_GLASS (pygamelib.assets.graphics.Models

attribute), 146
COCONUT (pygamelib.assets.graphics.Models attribute),

146
COFFIN (pygamelib.assets.graphics.Models attribute),

146
COIN (pygamelib.assets.graphics.Models attribute), 146
COLD_FACE (pygamelib.assets.graphics.Models at-

tribute), 146
collapse() (pygamelib.gfx.ui.Menu method), 527
collides_with() (pygamelib.board_items.Actionable

method), 208
collides_with() (pygamelib.board_items.ActionableTile

method), 217
collides_with() (pygamelib.board_items.BoardComplexItem

method), 226
collides_with() (pygamelib.board_items.BoardItem

Index 623

pygamelib Documentation, Release 1.3.0

method), 244
collides_with() (pygamelib.board_items.BoardItemComplexComponent

method), 235
collides_with() (pygamelib.board_items.BoardItemVoid

method), 252
collides_with() (pygamelib.board_items.Camera

method), 260
collides_with() (pygamelib.board_items.Character

method), 268
collides_with() (pygamelib.board_items.ComplexDoor

method), 276
collides_with() (pygamelib.board_items.ComplexNPC

method), 285
collides_with() (pygamelib.board_items.ComplexPlayer

method), 294
collides_with() (pygamelib.board_items.ComplexTreasure

method), 303
collides_with() (pygamelib.board_items.ComplexWall

method), 312
collides_with() (pygamelib.board_items.Door

method), 321
collides_with() (pygamelib.board_items.GenericActionableStructure

method), 329
collides_with() (pygamelib.board_items.GenericStructure

method), 345
collides_with() (pygamelib.board_items.GenericStructureComplexComponent

method), 337
collides_with() (pygamelib.board_items.Immovable

method), 353
collides_with() (pygamelib.board_items.Movable

method), 361
collides_with() (pygamelib.board_items.NPC

method), 370
collides_with() (pygamelib.board_items.Player

method), 378
collides_with() (pygamelib.board_items.Projectile

method), 388
collides_with() (pygamelib.board_items.TextItem

method), 398
collides_with() (pygamelib.board_items.Tile

method), 408
collides_with() (pygamelib.board_items.Treasure

method), 417
collides_with() (pygamelib.board_items.Wall

method), 425
COLLISION (pygamelib.assets.graphics.Models at-

tribute), 146
Color (class in pygamelib.gfx.core), 506
color (pygamelib.gfx.ui.ColorPicker attribute), 516
colorable (pygamelib.gfx.core.Font attribute), 484
ColorParticle (class in pygamelib.gfx.particles),

551
ColorPartitionParticle (class in

pygamelib.gfx.particles), 556

ColorPicker (class in pygamelib.gfx.ui), 515
ColorPickerDialog (class in pygamelib.gfx.ui), 513
column (pygamelib.base.Vector2D attribute), 204
column (pygamelib.board_items.Actionable attribute),

209
column (pygamelib.board_items.ActionableTile at-

tribute), 217
column (pygamelib.board_items.BoardComplexItem at-

tribute), 226
column (pygamelib.board_items.BoardItem attribute),

244
column (pygamelib.board_items.BoardItemComplexComponent

attribute), 235
column (pygamelib.board_items.BoardItemVoid at-

tribute), 252
column (pygamelib.board_items.Camera attribute), 260
column (pygamelib.board_items.Character attribute),

268
column (pygamelib.board_items.ComplexDoor at-

tribute), 277
column (pygamelib.board_items.ComplexNPC at-

tribute), 286
column (pygamelib.board_items.ComplexPlayer at-

tribute), 295
column (pygamelib.board_items.ComplexTreasure at-

tribute), 304
column (pygamelib.board_items.ComplexWall at-

tribute), 313
column (pygamelib.board_items.Door attribute), 322
column (pygamelib.board_items.GenericActionableStructure

attribute), 330
column (pygamelib.board_items.GenericStructure at-

tribute), 346
column (pygamelib.board_items.GenericStructureComplexComponent

attribute), 338
column (pygamelib.board_items.Immovable attribute),

354
column (pygamelib.board_items.Movable attribute),

362
column (pygamelib.board_items.NPC attribute), 370
column (pygamelib.board_items.Player attribute), 379
column (pygamelib.board_items.Projectile attribute),

389
column (pygamelib.board_items.TextItem attribute),

399
column (pygamelib.board_items.Tile attribute), 408
column (pygamelib.board_items.Treasure attribute),

417
column (pygamelib.board_items.Wall attribute), 425
column (pygamelib.gfx.particles.CircleEmitter at-

tribute), 547
column (pygamelib.gfx.particles.ColorParticle at-

tribute), 552
column (pygamelib.gfx.particles.ColorPartitionParticle

624 Index

pygamelib Documentation, Release 1.3.0

attribute), 558
column (pygamelib.gfx.particles.Particle attribute), 572
column (pygamelib.gfx.particles.ParticleEmitter at-

tribute), 565
column (pygamelib.gfx.particles.PartitionParticle at-

tribute), 586
column (pygamelib.gfx.particles.RandomColorParticle

attribute), 591
column (pygamelib.gfx.particles.RandomColorPartitionParticle

attribute), 596
COMET (pygamelib.assets.graphics.Models attribute),

146
COMPASS (pygamelib.assets.graphics.Models attribute),

146
ComplexDoor (class in pygamelib.board_items), 274
ComplexNPC (class in pygamelib.board_items), 283
ComplexPlayer (class in pygamelib.board_items),

292
ComplexTreasure (class in pygamelib.board_items),

301
ComplexWall (class in pygamelib.board_items), 310
COMPOSITION_SYMBOL

(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

COMPUTER_DISK (pygamelib.assets.graphics.Models
attribute), 146

COMPUTER_MOUSE (pygamelib.assets.graphics.Models
attribute), 147

CONFETTI_BALL (pygamelib.assets.graphics.Models
attribute), 147

config (pygamelib.gfx.ui.Box attribute), 513
config (pygamelib.gfx.ui.ColorPickerDialog attribute),

514
config (pygamelib.gfx.ui.Dialog attribute), 517
config (pygamelib.gfx.ui.FileDialog attribute), 519
config (pygamelib.gfx.ui.GridSelectorDialog at-

tribute), 521
config (pygamelib.gfx.ui.LineInputDialog attribute),

525
config (pygamelib.gfx.ui.Menu attribute), 528
config (pygamelib.gfx.ui.MenuAction attribute), 531
config (pygamelib.gfx.ui.MenuBar attribute), 533
config (pygamelib.gfx.ui.MessageDialog attribute),

537
config (pygamelib.gfx.ui.MultiLineInputDialog at-

tribute), 539
config (pygamelib.gfx.ui.ProgressBar attribute), 541
config (pygamelib.gfx.ui.ProgressDialog attribute),

543
config() (pygamelib.engine.Game method), 449
CONFOUNDED_FACE (pygamelib.assets.graphics.Models

attribute), 147
CONFUSED_FACE (pygamelib.assets.graphics.Models

attribute), 147

CONICAL_TAPER (pygamelib.assets.graphics.MiscTechnicals
attribute), 72

Console (class in pygamelib.base), 190
constraints (pygamelib.engine.Inventory attribute),

462
CONSTRUCTION (pygamelib.assets.graphics.Models at-

tribute), 147
CONSTRUCTION_WORKER

(pygamelib.assets.graphics.Models attribute),
147

CONTINUOUS_UNDERLINE_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

CONTROL_KNOBS (pygamelib.assets.graphics.Models
attribute), 147

CONVENIENCE_STORE
(pygamelib.assets.graphics.Models attribute),
147

COOKED_RICE (pygamelib.assets.graphics.Models at-
tribute), 147

COOKIE (pygamelib.assets.graphics.Models attribute),
147

COOKING (pygamelib.assets.graphics.Models attribute),
147

COOL_BUTTON (pygamelib.assets.graphics.Models at-
tribute), 147

copy() (pygamelib.gfx.core.Color method), 508
copy() (pygamelib.gfx.core.Sprite method), 492
copy() (pygamelib.gfx.core.SpriteCollection method),

487
copy() (pygamelib.gfx.core.Sprixel method), 501
copy() (pygamelib.gfx.particles.ParticleSprixel

method), 578
COPYRIGHT (pygamelib.assets.graphics.Models at-

tribute), 147
COUCH_AND_LAMP (pygamelib.assets.graphics.Models

attribute), 147
count_active_particles()

(pygamelib.gfx.particles.ParticlePool method),
569

COUNTERBORE (pygamelib.assets.graphics.MiscTechnicals
attribute), 72

COUNTERCLOCKWISE_ARROWS_BUTTON
(pygamelib.assets.graphics.Models attribute),
147

COUNTERSINK (pygamelib.assets.graphics.MiscTechnicals
attribute), 72

COUPLE_WITH_HEART
(pygamelib.assets.graphics.Models attribute),
147

COW (pygamelib.assets.graphics.Models attribute), 147
COW_FACE (pygamelib.assets.graphics.Models at-

tribute), 147
COWBOY_HAT_FACE (pygamelib.assets.graphics.Models

Index 625

pygamelib Documentation, Release 1.3.0

attribute), 147
CRAB (pygamelib.assets.graphics.Models attribute), 147
CRAYON (pygamelib.assets.graphics.Models attribute),

147
create_config() (pygamelib.engine.Game method),

449
CREDIT_CARD (pygamelib.assets.graphics.Models at-

tribute), 147
CRESCENT_MOON (pygamelib.assets.graphics.Models

attribute), 147
CRICKET (pygamelib.assets.graphics.Models attribute),

147
CRICKET_GAME (pygamelib.assets.graphics.Models at-

tribute), 147
CROCODILE (pygamelib.assets.graphics.Models at-

tribute), 147
CROISSANT (pygamelib.assets.graphics.Models at-

tribute), 147
CROSS_MARK (pygamelib.assets.graphics.Models

attribute), 147
CROSS_MARK_BUTTON

(pygamelib.assets.graphics.Models attribute),
147

CROSSED_FINGERS (pygamelib.assets.graphics.Models
attribute), 147

CROSSED_FLAGS (pygamelib.assets.graphics.Models
attribute), 147

CROSSED_SWORDS (pygamelib.assets.graphics.Models
attribute), 147

CROWN (pygamelib.assets.graphics.Models attribute),
147

CRYING_CAT (pygamelib.assets.graphics.Models
attribute), 147

CRYING_FACE (pygamelib.assets.graphics.Models at-
tribute), 147

CRYSTAL_BALL (pygamelib.assets.graphics.Models at-
tribute), 147

CUCUMBER (pygamelib.assets.graphics.Models at-
tribute), 148

CUP_WITH_STRAW (pygamelib.assets.graphics.Models
attribute), 148

CUPCAKE (pygamelib.assets.graphics.Models attribute),
148

CURLING_STONE (pygamelib.assets.graphics.Models
attribute), 148

CURLY_BRACKET_EXTENSION
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

CURLY_HAIR (pygamelib.assets.graphics.Models
attribute), 148

CURLY_LOOP (pygamelib.assets.graphics.Models
attribute), 148

CURRENCY_EXCHANGE
(pygamelib.assets.graphics.Models attribute),

148
current_board() (pygamelib.engine.Game method),

449
current_choice (pygamelib.gfx.ui.GridSelector at-

tribute), 523
current_entry() (pygamelib.gfx.ui.Menu method),

528
current_entry() (pygamelib.gfx.ui.MenuBar

method), 533
current_frame() (pygamelib.gfx.core.Animation

method), 481
current_index (pygamelib.gfx.ui.MenuBar at-

tribute), 534
current_page (pygamelib.gfx.ui.GridSelector at-

tribute), 523
current_path() (pygamelib.actuators.PathFinder

method), 23
current_sprixel() (pygamelib.gfx.ui.GridSelector

method), 523
current_waypoint()

(pygamelib.actuators.PathFinder method),
23

CURRY_RICE (pygamelib.assets.graphics.Models
attribute), 148

cursor_down() (pygamelib.gfx.ui.GridSelector
method), 523

cursor_left() (pygamelib.gfx.ui.GridSelector
method), 523

cursor_right() (pygamelib.gfx.ui.GridSelector
method), 523

cursor_up() (pygamelib.gfx.ui.GridSelector method),
523

CUSTARD (pygamelib.assets.graphics.Models attribute),
148

CUSTOMS (pygamelib.assets.graphics.Models attribute),
148

CUT_OF_MEAT (pygamelib.assets.graphics.Models at-
tribute), 148

cyan() (pygamelib.base.Text static method), 198
cyan_bright() (pygamelib.base.Text static method),

198
cyan_dim() (pygamelib.base.Text static method), 198
cyan_rect() (pygamelib.gfx.core.Sprixel class

method), 501
cyan_rect() (pygamelib.gfx.particles.ParticleSprixel

class method), 578
cyan_square() (pygamelib.gfx.core.Sprixel class

method), 501
cyan_square() (pygamelib.gfx.particles.ParticleSprixel

class method), 578
CYCLONE (pygamelib.assets.graphics.Models attribute),

148
CYLINDRICITY (pygamelib.assets.graphics.MiscTechnicals

attribute), 72

626 Index

pygamelib Documentation, Release 1.3.0

D
DAGGER (pygamelib.assets.graphics.Models attribute),

148
DANGO (pygamelib.assets.graphics.Models attribute),

148
DARK_SHADE (pygamelib.assets.graphics.Blocks at-

tribute), 38
DARK_SKIN_TONE (pygamelib.assets.graphics.Models

attribute), 148
DASHING_AWAY (pygamelib.assets.graphics.Models at-

tribute), 148
DEAF_PERSON (pygamelib.assets.graphics.Models at-

tribute), 148
debug() (pygamelib.base.Text static method), 198
debug_info() (pygamelib.board_items.Actionable

method), 209
debug_info() (pygamelib.board_items.ActionableTile

method), 217
debug_info() (pygamelib.board_items.BoardComplexItem

method), 227
debug_info() (pygamelib.board_items.BoardItem

method), 245
debug_info() (pygamelib.board_items.BoardItemComplexComponent

method), 235
debug_info() (pygamelib.board_items.BoardItemVoid

method), 252
debug_info() (pygamelib.board_items.Camera

method), 260
debug_info() (pygamelib.board_items.Character

method), 269
debug_info() (pygamelib.board_items.ComplexDoor

method), 277
debug_info() (pygamelib.board_items.ComplexNPC

method), 286
debug_info() (pygamelib.board_items.ComplexPlayer

method), 295
debug_info() (pygamelib.board_items.ComplexTreasure

method), 304
debug_info() (pygamelib.board_items.ComplexWall

method), 313
debug_info() (pygamelib.board_items.Door

method), 322
debug_info() (pygamelib.board_items.GenericActionableStructure

method), 330
debug_info() (pygamelib.board_items.GenericStructure

method), 346
debug_info() (pygamelib.board_items.GenericStructureComplexComponent

method), 338
debug_info() (pygamelib.board_items.Immovable

method), 354
debug_info() (pygamelib.board_items.Movable

method), 362
debug_info() (pygamelib.board_items.NPC

method), 370

debug_info() (pygamelib.board_items.Player
method), 379

debug_info() (pygamelib.board_items.Projectile
method), 389

debug_info() (pygamelib.board_items.TextItem
method), 399

debug_info() (pygamelib.board_items.Tile method),
408

debug_info() (pygamelib.board_items.Treasure
method), 417

debug_info() (pygamelib.board_items.Wall method),
425

DECIDUOUS_TREE (pygamelib.assets.graphics.Models
attribute), 148

DECIMAL_EXPONENT_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

DECIMAL_SEPARATOR_KEY_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 72

DEER (pygamelib.assets.graphics.Models attribute), 148
delete() (pygamelib.engine.Screen method), 472
delete_all_levels() (pygamelib.engine.Game

method), 450
delete_item() (pygamelib.engine.Inventory

method), 462
delete_items() (pygamelib.engine.Inventory

method), 463
delete_level() (pygamelib.engine.Game method),

450
delete_menu_category()

(pygamelib.engine.Game method), 450
DELIVERY_TRUCK (pygamelib.assets.graphics.Models

attribute), 148
DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL

(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_CIRCLE
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_DOWN_AND_HORIZONTAL_WITH_WAVE
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_CIRCLE
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals at-

Index 627

pygamelib Documentation, Release 1.3.0

tribute), 72
DENTISTRY_SYMBOL_LIGHT_UP_AND_HORIZONTAL_WITH_WAVE

(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_LEFT
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_BOTTOM_RIGHT
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_LEFT
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_TOP_RIGHT
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_VERTICAL_AND_WAVE
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_CIRCLE
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DENTISTRY_SYMBOL_LIGHT_VERTICAL_WITH_TRIANGLE
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 72

DEPARTMENT_STORE (pygamelib.assets.graphics.Models
attribute), 148

DERELICT_HOUSE (pygamelib.assets.graphics.Models
attribute), 148

DESERT (pygamelib.assets.graphics.Models attribute),
148

DESERT_ISLAND (pygamelib.assets.graphics.Models
attribute), 148

DESKTOP_COMPUTER (pygamelib.assets.graphics.Models
attribute), 148

detach() (pygamelib.actuators.Actuator method), 8
detach() (pygamelib.actuators.Behavioral method),

11
detach() (pygamelib.actuators.PathActuator method),

15
detach() (pygamelib.actuators.PathFinder method),

23
detach() (pygamelib.actuators.PatrolActuator

method), 18
detach() (pygamelib.actuators.RandomActuator

method), 29
detach() (pygamelib.actuators.UnidirectionalActuator

method), 32
detach() (pygamelib.base.PglBaseObject method),

193
detach() (pygamelib.base.Text method), 198
detach() (pygamelib.board_items.Actionable

method), 209
detach() (pygamelib.board_items.ActionableTile

method), 217
detach() (pygamelib.board_items.BoardComplexItem

method), 227
detach() (pygamelib.board_items.BoardItem method),

245
detach() (pygamelib.board_items.BoardItemComplexComponent

method), 235
detach() (pygamelib.board_items.BoardItemVoid

method), 252
detach() (pygamelib.board_items.Camera method),

260
detach() (pygamelib.board_items.Character method),

269
detach() (pygamelib.board_items.ComplexDoor

method), 277
detach() (pygamelib.board_items.ComplexNPC

method), 286
detach() (pygamelib.board_items.ComplexPlayer

method), 295
detach() (pygamelib.board_items.ComplexTreasure

method), 304
detach() (pygamelib.board_items.ComplexWall

method), 313
detach() (pygamelib.board_items.Door method), 322
detach() (pygamelib.board_items.GenericActionableStructure

method), 330
detach() (pygamelib.board_items.GenericStructure

method), 346
detach() (pygamelib.board_items.GenericStructureComplexComponent

method), 338
detach() (pygamelib.board_items.Immovable

method), 354
detach() (pygamelib.board_items.Movable method),

362
detach() (pygamelib.board_items.NPC method), 370
detach() (pygamelib.board_items.Player method),

379
detach() (pygamelib.board_items.Projectile method),

389
detach() (pygamelib.board_items.TextItem method),

399
detach() (pygamelib.board_items.Tile method), 408
detach() (pygamelib.board_items.Treasure method),

418
detach() (pygamelib.board_items.Wall method), 426
detach() (pygamelib.engine.Board method), 436
detach() (pygamelib.engine.Game method), 450
detach() (pygamelib.engine.Inventory method), 463
detach() (pygamelib.engine.Screen method), 472
detach() (pygamelib.gfx.core.Color method), 508
detach() (pygamelib.gfx.core.Sprite method), 492
detach() (pygamelib.gfx.core.Sprixel method), 501
detach() (pygamelib.gfx.particles.CircleEmitter

method), 547

628 Index

pygamelib Documentation, Release 1.3.0

detach() (pygamelib.gfx.particles.ColorParticle
method), 552

detach() (pygamelib.gfx.particles.ColorPartitionParticle
method), 558

detach() (pygamelib.gfx.particles.Particle method),
572

detach() (pygamelib.gfx.particles.ParticleEmitter
method), 565

detach() (pygamelib.gfx.particles.ParticleSprixel
method), 578

detach() (pygamelib.gfx.particles.PartitionParticle
method), 586

detach() (pygamelib.gfx.particles.RandomColorParticle
method), 591

detach() (pygamelib.gfx.particles.RandomColorPartitionParticle
method), 596

DETECTIVE (pygamelib.assets.graphics.Models at-
tribute), 148

Dialog (class in pygamelib.gfx.ui), 517
DIAMETER_SIGN (pygamelib.assets.graphics.MiscTechnicals

attribute), 73
DIAMOND_SUIT (pygamelib.assets.graphics.Models at-

tribute), 148
DIAMOND_WITH_A_DOT

(pygamelib.assets.graphics.Models attribute),
148

DIM_BUTTON (pygamelib.assets.graphics.Models
attribute), 148

DIMENSION_ORIGIN (pygamelib.assets.graphics.MiscTechnicals
attribute), 73

DIRECT_CURRENT_SYMBOL_FORM_TWO
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

DIRECT_HIT (pygamelib.assets.graphics.Models
attribute), 148

direction (pygamelib.board_items.Projectile at-
tribute), 389

directional_animation()
(pygamelib.board_items.Projectile method),
390

directional_model()
(pygamelib.board_items.Projectile method),
390

DISAPPOINTED_FACE
(pygamelib.assets.graphics.Models attribute),
148

DISCONTINUOUS_UNDERLINE_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

DISGUISED_FACE (pygamelib.assets.graphics.Models
attribute), 148

display() (pygamelib.board_items.Actionable
method), 209

display() (pygamelib.board_items.ActionableTile

method), 218
display() (pygamelib.board_items.BoardComplexItem

method), 227
display() (pygamelib.board_items.BoardItem

method), 245
display() (pygamelib.board_items.BoardItemComplexComponent

method), 236
display() (pygamelib.board_items.BoardItemVoid

method), 253
display() (pygamelib.board_items.Camera method),

261
display() (pygamelib.board_items.Character

method), 269
display() (pygamelib.board_items.ComplexDoor

method), 277
display() (pygamelib.board_items.ComplexNPC

method), 286
display() (pygamelib.board_items.ComplexPlayer

method), 295
display() (pygamelib.board_items.ComplexTreasure

method), 304
display() (pygamelib.board_items.ComplexWall

method), 313
display() (pygamelib.board_items.Door method),

322
display() (pygamelib.board_items.GenericActionableStructure

method), 330
display() (pygamelib.board_items.GenericStructure

method), 346
display() (pygamelib.board_items.GenericStructureComplexComponent

method), 338
display() (pygamelib.board_items.Immovable

method), 354
display() (pygamelib.board_items.Movable method),

362
display() (pygamelib.board_items.NPC method), 371
display() (pygamelib.board_items.Player method),

379
display() (pygamelib.board_items.Projectile

method), 390
display() (pygamelib.board_items.TextItem method),

399
display() (pygamelib.board_items.Tile method), 409
display() (pygamelib.board_items.Treasure method),

418
display() (pygamelib.board_items.Wall method), 426
display() (pygamelib.engine.Board method), 436
display_around() (pygamelib.engine.Board

method), 436
display_at() (pygamelib.engine.Screen method),

472
display_board() (pygamelib.engine.Game method),

451
display_line() (pygamelib.engine.Screen method),

Index 629

pygamelib Documentation, Release 1.3.0

473
display_menu() (pygamelib.engine.Game method),

451
display_player_stats()

(pygamelib.engine.Game method), 451
display_sprite() (pygamelib.engine.Screen

method), 474
display_sprite_at() (pygamelib.engine.Screen

method), 474
distance() (pygamelib.base.Math static method), 191
distance_to() (pygamelib.board_items.Actionable

method), 209
distance_to() (pygamelib.board_items.ActionableTile

method), 218
distance_to() (pygamelib.board_items.BoardComplexItem

method), 227
distance_to() (pygamelib.board_items.BoardItem

method), 245
distance_to() (pygamelib.board_items.BoardItemComplexComponent

method), 236
distance_to() (pygamelib.board_items.BoardItemVoid

method), 253
distance_to() (pygamelib.board_items.Camera

method), 261
distance_to() (pygamelib.board_items.Character

method), 269
distance_to() (pygamelib.board_items.ComplexDoor

method), 277
distance_to() (pygamelib.board_items.ComplexNPC

method), 286
distance_to() (pygamelib.board_items.ComplexPlayer

method), 295
distance_to() (pygamelib.board_items.ComplexTreasure

method), 304
distance_to() (pygamelib.board_items.ComplexWall

method), 313
distance_to() (pygamelib.board_items.Door

method), 322
distance_to() (pygamelib.board_items.GenericActionableStructure

method), 330
distance_to() (pygamelib.board_items.GenericStructure

method), 346
distance_to() (pygamelib.board_items.GenericStructureComplexComponent

method), 338
distance_to() (pygamelib.board_items.Immovable

method), 354
distance_to() (pygamelib.board_items.Movable

method), 362
distance_to() (pygamelib.board_items.NPC

method), 371
distance_to() (pygamelib.board_items.Player

method), 379
distance_to() (pygamelib.board_items.Projectile

method), 390

distance_to() (pygamelib.board_items.TextItem
method), 399

distance_to() (pygamelib.board_items.Tile
method), 409

distance_to() (pygamelib.board_items.Treasure
method), 418

distance_to() (pygamelib.board_items.Wall
method), 426

DIVIDE (pygamelib.assets.graphics.Models attribute),
148

DIVING_MASK (pygamelib.assets.graphics.Models at-
tribute), 148

DIYA_LAMP (pygamelib.assets.graphics.Models at-
tribute), 148

DIZZY (pygamelib.assets.graphics.Models attribute),
148

DIZZY_FACE (pygamelib.assets.graphics.Models
attribute), 149

DNA (pygamelib.assets.graphics.Models attribute), 149
DODO (pygamelib.assets.graphics.Models attribute), 149
DOG (pygamelib.assets.graphics.Models attribute), 149
DOG_FACE (pygamelib.assets.graphics.Models at-

tribute), 149
DOLLAR_BANKNOTE (pygamelib.assets.graphics.Models

attribute), 149
DOLPHIN (pygamelib.assets.graphics.Models attribute),

149
Door (class in pygamelib.board_items), 319
DOOR (pygamelib.assets.graphics.Models attribute), 149
DOTTED_CIRCLE (pygamelib.assets.graphics.GeometricShapes

attribute), 55
DOTTED_SIX_POINTED_STAR

(pygamelib.assets.graphics.Models attribute),
149

DOUBLE_CURLY_LOOP
(pygamelib.assets.graphics.Models attribute),
149

DOUBLE_DOWN_AND_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_DOWN_AND_LEFT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_DOWN_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_EXCLAMATION_MARK
(pygamelib.assets.graphics.Models attribute),
149

DOUBLE_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_UP_AND_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings

630 Index

pygamelib Documentation, Release 1.3.0

attribute), 45
DOUBLE_UP_AND_LEFT

(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_UP_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_VERTICAL (pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_VERTICAL_AND_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_VERTICAL_AND_LEFT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_VERTICAL_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOUBLE_VERTICAL_BAR
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

DOUGHNUT (pygamelib.assets.graphics.Models at-
tribute), 149

DOVE (pygamelib.assets.graphics.Models attribute), 149
DOWN_ARROW (pygamelib.assets.graphics.Models

attribute), 149
DOWN_ARROWHEAD (pygamelib.assets.graphics.MiscTechnicals

attribute), 73
DOWN_DOUBLE_AND_HORIZONTAL_SINGLE

(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOWN_DOUBLE_AND_LEFT_SINGLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOWN_DOUBLE_AND_RIGHT_SINGLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOWN_HEAVY_AND_HORIZONTAL_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOWN_HEAVY_AND_LEFT_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOWN_HEAVY_AND_LEFT_UP_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOWN_HEAVY_AND_RIGHT_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOWN_HEAVY_AND_RIGHT_UP_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 45

DOWN_HEAVY_AND_UP_HORIZONTAL_LIGHT
(pygamelib.assets.graphics.BoxDrawings

attribute), 46
DOWN_LEFT_ARROW (pygamelib.assets.graphics.Models

attribute), 149
DOWN_LIGHT_AND_HORIZONTAL_HEAVY

(pygamelib.assets.graphics.BoxDrawings
attribute), 46

DOWN_LIGHT_AND_LEFT_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

DOWN_LIGHT_AND_LEFT_UP_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

DOWN_LIGHT_AND_RIGHT_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

DOWN_LIGHT_AND_RIGHT_UP_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

DOWN_LIGHT_AND_UP_HORIZONTAL_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

DOWN_RIGHT_ARROW (pygamelib.assets.graphics.Models
attribute), 149

DOWN_SINGLE_AND_HORIZONTAL_DOUBLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

DOWN_SINGLE_AND_LEFT_DOUBLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

DOWN_SINGLE_AND_RIGHT_DOUBLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

DOWNCAST_FACE_WITH_SWEAT
(pygamelib.assets.graphics.Models attribute),
149

DOWNWARDS_BUTTON (pygamelib.assets.graphics.Models
attribute), 149

DRAGON (pygamelib.assets.graphics.Models attribute),
149

DRAGON_FACE (pygamelib.assets.graphics.Models at-
tribute), 149

DRESS (pygamelib.assets.graphics.Models attribute),
149

DROOLING_FACE (pygamelib.assets.graphics.Models
attribute), 149

DROP_OF_BLOOD (pygamelib.assets.graphics.Models
attribute), 149

DROPLET (pygamelib.assets.graphics.Models attribute),
149

DRUM (pygamelib.assets.graphics.Models attribute), 149
dtanimate (pygamelib.gfx.core.Animation attribute),

481
dtmove (pygamelib.board_items.Camera attribute), 261
dtmove (pygamelib.board_items.Character attribute),

Index 631

pygamelib Documentation, Release 1.3.0

269
dtmove (pygamelib.board_items.ComplexNPC at-

tribute), 286
dtmove (pygamelib.board_items.ComplexPlayer at-

tribute), 296
dtmove (pygamelib.board_items.Movable attribute),

363
dtmove (pygamelib.board_items.NPC attribute), 371
dtmove (pygamelib.board_items.Player attribute), 380
dtmove (pygamelib.board_items.Projectile attribute),

390
DUCK (pygamelib.assets.graphics.Models attribute), 149
DUMPLING (pygamelib.assets.graphics.Models at-

tribute), 149
DVD (pygamelib.assets.graphics.Models attribute), 149

E
E_MAIL (pygamelib.assets.graphics.Models attribute),

150
EAGLE (pygamelib.assets.graphics.Models attribute),

149
EAR (pygamelib.assets.graphics.Models attribute), 149
EAR_OF_CORN (pygamelib.assets.graphics.Models at-

tribute), 149
EAR_WITH_HEARING_AID

(pygamelib.assets.graphics.Models attribute),
149

EARTH_GROUND (pygamelib.assets.graphics.MiscTechnicals
attribute), 73

EGG (pygamelib.assets.graphics.Models attribute), 149
EGGPLANT (pygamelib.assets.graphics.Models at-

tribute), 149
EIGHT_OCLOCK (pygamelib.assets.graphics.Models at-

tribute), 149
EIGHT_POINTED_STAR

(pygamelib.assets.graphics.Models attribute),
149

EIGHT_SPOKED_ASTERISK
(pygamelib.assets.graphics.Models attribute),
150

EIGHT_THIRTY (pygamelib.assets.graphics.Models at-
tribute), 150

EJECT_BUTTON (pygamelib.assets.graphics.Models at-
tribute), 150

EJECT_SYMBOL (pygamelib.assets.graphics.MiscTechnicals
attribute), 73

ELECTRIC_ARROW (pygamelib.assets.graphics.MiscTechnicals
attribute), 73

ELECTRIC_PLUG (pygamelib.assets.graphics.Models
attribute), 150

ELECTRICAL_INTERSECTION
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

ELEPHANT (pygamelib.assets.graphics.Models at-
tribute), 150

ELEVATOR (pygamelib.assets.graphics.Models at-
tribute), 150

ELEVEN_OCLOCK (pygamelib.assets.graphics.Models
attribute), 150

ELEVEN_THIRTY (pygamelib.assets.graphics.Models
attribute), 150

ELF (pygamelib.assets.graphics.Models attribute), 150
emit() (pygamelib.gfx.particles.CircleEmitter method),

548
emit() (pygamelib.gfx.particles.ParticleEmitter

method), 565
EmitterProperties (class in

pygamelib.gfx.particles), 561
EMPHASIS_SYMBOL (pygamelib.assets.graphics.MiscTechnicals

attribute), 73
empty() (pygamelib.engine.Inventory method), 463
empty() (pygamelib.gfx.core.Sprite method), 492
empty_marker (pygamelib.gfx.ui.ProgressBar at-

tribute), 541
END_ARROW (pygamelib.assets.graphics.Models at-

tribute), 150
ENTER_SYMBOL (pygamelib.assets.graphics.MiscTechnicals

attribute), 73
entries (pygamelib.gfx.ui.Menu attribute), 528
entries (pygamelib.gfx.ui.MenuBar attribute), 534
ENVELOPE (pygamelib.assets.graphics.Models at-

tribute), 150
ENVELOPE_WITH_ARROW

(pygamelib.assets.graphics.Models attribute),
150

ERASE_TO_THE_LEFT
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

ERASE_TO_THE_RIGHT
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

EURO_BANKNOTE (pygamelib.assets.graphics.Models
attribute), 150

EVERGREEN_TREE (pygamelib.assets.graphics.Models
attribute), 150

EWE (pygamelib.assets.graphics.Models attribute), 150
EXCLAMATION_MARK (pygamelib.assets.graphics.Models

attribute), 150
EXCLAMATION_QUESTION_MARK

(pygamelib.assets.graphics.Models attribute),
150

expand() (pygamelib.gfx.ui.Menu method), 528
EXPLODING_HEAD (pygamelib.assets.graphics.Models

attribute), 150
EXPRESSIONLESS_FACE

(pygamelib.assets.graphics.Models attribute),
150

632 Index

pygamelib Documentation, Release 1.3.0

EYE (pygamelib.assets.graphics.Models attribute), 150
EYES (pygamelib.assets.graphics.Models attribute), 150

F
FACE_BLOWING_A_KISS

(pygamelib.assets.graphics.Models attribute),
150

FACE_SAVORING_FOOD
(pygamelib.assets.graphics.Models attribute),
150

FACE_SCREAMING_IN_FEAR
(pygamelib.assets.graphics.Models attribute),
150

FACE_VOMITING (pygamelib.assets.graphics.Models
attribute), 150

FACE_WITH_HAND_OVER_MOUTH
(pygamelib.assets.graphics.Models attribute),
150

FACE_WITH_HEAD_BANDAGE
(pygamelib.assets.graphics.Models attribute),
150

FACE_WITH_MEDICAL_MASK
(pygamelib.assets.graphics.Models attribute),
150

FACE_WITH_MONOCLE
(pygamelib.assets.graphics.Models attribute),
150

FACE_WITH_OPEN_MOUTH
(pygamelib.assets.graphics.Models attribute),
150

FACE_WITH_RAISED_EYEBROW
(pygamelib.assets.graphics.Models attribute),
150

FACE_WITH_ROLLING_EYES
(pygamelib.assets.graphics.Models attribute),
150

FACE_WITH_STEAM_FROM_NOSE
(pygamelib.assets.graphics.Models attribute),
150

FACE_WITH_SYMBOLS_ON_MOUTH
(pygamelib.assets.graphics.Models attribute),
150

FACE_WITH_TEARS_OF_JOY
(pygamelib.assets.graphics.Models attribute),
151

FACE_WITH_THERMOMETER
(pygamelib.assets.graphics.Models attribute),
151

FACE_WITH_TONGUE (pygamelib.assets.graphics.Models
attribute), 151

FACE_WITHOUT_MOUTH
(pygamelib.assets.graphics.Models attribute),
150

FACTORY (pygamelib.assets.graphics.Models attribute),
151

FAIRY (pygamelib.assets.graphics.Models attribute),
151

FALAFEL (pygamelib.assets.graphics.Models attribute),
151

FALLEN_LEAF (pygamelib.assets.graphics.Models at-
tribute), 151

FAMILY (pygamelib.assets.graphics.Models attribute),
151

FAST_DOWN_BUTTON (pygamelib.assets.graphics.Models
attribute), 151

FAST_FORWARD_BUTTON
(pygamelib.assets.graphics.Models attribute),
151

FAST_REVERSE_BUTTON
(pygamelib.assets.graphics.Models attribute),
151

FAST_UP_BUTTON (pygamelib.assets.graphics.Models
attribute), 151

fatal() (pygamelib.base.Text static method), 198
FAX_MACHINE (pygamelib.assets.graphics.Models at-

tribute), 151
FEARFUL_FACE (pygamelib.assets.graphics.Models at-

tribute), 151
FEATHER (pygamelib.assets.graphics.Models attribute),

151
FEMALE_SIGN (pygamelib.assets.graphics.Models at-

tribute), 151
FERRIS_WHEEL (pygamelib.assets.graphics.Models at-

tribute), 151
FERRY (pygamelib.assets.graphics.Models attribute),

151
fg_color (pygamelib.base.Text attribute), 198
fg_color (pygamelib.gfx.core.Sprixel attribute), 502
fg_color (pygamelib.gfx.particles.ParticleSprixel at-

tribute), 579
FIELD_HOCKEY (pygamelib.assets.graphics.Models at-

tribute), 151
fields (pygamelib.gfx.ui.MultiLineInputDialog at-

tribute), 539
FILE_CABINET (pygamelib.assets.graphics.Models at-

tribute), 151
FILE_FOLDER (pygamelib.assets.graphics.Models at-

tribute), 151
FileDialog (class in pygamelib.gfx.ui), 517
FILM_FRAMES (pygamelib.assets.graphics.Models at-

tribute), 151
FILM_PROJECTOR (pygamelib.assets.graphics.Models

attribute), 151
filter (pygamelib.gfx.ui.FileDialog attribute), 519
find_path() (pygamelib.actuators.PathFinder

method), 24
finished() (pygamelib.gfx.particles.CircleEmitter

Index 633

pygamelib Documentation, Release 1.3.0

method), 548
finished() (pygamelib.gfx.particles.ColorParticle

method), 553
finished() (pygamelib.gfx.particles.ColorPartitionParticle

method), 558
finished() (pygamelib.gfx.particles.Particle

method), 572
finished() (pygamelib.gfx.particles.ParticleEmitter

method), 565
finished() (pygamelib.gfx.particles.PartitionParticle

method), 586
finished() (pygamelib.gfx.particles.RandomColorParticle

method), 591
finished() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 596
FIRE (pygamelib.assets.graphics.Models attribute), 151
FIRE_ENGINE (pygamelib.assets.graphics.Models at-

tribute), 151
FIRE_EXTINGUISHER

(pygamelib.assets.graphics.Models attribute),
151

FIRECRACKER (pygamelib.assets.graphics.Models at-
tribute), 151

FIREWORKS (pygamelib.assets.graphics.Models at-
tribute), 151

FIRST_PLACE_MEDAL
(pygamelib.assets.graphics.Models attribute),
151

FIRST_QUARTER_MOON
(pygamelib.assets.graphics.Models attribute),
151

FIRST_QUARTER_MOON_FACE
(pygamelib.assets.graphics.Models attribute),
151

FISH (pygamelib.assets.graphics.Models attribute), 151
FISH_CAKE_WITH_SWIRL

(pygamelib.assets.graphics.Models attribute),
151

FISHEYE (pygamelib.assets.graphics.GeometricShapes
attribute), 55

FISHING_POLE (pygamelib.assets.graphics.Models at-
tribute), 151

FIVE_OCLOCK (pygamelib.assets.graphics.Models at-
tribute), 151

FIVE_THIRTY (pygamelib.assets.graphics.Models at-
tribute), 151

FLAG_IN_HOLE (pygamelib.assets.graphics.Models at-
tribute), 152

FLAMINGO (pygamelib.assets.graphics.Models at-
tribute), 152

FLASHLIGHT (pygamelib.assets.graphics.Models
attribute), 152

FLAT_SHOE (pygamelib.assets.graphics.Models at-
tribute), 152

FLATBREAD (pygamelib.assets.graphics.Models at-
tribute), 152

FLATNESS (pygamelib.assets.graphics.MiscTechnicals
attribute), 73

FLEUR_DE_LIS (pygamelib.assets.graphics.Models at-
tribute), 152

FLEXED_BICEPS (pygamelib.assets.graphics.Models
attribute), 152

flip_horizontally() (pygamelib.gfx.core.Sprite
method), 493

flip_vertically() (pygamelib.gfx.core.Sprite
method), 493

FLOPPY_DISK (pygamelib.assets.graphics.Models at-
tribute), 152

FLOWER_PLAYING_CARDS
(pygamelib.assets.graphics.Models attribute),
152

FLUSHED_FACE (pygamelib.assets.graphics.Models at-
tribute), 152

FLY (pygamelib.assets.graphics.Models attribute), 152
FLYING_DISC (pygamelib.assets.graphics.Models at-

tribute), 152
FLYING_SAUCER (pygamelib.assets.graphics.Models

attribute), 152
FOG (pygamelib.assets.graphics.Models attribute), 152
FOGGY (pygamelib.assets.graphics.Models attribute),

152
FOLDED_HANDS (pygamelib.assets.graphics.Models at-

tribute), 152
FONDUE (pygamelib.assets.graphics.Models attribute),

152
Font (class in pygamelib.gfx.core), 483
FOOT (pygamelib.assets.graphics.Models attribute), 152
FOOTPRINTS (pygamelib.assets.graphics.Models

attribute), 152
force_render() (pygamelib.engine.Screen method),

475
force_update() (pygamelib.engine.Screen method),

475
FORK_AND_KNIFE (pygamelib.assets.graphics.Models

attribute), 152
FORK_AND_KNIFE_WITH_PLATE

(pygamelib.assets.graphics.Models attribute),
152

FORTUNE_COOKIE (pygamelib.assets.graphics.Models
attribute), 152

FOUNTAIN (pygamelib.assets.graphics.Models at-
tribute), 152

FOUNTAIN_PEN (pygamelib.assets.graphics.Models at-
tribute), 152

FOUR_LEAF_CLOVER (pygamelib.assets.graphics.Models
attribute), 152

FOUR_OCLOCK (pygamelib.assets.graphics.Models at-
tribute), 152

634 Index

pygamelib Documentation, Release 1.3.0

FOUR_THIRTY (pygamelib.assets.graphics.Models at-
tribute), 152

FOX (pygamelib.assets.graphics.Models attribute), 152
FRAMED_PICTURE (pygamelib.assets.graphics.Models

attribute), 152
FREE_BUTTON (pygamelib.assets.graphics.Models at-

tribute), 152
FRENCH_FRIES (pygamelib.assets.graphics.Models at-

tribute), 152
FRIED_SHRIMP (pygamelib.assets.graphics.Models at-

tribute), 152
FROG (pygamelib.assets.graphics.Models attribute), 152
from_ansi() (pygamelib.gfx.core.Color class

method), 508
from_ansi() (pygamelib.gfx.core.Sprixel static

method), 502
from_ansi() (pygamelib.gfx.particles.ParticleSprixel

static method), 579
from_direction() (pygamelib.base.Vector2D class

method), 204
from_text() (pygamelib.gfx.core.Sprite class

method), 493
fromkeys() (pygamelib.gfx.core.SpriteCollection

class method), 487
FRONT_FACING_BABY_CHICK

(pygamelib.assets.graphics.Models attribute),
152

FROWN (pygamelib.assets.graphics.MiscTechnicals at-
tribute), 73

FROWNING_FACE (pygamelib.assets.graphics.Models
attribute), 152

FROWNING_FACE_WITH_OPEN_MOUTH
(pygamelib.assets.graphics.Models attribute),
152

FUEL_PUMP (pygamelib.assets.graphics.Models at-
tribute), 153

FULL_BLOCK (pygamelib.assets.graphics.Blocks at-
tribute), 38

FULL_MOON (pygamelib.assets.graphics.Models at-
tribute), 153

FULL_MOON_FACE (pygamelib.assets.graphics.Models
attribute), 153

FUNERAL_URN (pygamelib.assets.graphics.Models at-
tribute), 153

FUSE (pygamelib.assets.graphics.MiscTechnicals at-
tribute), 73

G
g (pygamelib.gfx.core.Color attribute), 509
Game (class in pygamelib.engine), 443
GAME_DIE (pygamelib.assets.graphics.Models at-

tribute), 153
GARLIC (pygamelib.assets.graphics.Models attribute),

153

GEAR (pygamelib.assets.graphics.Models attribute), 153
GEM_STONE (pygamelib.assets.graphics.Models at-

tribute), 153
GEMINI (pygamelib.assets.graphics.Models attribute),

153
generate_void_cell() (pygamelib.engine.Board

method), 436
GenericActionableStructure (class in

pygamelib.board_items), 327
GenericStructure (class in

pygamelib.board_items), 343
GenericStructureComplexComponent (class in

pygamelib.board_items), 335
GENIE (pygamelib.assets.graphics.Models attribute),

153
GeometricShapes (class in

pygamelib.assets.graphics), 49
get() (pygamelib.engine.Screen method), 475
get() (pygamelib.gfx.core.SpriteCollection method),

487
get_board() (pygamelib.engine.Game method), 452
get_immovables() (pygamelib.engine.Board

method), 437
get_item() (pygamelib.engine.Inventory method),

463
get_items() (pygamelib.engine.Inventory method),

464
get_key() (pygamelib.engine.Game static method),

452
get_menu_entry() (pygamelib.engine.Game

method), 452
get_movables() (pygamelib.engine.Board method),

437
get_particles() (pygamelib.gfx.particles.ParticlePool

method), 569
GHOST (pygamelib.assets.graphics.Models attribute),

153
GIRAFFE (pygamelib.assets.graphics.Models attribute),

153
GIRL (pygamelib.assets.graphics.Models attribute), 153
GLASS_OF_MILK (pygamelib.assets.graphics.Models

attribute), 153
GLASSES (pygamelib.assets.graphics.Models attribute),

153
GLOBE_SHOWING_AMERICAS

(pygamelib.assets.graphics.Models attribute),
153

GLOBE_SHOWING_ASIA_AUSTRALIA
(pygamelib.assets.graphics.Models attribute),
153

GLOBE_SHOWING_EUROPE_AFRICA
(pygamelib.assets.graphics.Models attribute),
153

GLOBE_WITH_MERIDIANS

Index 635

pygamelib Documentation, Release 1.3.0

(pygamelib.assets.graphics.Models attribute),
153

GLOVES (pygamelib.assets.graphics.Models attribute),
153

GLOWING_STAR (pygamelib.assets.graphics.Models at-
tribute), 153

glyph() (pygamelib.gfx.core.Font method), 484
glyphs_map (pygamelib.gfx.core.Font attribute), 485
GOAL_NET (pygamelib.assets.graphics.Models at-

tribute), 153
GOAT (pygamelib.assets.graphics.Models attribute), 153
GOBLIN (pygamelib.assets.graphics.Models attribute),

153
GOGGLES (pygamelib.assets.graphics.Models attribute),

153
GORILLA (pygamelib.assets.graphics.Models attribute),

153
GRADUATION_CAP (pygamelib.assets.graphics.Models

attribute), 153
GRAPES (pygamelib.assets.graphics.Models attribute),

153
green (pygamelib.gfx.ui.ColorPicker attribute), 516
green() (pygamelib.base.Text static method), 199
GREEN_APPLE (pygamelib.assets.graphics.Models at-

tribute), 153
GREEN_BOOK (pygamelib.assets.graphics.Models

attribute), 153
green_bright() (pygamelib.base.Text static

method), 199
GREEN_CIRCLE (pygamelib.assets.graphics.Models at-

tribute), 153
green_dim() (pygamelib.base.Text static method), 199
GREEN_HEART (pygamelib.assets.graphics.Models at-

tribute), 153
green_rect() (pygamelib.gfx.core.Sprixel class

method), 502
green_rect() (pygamelib.gfx.particles.ParticleSprixel

class method), 579
GREEN_SALAD (pygamelib.assets.graphics.Models at-

tribute), 153
GREEN_SQUARE (pygamelib.assets.graphics.Models at-

tribute), 153
green_square() (pygamelib.gfx.core.Sprixel class

method), 502
green_square() (pygamelib.gfx.particles.ParticleSprixel

class method), 579
grid_selector (pygamelib.gfx.ui.GridSelectorDialog

attribute), 521
GridSelector (class in pygamelib.gfx.ui), 521
GridSelectorDialog (class in pygamelib.gfx.ui),

520
GRIMACING_FACE (pygamelib.assets.graphics.Models

attribute), 153
GRINNING_CAT (pygamelib.assets.graphics.Models at-

tribute), 153
GRINNING_CAT_WITH_SMILING_EYES

(pygamelib.assets.graphics.Models attribute),
154

GRINNING_FACE (pygamelib.assets.graphics.Models
attribute), 154

GRINNING_FACE_WITH_BIG_EYES
(pygamelib.assets.graphics.Models attribute),
154

GRINNING_FACE_WITH_SMILING_EYES
(pygamelib.assets.graphics.Models attribute),
154

GRINNING_FACE_WITH_SWEAT
(pygamelib.assets.graphics.Models attribute),
154

GRINNING_SQUINTING_FACE
(pygamelib.assets.graphics.Models attribute),
154

GROWING_HEART (pygamelib.assets.graphics.Models
attribute), 154

GUARD (pygamelib.assets.graphics.Models attribute),
154

GUIDE_DOG (pygamelib.assets.graphics.Models at-
tribute), 154

GUITAR (pygamelib.assets.graphics.Models attribute),
154

H
HacException, 205
HacInvalidLevelException, 205
HacInvalidTypeException, 206
HacObjectIsNotMovableException, 206
HacOutOfBoardBoundException, 206
HAMBURGER (pygamelib.assets.graphics.Models at-

tribute), 154
HAMMER (pygamelib.assets.graphics.Models attribute),

154
HAMMER_AND_PICK (pygamelib.assets.graphics.Models

attribute), 154
HAMMER_AND_WRENCH

(pygamelib.assets.graphics.Models attribute),
154

HAMSTER (pygamelib.assets.graphics.Models attribute),
154

HAND_WITH_FINGERS_SPLAYED
(pygamelib.assets.graphics.Models attribute),
154

HANDBAG (pygamelib.assets.graphics.Models attribute),
154

handle_notification()
(pygamelib.actuators.Actuator method),
9

handle_notification()
(pygamelib.actuators.Behavioral method),

636 Index

pygamelib Documentation, Release 1.3.0

12
handle_notification()

(pygamelib.actuators.PathActuator method),
15

handle_notification()
(pygamelib.actuators.PathFinder method),
24

handle_notification()
(pygamelib.actuators.PatrolActuator method),
18

handle_notification()
(pygamelib.actuators.RandomActuator
method), 29

handle_notification()
(pygamelib.actuators.UnidirectionalActuator
method), 32

handle_notification()
(pygamelib.base.PglBaseObject method),
193

handle_notification() (pygamelib.base.Text
method), 199

handle_notification()
(pygamelib.board_items.Actionable method),
210

handle_notification()
(pygamelib.board_items.ActionableTile
method), 218

handle_notification()
(pygamelib.board_items.BoardComplexItem
method), 227

handle_notification()
(pygamelib.board_items.BoardItem method),
245

handle_notification()
(pygamelib.board_items.BoardItemComplexComponent
method), 236

handle_notification()
(pygamelib.board_items.BoardItemVoid
method), 253

handle_notification()
(pygamelib.board_items.Camera method),
261

handle_notification()
(pygamelib.board_items.Character method),
269

handle_notification()
(pygamelib.board_items.ComplexDoor
method), 277

handle_notification()
(pygamelib.board_items.ComplexNPC
method), 286

handle_notification()
(pygamelib.board_items.ComplexPlayer
method), 296

handle_notification()
(pygamelib.board_items.ComplexTreasure
method), 305

handle_notification()
(pygamelib.board_items.ComplexWall
method), 313

handle_notification()
(pygamelib.board_items.Door method), 323

handle_notification()
(pygamelib.board_items.GenericActionableStructure
method), 331

handle_notification()
(pygamelib.board_items.GenericStructure
method), 347

handle_notification()
(pygamelib.board_items.GenericStructureComplexComponent
method), 338

handle_notification()
(pygamelib.board_items.Immovable method),
354

handle_notification()
(pygamelib.board_items.Movable method),
363

handle_notification()
(pygamelib.board_items.NPC method), 371

handle_notification()
(pygamelib.board_items.Player method),
380

handle_notification()
(pygamelib.board_items.Projectile method),
390

handle_notification()
(pygamelib.board_items.TextItem method),
399

handle_notification()
(pygamelib.board_items.Tile method), 409

handle_notification()
(pygamelib.board_items.Treasure method),
418

handle_notification()
(pygamelib.board_items.Wall method), 426

handle_notification() (pygamelib.engine.Board
method), 437

handle_notification() (pygamelib.engine.Game
method), 452

handle_notification()
(pygamelib.engine.Inventory method), 464

handle_notification()
(pygamelib.engine.Screen method), 476

handle_notification()
(pygamelib.gfx.core.Color method), 509

handle_notification()
(pygamelib.gfx.core.Sprite method), 493

handle_notification()

Index 637

pygamelib Documentation, Release 1.3.0

(pygamelib.gfx.core.Sprixel method), 502
handle_notification()

(pygamelib.gfx.particles.CircleEmitter
method), 548

handle_notification()
(pygamelib.gfx.particles.ColorParticle
method), 553

handle_notification()
(pygamelib.gfx.particles.ColorPartitionParticle
method), 558

handle_notification()
(pygamelib.gfx.particles.Particle method),
572

handle_notification()
(pygamelib.gfx.particles.ParticleEmitter
method), 566

handle_notification()
(pygamelib.gfx.particles.ParticleSprixel
method), 579

handle_notification()
(pygamelib.gfx.particles.PartitionParticle
method), 586

handle_notification()
(pygamelib.gfx.particles.RandomColorParticle
method), 591

handle_notification()
(pygamelib.gfx.particles.RandomColorPartitionParticle
method), 597

HANDSHAKE (pygamelib.assets.graphics.Models at-
tribute), 154

has_inventory() (pygamelib.board_items.Camera
method), 261

has_inventory() (pygamelib.board_items.Character
method), 270

has_inventory() (pygamelib.board_items.ComplexNPC
method), 287

has_inventory() (pygamelib.board_items.ComplexPlayer
method), 296

has_inventory() (pygamelib.board_items.Movable
method), 363

has_inventory() (pygamelib.board_items.NPC
method), 371

has_inventory() (pygamelib.board_items.Player
method), 380

has_inventory() (pygamelib.board_items.Projectile
method), 391

HATCHING_CHICK (pygamelib.assets.graphics.Models
attribute), 154

hcenter (pygamelib.engine.Screen attribute), 476
heading (pygamelib.board_items.Actionable attribute),

210
heading (pygamelib.board_items.ActionableTile

attribute), 218
heading (pygamelib.board_items.BoardComplexItem

attribute), 227
heading (pygamelib.board_items.BoardItem attribute),

245
heading (pygamelib.board_items.BoardItemComplexComponent

attribute), 236
heading (pygamelib.board_items.BoardItemVoid at-

tribute), 253
heading (pygamelib.board_items.Camera attribute),

261
heading (pygamelib.board_items.Character attribute),

270
heading (pygamelib.board_items.ComplexDoor at-

tribute), 278
heading (pygamelib.board_items.ComplexNPC at-

tribute), 287
heading (pygamelib.board_items.ComplexPlayer at-

tribute), 296
heading (pygamelib.board_items.ComplexTreasure at-

tribute), 305
heading (pygamelib.board_items.ComplexWall at-

tribute), 314
heading (pygamelib.board_items.Door attribute), 323
heading (pygamelib.board_items.GenericActionableStructure

attribute), 331
heading (pygamelib.board_items.GenericStructure at-

tribute), 347
heading (pygamelib.board_items.GenericStructureComplexComponent

attribute), 339
heading (pygamelib.board_items.Immovable attribute),

355
heading (pygamelib.board_items.Movable attribute),

363
heading (pygamelib.board_items.NPC attribute), 372
heading (pygamelib.board_items.Player attribute), 380
heading (pygamelib.board_items.Projectile attribute),

391
heading (pygamelib.board_items.TextItem attribute),

400
heading (pygamelib.board_items.Tile attribute), 409
heading (pygamelib.board_items.Treasure attribute),

418
heading (pygamelib.board_items.Wall attribute), 426
HEADPHONE (pygamelib.assets.graphics.Models at-

tribute), 154
HEADSTONE (pygamelib.assets.graphics.Models at-

tribute), 154
HEAR_NO_EVIL_MONKEY

(pygamelib.assets.graphics.Models attribute),
154

HEART_DECORATION (pygamelib.assets.graphics.Models
attribute), 154

HEART_EXCLAMATION
(pygamelib.assets.graphics.Models attribute),
154

638 Index

pygamelib Documentation, Release 1.3.0

HEART_SUIT (pygamelib.assets.graphics.Models
attribute), 154

HEART_WITH_ARROW (pygamelib.assets.graphics.Models
attribute), 154

HEART_WITH_RIBBON
(pygamelib.assets.graphics.Models attribute),
154

HEAVY_DOLLAR_SIGN
(pygamelib.assets.graphics.Models attribute),
154

HEAVY_DOUBLE_DASH_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_DOUBLE_DASH_VERTICAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_DOWN (pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_DOWN_AND_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_DOWN_AND_LEFT
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_DOWN_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_LEFT (pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_LEFT_AND_LIGHT_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_QUADRUPLE_DASH_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_QUADRUPLE_DASH_VERTICAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_RIGHT (pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_TRIPLE_DASH_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_TRIPLE_DASH_VERTICAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_UP (pygamelib.assets.graphics.BoxDrawings at-
tribute), 46

HEAVY_UP_AND_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_UP_AND_LEFT

(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_UP_AND_LIGHT_DOWN
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_UP_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_VERTICAL (pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_VERTICAL_AND_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_VERTICAL_AND_LEFT
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEAVY_VERTICAL_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

HEDGEHOG (pygamelib.assets.graphics.Models at-
tribute), 154

height (pygamelib.board_items.Actionable attribute),
210

height (pygamelib.board_items.ActionableTile at-
tribute), 219

height (pygamelib.board_items.BoardComplexItem at-
tribute), 228

height (pygamelib.board_items.BoardItem attribute),
246

height (pygamelib.board_items.BoardItemComplexComponent
attribute), 237

height (pygamelib.board_items.BoardItemVoid at-
tribute), 254

height (pygamelib.board_items.Camera attribute), 262
height (pygamelib.board_items.Character attribute),

270
height (pygamelib.board_items.ComplexDoor at-

tribute), 278
height (pygamelib.board_items.ComplexNPC at-

tribute), 287
height (pygamelib.board_items.ComplexPlayer at-

tribute), 296
height (pygamelib.board_items.ComplexTreasure at-

tribute), 305
height (pygamelib.board_items.ComplexWall at-

tribute), 314
height (pygamelib.board_items.Door attribute), 323
height (pygamelib.board_items.GenericActionableStructure

attribute), 331
height (pygamelib.board_items.GenericStructure at-

tribute), 347
height (pygamelib.board_items.GenericStructureComplexComponent

attribute), 339
height (pygamelib.board_items.Immovable attribute),

Index 639

pygamelib Documentation, Release 1.3.0

355
height (pygamelib.board_items.Movable attribute),

363
height (pygamelib.board_items.NPC attribute), 372
height (pygamelib.board_items.Player attribute), 380
height (pygamelib.board_items.Projectile attribute),

391
height (pygamelib.board_items.TextItem attribute),

400
height (pygamelib.board_items.Tile attribute), 410
height (pygamelib.board_items.Treasure attribute),

419
height (pygamelib.board_items.Wall attribute), 427
height (pygamelib.engine.Board attribute), 437
height (pygamelib.engine.Screen attribute), 476
height (pygamelib.gfx.core.Font attribute), 485
height (pygamelib.gfx.core.Sprite attribute), 494
height (pygamelib.gfx.ui.Box attribute), 513
height (pygamelib.gfx.ui.MessageDialog attribute),

537
HELICOPTER (pygamelib.assets.graphics.Models

attribute), 154
HELM_SYMBOL (pygamelib.assets.graphics.MiscTechnicals

attribute), 73
HERB (pygamelib.assets.graphics.Models attribute), 154
HIBISCUS (pygamelib.assets.graphics.Models at-

tribute), 154
HIGH_HEELED_SHOE (pygamelib.assets.graphics.Models

attribute), 154
HIGH_SPEED_TRAIN (pygamelib.assets.graphics.Models

attribute), 154
HIGH_VOLTAGE (pygamelib.assets.graphics.Models at-

tribute), 154
HIKING_BOOT (pygamelib.assets.graphics.Models at-

tribute), 154
HINDU_TEMPLE (pygamelib.assets.graphics.Models at-

tribute), 155
HIPPOPOTAMUS (pygamelib.assets.graphics.Models at-

tribute), 155
hit() (pygamelib.board_items.Projectile method), 391
HOLE (pygamelib.assets.graphics.Models attribute), 155
HOLLOW_RED_CIRCLE

(pygamelib.assets.graphics.Models attribute),
155

HONEY_POT (pygamelib.assets.graphics.Models at-
tribute), 155

HONEYBEE (pygamelib.assets.graphics.Models at-
tribute), 155

HOOK (pygamelib.assets.graphics.Models attribute), 155
HORIZONTAL_LINE_EXTENSION

(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

HORIZONTAL_SCAN_LINE_1
(pygamelib.assets.graphics.MiscTechnicals

attribute), 73
HORIZONTAL_SCAN_LINE_3

(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

HORIZONTAL_SCAN_LINE_7
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

HORIZONTAL_SCAN_LINE_9
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

horizontal_spacing (pygamelib.gfx.core.Font at-
tribute), 485

HORIZONTAL_TRAFFIC_LIGHT
(pygamelib.assets.graphics.Models attribute),
155

HORSE (pygamelib.assets.graphics.Models attribute),
155

HORSE_FACE (pygamelib.assets.graphics.Models
attribute), 155

HORSE_RACING (pygamelib.assets.graphics.Models at-
tribute), 155

HOSPITAL (pygamelib.assets.graphics.Models at-
tribute), 155

HOT_BEVERAGE (pygamelib.assets.graphics.Models at-
tribute), 155

HOT_DOG (pygamelib.assets.graphics.Models attribute),
155

HOT_FACE (pygamelib.assets.graphics.Models at-
tribute), 155

HOT_PEPPER (pygamelib.assets.graphics.Models
attribute), 155

HOT_SPRINGS (pygamelib.assets.graphics.Models at-
tribute), 155

HOTEL (pygamelib.assets.graphics.Models attribute),
155

HOURGLASS (pygamelib.assets.graphics.MiscTechnicals
attribute), 73

HOURGLASS_DONE (pygamelib.assets.graphics.Models
attribute), 155

HOURGLASS_NOT_DONE
(pygamelib.assets.graphics.Models attribute),
155

HOURGLASS_WITH_FLOWING_SAND
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

HOUSE (pygamelib.assets.graphics.MiscTechnicals at-
tribute), 73

HOUSE (pygamelib.assets.graphics.Models attribute),
155

HOUSE_WITH_GARDEN
(pygamelib.assets.graphics.Models attribute),
155

HOUSES (pygamelib.assets.graphics.Models attribute),
155

640 Index

pygamelib Documentation, Release 1.3.0

HUGGING_FACE (pygamelib.assets.graphics.Models at-
tribute), 155

HUNDRED_POINTS (pygamelib.assets.graphics.Models
attribute), 155

HUSHED_FACE (pygamelib.assets.graphics.Models at-
tribute), 155

HUT (pygamelib.assets.graphics.Models attribute), 155
HYSTERESIS_SYMBOL

(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

I
ICE (pygamelib.assets.graphics.Models attribute), 155
ICE_CREAM (pygamelib.assets.graphics.Models at-

tribute), 155
ICE_HOCKEY (pygamelib.assets.graphics.Models

attribute), 155
ICE_SKATE (pygamelib.assets.graphics.Models at-

tribute), 155
ID_BUTTON (pygamelib.assets.graphics.Models at-

tribute), 155
Immovable (class in pygamelib.board_items), 351
INBOX_TRAY (pygamelib.assets.graphics.Models

attribute), 155
INCOMING_ENVELOPE

(pygamelib.assets.graphics.Models attribute),
155

INDEX_POINTING_UP
(pygamelib.assets.graphics.Models attribute),
155

INFINITY (pygamelib.assets.graphics.Models at-
tribute), 155

info() (pygamelib.base.Text static method), 199
INFORMATION (pygamelib.assets.graphics.Models at-

tribute), 156
init_board() (pygamelib.engine.Board method), 438
init_cell() (pygamelib.engine.Board method), 438
INPUT_LATIN_LETTERS

(pygamelib.assets.graphics.Models attribute),
156

INPUT_LATIN_LOWERCASE
(pygamelib.assets.graphics.Models attribute),
156

INPUT_LATIN_UPPERCASE
(pygamelib.assets.graphics.Models attribute),
156

INPUT_NUMBERS (pygamelib.assets.graphics.Models
attribute), 156

INPUT_SYMBOLS (pygamelib.assets.graphics.Models
attribute), 156

insert_board() (pygamelib.engine.Game method),
453

INSERTION_SYMBOL (pygamelib.assets.graphics.MiscTechnicals
attribute), 73

instance() (pygamelib.base.Console class method),
190

instance() (pygamelib.engine.Game class method),
453

instance() (pygamelib.gfx.ui.UiConfig class
method), 545

instantiate_item() (pygamelib.engine.Board
static method), 438

INTEGRAL_EXTENSION
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

intersect() (pygamelib.base.Math static method),
191

Inventory (class in pygamelib.engine), 459
inventory_space (pygamelib.board_items.Actionable

attribute), 211
inventory_space (pygamelib.board_items.ActionableTile

attribute), 219
inventory_space (pygamelib.board_items.BoardComplexItem

attribute), 228
inventory_space (pygamelib.board_items.BoardItem

attribute), 246
inventory_space (pygamelib.board_items.BoardItemComplexComponent

attribute), 237
inventory_space (pygamelib.board_items.BoardItemVoid

attribute), 254
inventory_space (pygamelib.board_items.Camera

attribute), 262
inventory_space (pygamelib.board_items.Character

attribute), 270
inventory_space (pygamelib.board_items.ComplexDoor

attribute), 278
inventory_space (pygamelib.board_items.ComplexNPC

attribute), 288
inventory_space (pygamelib.board_items.ComplexPlayer

attribute), 297
inventory_space (pygamelib.board_items.ComplexTreasure

attribute), 305
inventory_space (pygamelib.board_items.ComplexWall

attribute), 314
inventory_space (pygamelib.board_items.Door at-

tribute), 324
inventory_space (pygamelib.board_items.GenericActionableStructure

attribute), 332
inventory_space (pygamelib.board_items.GenericStructure

attribute), 348
inventory_space (pygamelib.board_items.GenericStructureComplexComponent

attribute), 339
inventory_space (pygamelib.board_items.Immovable

attribute), 355
inventory_space (pygamelib.board_items.Movable

attribute), 364
inventory_space (pygamelib.board_items.NPC at-

tribute), 372

Index 641

pygamelib Documentation, Release 1.3.0

inventory_space (pygamelib.board_items.Player
attribute), 381

inventory_space (pygamelib.board_items.Projectile
attribute), 392

inventory_space (pygamelib.board_items.TextItem
attribute), 400

inventory_space (pygamelib.board_items.Tile at-
tribute), 410

inventory_space (pygamelib.board_items.Treasure
attribute), 419

inventory_space (pygamelib.board_items.Wall at-
tribute), 427

INVERSE_BULLET (pygamelib.assets.graphics.GeometricShapes
attribute), 55

INVERSE_WHITE_CIRCLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

item() (pygamelib.board_items.ActionableTile
method), 219

item() (pygamelib.board_items.BoardComplexItem
method), 228

item() (pygamelib.board_items.ComplexDoor
method), 278

item() (pygamelib.board_items.ComplexNPC method),
288

item() (pygamelib.board_items.ComplexPlayer
method), 297

item() (pygamelib.board_items.ComplexTreasure
method), 306

item() (pygamelib.board_items.ComplexWall method),
315

item() (pygamelib.board_items.TextItem method), 401
item() (pygamelib.board_items.Tile method), 410
item() (pygamelib.engine.Board method), 438
items (pygamelib.engine.Inventory attribute), 464
items() (pygamelib.gfx.core.SpriteCollection method),

487
items_name() (pygamelib.engine.Inventory method),

465
items_per_page() (pygamelib.gfx.ui.GridSelector

method), 523

J
JACK_O_LANTERN (pygamelib.assets.graphics.Models

attribute), 156
JAPANESE_ACCEPTABLE_BUTTON

(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_APPLICATION_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_BARGAIN_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_CASTLE (pygamelib.assets.graphics.Models
attribute), 156

JAPANESE_CONGRATULATIONS_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_DISCOUNT_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_DOLLS (pygamelib.assets.graphics.Models
attribute), 156

JAPANESE_FREE_OF_CHARGE_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_HERE_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_MONTHLY_AMOUNT_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_NO_VACANCY_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_NOT_FREE_OF_CHARGE_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_OPEN_FOR_BUSINESS_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_PASSING_GRADE_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_POST_OFFICE
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_PROHIBITED_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_RESERVED_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_SECRET_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_SERVICE_CHARGE_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_SYMBOL_FOR_BEGINNER
(pygamelib.assets.graphics.Models attribute),
156

JAPANESE_VACANCY_BUTTON
(pygamelib.assets.graphics.Models attribute),
156

JEANS (pygamelib.assets.graphics.Models attribute),
156

642 Index

pygamelib Documentation, Release 1.3.0

JOKER (pygamelib.assets.graphics.Models attribute),
156

JOYSTICK (pygamelib.assets.graphics.Models at-
tribute), 156

K
KAABA (pygamelib.assets.graphics.Models attribute),

156
KANGAROO (pygamelib.assets.graphics.Models at-

tribute), 156
KEY (pygamelib.assets.graphics.Models attribute), 156
KEYBOARD (pygamelib.assets.graphics.MiscTechnicals

attribute), 73
KEYBOARD (pygamelib.assets.graphics.Models at-

tribute), 156
keys() (pygamelib.gfx.core.SpriteCollection method),

487
KICK_SCOOTER (pygamelib.assets.graphics.Models at-

tribute), 156
KIMONO (pygamelib.assets.graphics.Models attribute),

157
KISS (pygamelib.assets.graphics.Models attribute), 157
KISS_MARK (pygamelib.assets.graphics.Models at-

tribute), 157
KISSING_CAT (pygamelib.assets.graphics.Models at-

tribute), 157
KISSING_FACE (pygamelib.assets.graphics.Models at-

tribute), 157
KISSING_FACE_WITH_CLOSED_EYES

(pygamelib.assets.graphics.Models attribute),
157

KISSING_FACE_WITH_SMILING_EYES
(pygamelib.assets.graphics.Models attribute),
157

KITCHEN_KNIFE (pygamelib.assets.graphics.Models
attribute), 157

KITE (pygamelib.assets.graphics.Models attribute), 157
KIWI_FRUIT (pygamelib.assets.graphics.Models

attribute), 157
KNOT (pygamelib.assets.graphics.Models attribute), 157
KOALA (pygamelib.assets.graphics.Models attribute),

157

L
LAB_COAT (pygamelib.assets.graphics.Models at-

tribute), 157
LABEL (pygamelib.assets.graphics.Models attribute),

157
label (pygamelib.gfx.ui.LineInputDialog attribute), 525
label (pygamelib.gfx.ui.ProgressDialog attribute), 543
LACROSSE (pygamelib.assets.graphics.Models at-

tribute), 157
LADDER (pygamelib.assets.graphics.Models attribute),

157

LADY_BEETLE (pygamelib.assets.graphics.Models at-
tribute), 157

LAPTOP (pygamelib.assets.graphics.Models attribute),
157

LARGE_BLUE_DIAMOND
(pygamelib.assets.graphics.Models attribute),
157

LARGE_CIRCLE (pygamelib.assets.graphics.GeometricShapes
attribute), 55

LARGE_ORANGE_DIAMOND
(pygamelib.assets.graphics.Models attribute),
157

LAST_QUARTER_MOON
(pygamelib.assets.graphics.Models attribute),
157

LAST_QUARTER_MOON_FACE
(pygamelib.assets.graphics.Models attribute),
157

LAST_TRACK_BUTTON
(pygamelib.assets.graphics.Models attribute),
157

LATIN_CROSS (pygamelib.assets.graphics.Models at-
tribute), 157

layer (pygamelib.board_items.Actionable attribute),
211

layer (pygamelib.board_items.ActionableTile at-
tribute), 219

layer (pygamelib.board_items.BoardComplexItem at-
tribute), 228

layer (pygamelib.board_items.BoardItem attribute),
246

layer (pygamelib.board_items.BoardItemComplexComponent
attribute), 237

layer (pygamelib.board_items.BoardItemVoid at-
tribute), 254

layer (pygamelib.board_items.Camera attribute), 262
layer (pygamelib.board_items.Character attribute),

270
layer (pygamelib.board_items.ComplexDoor attribute),

278
layer (pygamelib.board_items.ComplexNPC attribute),

288
layer (pygamelib.board_items.ComplexPlayer at-

tribute), 297
layer (pygamelib.board_items.ComplexTreasure

attribute), 306
layer (pygamelib.board_items.ComplexWall attribute),

315
layer (pygamelib.board_items.Door attribute), 324
layer (pygamelib.board_items.GenericActionableStructure

attribute), 332
layer (pygamelib.board_items.GenericStructure

attribute), 348
layer (pygamelib.board_items.GenericStructureComplexComponent

Index 643

pygamelib Documentation, Release 1.3.0

attribute), 340
layer (pygamelib.board_items.Immovable attribute),

356
layer (pygamelib.board_items.Movable attribute), 364
layer (pygamelib.board_items.NPC attribute), 372
layer (pygamelib.board_items.Player attribute), 381
layer (pygamelib.board_items.Projectile attribute), 392
layer (pygamelib.board_items.TextItem attribute), 401
layer (pygamelib.board_items.Tile attribute), 410
layer (pygamelib.board_items.Treasure attribute), 419
layer (pygamelib.board_items.Wall attribute), 427
layers() (pygamelib.engine.Board method), 439
LEAF_FLUTTERING_IN_WIND

(pygamelib.assets.graphics.Models attribute),
157

LEAFY_GREEN (pygamelib.assets.graphics.Models at-
tribute), 157

LEDGER (pygamelib.assets.graphics.Models attribute),
157

LEFT_ARROW (pygamelib.assets.graphics.Models
attribute), 157

LEFT_ARROW_CURVING_RIGHT
(pygamelib.assets.graphics.Models attribute),
157

LEFT_CEILING (pygamelib.assets.graphics.MiscTechnicals
attribute), 73

LEFT_CURLY_BRACKET_LOWER_HOOK
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

LEFT_CURLY_BRACKET_MIDDLE_PIECE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

LEFT_CURLY_BRACKET_UPPER_HOOK
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

LEFT_DOWN_HEAVY_AND_RIGHT_UP_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

LEFT_FACING_FIST (pygamelib.assets.graphics.Models
attribute), 157

LEFT_FIVE_EIGHTHS_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LEFT_FLOOR (pygamelib.assets.graphics.MiscTechnicals
attribute), 73

LEFT_HALF_BLACK_CIRCLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

LEFT_HALF_BLOCK (pygamelib.assets.graphics.Blocks
attribute), 38

LEFT_HEAVY_AND_RIGHT_DOWN_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 46

LEFT_HEAVY_AND_RIGHT_UP_LIGHT

(pygamelib.assets.graphics.BoxDrawings
attribute), 46

LEFT_HEAVY_AND_RIGHT_VERTICAL_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LEFT_LIGHT_AND_RIGHT_DOWN_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LEFT_LIGHT_AND_RIGHT_UP_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LEFT_LIGHT_AND_RIGHT_VERTICAL_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LEFT_LUGGAGE (pygamelib.assets.graphics.Models at-
tribute), 157

LEFT_ONE_EIGHTH_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LEFT_ONE_QUARTER_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LEFT_PARENTHESIS_EXTENSION
(pygamelib.assets.graphics.MiscTechnicals
attribute), 73

LEFT_PARENTHESIS_LOWER_HOOK
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

LEFT_PARENTHESIS_UPPER_HOOK
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

LEFT_POINTING_ANGLE_BRACKET
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

LEFT_RIGHT_ARROW (pygamelib.assets.graphics.Models
attribute), 157

LEFT_SEVEN_EIGHTHS_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LEFT_SPEECH_BUBBLE
(pygamelib.assets.graphics.Models attribute),
157

LEFT_SQUARE_BRACKET_EXTENSION
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

LEFT_SQUARE_BRACKET_LOWER_CORNER
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

LEFT_SQUARE_BRACKET_UPPER_CORNER
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

LEFT_THREE_EIGHTHS_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

644 Index

pygamelib Documentation, Release 1.3.0

LEFT_THREE_QUARTERS_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LEFT_UP_HEAVY_AND_RIGHT_DOWN_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LEFT_VERTICAL_BOX_LINE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

LEG (pygamelib.assets.graphics.Models attribute), 157
LEMON (pygamelib.assets.graphics.Models attribute),

157
length (pygamelib.base.Text attribute), 199
length (pygamelib.gfx.core.Sprixel attribute), 503
length (pygamelib.gfx.particles.ParticleSprixel at-

tribute), 580
length() (pygamelib.base.Vector2D method), 204
length() (pygamelib.gfx.ui.MenuBar method), 534
LEO (pygamelib.assets.graphics.Models attribute), 157
LEOPARD (pygamelib.assets.graphics.Models attribute),

158
lerp() (pygamelib.base.Math static method), 192
LEVEL_SLIDER (pygamelib.assets.graphics.Models at-

tribute), 158
LIBRA (pygamelib.assets.graphics.Models attribute),

158
LIGHT_ARC_DOWN_AND_LEFT

(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_ARC_DOWN_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_ARC_UP_AND_LEFT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_ARC_UP_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_BULB (pygamelib.assets.graphics.Models
attribute), 158

LIGHT_DIAGONAL_CROSS
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_DIAGONAL_UPPER_LEFT_TO_LOWER_RIGHT
(pygamelib.assets.graphics.BoxDrawings at-
tribute), 47

LIGHT_DIAGONAL_UPPER_RIGHT_TO_LOWER_LEFT
(pygamelib.assets.graphics.BoxDrawings at-
tribute), 47

LIGHT_DOUBLE_DASH_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_DOUBLE_DASH_VERTICAL
(pygamelib.assets.graphics.BoxDrawings

attribute), 47
LIGHT_DOWN (pygamelib.assets.graphics.BoxDrawings

attribute), 47
LIGHT_DOWN_AND_HORIZONTAL

(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_DOWN_AND_LEFT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_DOWN_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_HORIZONTAL (pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_LEFT (pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_LEFT_AND_HEAVY_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_QUADRUPLE_DASH_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_QUADRUPLE_DASH_VERTICAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_RAIL (pygamelib.assets.graphics.Models
attribute), 158

LIGHT_RIGHT (pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_SHADE (pygamelib.assets.graphics.Blocks at-
tribute), 38

LIGHT_SKIN_TONE (pygamelib.assets.graphics.Models
attribute), 158

LIGHT_TRIPLE_DASH_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_TRIPLE_DASH_VERTICAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_UP (pygamelib.assets.graphics.BoxDrawings at-
tribute), 47

LIGHT_UP_AND_HEAVY_DOWN
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_UP_AND_HORIZONTAL
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_UP_AND_LEFT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_UP_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_VERTICAL (pygamelib.assets.graphics.BoxDrawings

Index 645

pygamelib Documentation, Release 1.3.0

attribute), 47
LIGHT_VERTICAL_AND_HORIZONTAL

(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_VERTICAL_AND_LEFT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LIGHT_VERTICAL_AND_RIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

LineInputDialog (class in pygamelib.gfx.ui), 524
LINK (pygamelib.assets.graphics.Models attribute), 158
LINKED_PAPERCLIPS

(pygamelib.assets.graphics.Models attribute),
158

LION (pygamelib.assets.graphics.Models attribute), 158
LIPSTICK (pygamelib.assets.graphics.Models at-

tribute), 158
LITTER_IN_BIN_SIGN

(pygamelib.assets.graphics.Models attribute),
158

LIZARD (pygamelib.assets.graphics.Models attribute),
158

LLAMA (pygamelib.assets.graphics.Models attribute),
158

load() (pygamelib.actuators.Actuator method), 9
load() (pygamelib.actuators.Behavioral method), 12
load() (pygamelib.actuators.PathActuator class

method), 15
load() (pygamelib.actuators.PathFinder class method),

24
load() (pygamelib.actuators.PatrolActuator class

method), 19
load() (pygamelib.actuators.RandomActuator class

method), 29
load() (pygamelib.actuators.UnidirectionalActuator

class method), 33
load() (pygamelib.base.Text class method), 200
load() (pygamelib.base.Vector2D class method), 204
load() (pygamelib.board_items.Actionable class

method), 211
load() (pygamelib.board_items.ActionableTile class

method), 219
load() (pygamelib.board_items.BoardComplexItem

class method), 228
load() (pygamelib.board_items.BoardItem class

method), 246
load() (pygamelib.board_items.BoardItemComplexComponent

class method), 237
load() (pygamelib.board_items.BoardItemVoid class

method), 254
load() (pygamelib.board_items.Camera class method),

262
load() (pygamelib.board_items.Character class

method), 271
load() (pygamelib.board_items.ComplexDoor class

method), 279
load() (pygamelib.board_items.ComplexNPC class

method), 288
load() (pygamelib.board_items.ComplexPlayer class

method), 297
load() (pygamelib.board_items.ComplexTreasure class

method), 306
load() (pygamelib.board_items.ComplexWall class

method), 315
load() (pygamelib.board_items.Door class method),

324
load() (pygamelib.board_items.GenericActionableStructure

class method), 332
load() (pygamelib.board_items.GenericStructure class

method), 348
load() (pygamelib.board_items.GenericStructureComplexComponent

class method), 340
load() (pygamelib.board_items.Immovable class

method), 356
load() (pygamelib.board_items.Movable class

method), 364
load() (pygamelib.board_items.NPC class method),

373
load() (pygamelib.board_items.Player class method),

381
load() (pygamelib.board_items.Projectile class

method), 392
load() (pygamelib.board_items.TextItem class

method), 401
load() (pygamelib.board_items.Tile class method), 410
load() (pygamelib.board_items.Treasure class

method), 419
load() (pygamelib.board_items.Wall class method),

427
load() (pygamelib.engine.Board class method), 439
load() (pygamelib.engine.Inventory class method), 465
load() (pygamelib.gfx.core.Animation class method),

481
load() (pygamelib.gfx.core.Color class method), 509
load() (pygamelib.gfx.core.Font method), 485
load() (pygamelib.gfx.core.Sprite class method), 494
load() (pygamelib.gfx.core.SpriteCollection class

method), 488
load() (pygamelib.gfx.core.Sprixel class method), 503
load() (pygamelib.gfx.particles.CircleEmitter class

method), 548
load() (pygamelib.gfx.particles.ColorParticle class

method), 553
load() (pygamelib.gfx.particles.ColorPartitionParticle

class method), 558
load() (pygamelib.gfx.particles.EmitterProperties

class method), 562

646 Index

pygamelib Documentation, Release 1.3.0

load() (pygamelib.gfx.particles.Particle class method),
572

load() (pygamelib.gfx.particles.ParticleEmitter class
method), 566

load() (pygamelib.gfx.particles.ParticleSprixel class
method), 580

load() (pygamelib.gfx.particles.PartitionParticle class
method), 587

load() (pygamelib.gfx.particles.RandomColorParticle
class method), 592

load() (pygamelib.gfx.particles.RandomColorPartitionParticle
class method), 597

load_board() (pygamelib.engine.Game method), 453
load_config() (pygamelib.engine.Game method),

454
load_from_ansi_file()

(pygamelib.gfx.core.Sprite class method),
494

load_json_file() (pygamelib.gfx.core.SpriteCollection
static method), 488

LOBSTER (pygamelib.assets.graphics.Models attribute),
158

LOCKED (pygamelib.assets.graphics.Models attribute),
158

LOCKED_WITH_KEY (pygamelib.assets.graphics.Models
attribute), 158

LOCKED_WITH_PEN (pygamelib.assets.graphics.Models
attribute), 158

LOCOMOTIVE (pygamelib.assets.graphics.Models
attribute), 158

LOLLIPOP (pygamelib.assets.graphics.Models at-
tribute), 158

LONG_DRUM (pygamelib.assets.graphics.Models at-
tribute), 158

LOTION_BOTTLE (pygamelib.assets.graphics.Models
attribute), 158

LOUDLY_CRYING_FACE
(pygamelib.assets.graphics.Models attribute),
158

LOUDSPEAKER (pygamelib.assets.graphics.Models at-
tribute), 158

LOVE_HOTEL (pygamelib.assets.graphics.Models
attribute), 158

LOVE_LETTER (pygamelib.assets.graphics.Models at-
tribute), 158

LOVE_YOU_GESTURE (pygamelib.assets.graphics.Models
attribute), 158

LOWER_FIVE_EIGHTHS_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LOWER_HALF_BLOCK (pygamelib.assets.graphics.Blocks
attribute), 38

LOWER_HALF_CIRCLE
(pygamelib.assets.graphics.GeometricShapes

attribute), 55
LOWER_HALF_INVERSE_WHITE_CIRCLE

(pygamelib.assets.graphics.GeometricShapes
attribute), 55

LOWER_LEFT_QUADRANT_CIRCULAR_ARC
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

LOWER_LEFT_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

LOWER_ONE_EIGHTH_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LOWER_ONE_QUARTER_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LOWER_RIGHT_QUADRANT_CIRCULAR_ARC
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

LOWER_RIGHT_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

LOWER_SEVEN_EIGHTHS_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LOWER_THREE_EIGHTHS_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LOWER_THREE_QUARTERS_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

LOZENGE (pygamelib.assets.graphics.GeometricShapes
attribute), 55

LUGGAGE (pygamelib.assets.graphics.Models attribute),
158

LUNGS (pygamelib.assets.graphics.Models attribute),
158

LYING_FACE (pygamelib.assets.graphics.Models
attribute), 158

M
MAGE (pygamelib.assets.graphics.Models attribute), 158
magenta() (pygamelib.base.Text static method), 200
magenta_bright() (pygamelib.base.Text static

method), 200
magenta_dim() (pygamelib.base.Text static method),

200
magenta_rect() (pygamelib.gfx.core.Sprixel class

method), 503
magenta_rect() (pygamelib.gfx.particles.ParticleSprixel

class method), 580
magenta_square() (pygamelib.gfx.core.Sprixel class

method), 503

Index 647

pygamelib Documentation, Release 1.3.0

magenta_square() (pygamelib.gfx.particles.ParticleSprixel
class method), 580

MAGIC_WAND (pygamelib.assets.graphics.Models
attribute), 158

MAGNET (pygamelib.assets.graphics.Models attribute),
158

MAGNIFYING_GLASS_TILTED_LEFT
(pygamelib.assets.graphics.Models attribute),
158

MAGNIFYING_GLASS_TILTED_RIGHT
(pygamelib.assets.graphics.Models attribute),
158

MAHJONG_RED_DRAGON
(pygamelib.assets.graphics.Models attribute),
158

MALE_SIGN (pygamelib.assets.graphics.Models at-
tribute), 158

MAMMOTH (pygamelib.assets.graphics.Models attribute),
159

MAN (pygamelib.assets.graphics.Models attribute), 159
MAN_BEARD (pygamelib.assets.graphics.Models at-

tribute), 159
MAN_DANCING (pygamelib.assets.graphics.Models at-

tribute), 159
MANGO (pygamelib.assets.graphics.Models attribute),

159
MANS_SHOE (pygamelib.assets.graphics.Models at-

tribute), 159
MANTELPIECE_CLOCK

(pygamelib.assets.graphics.Models attribute),
159

MANUAL_WHEELCHAIR
(pygamelib.assets.graphics.Models attribute),
159

MAP_OF_JAPAN (pygamelib.assets.graphics.Models at-
tribute), 159

MAPLE_LEAF (pygamelib.assets.graphics.Models
attribute), 159

MARTIAL_ARTS_UNIFORM
(pygamelib.assets.graphics.Models attribute),
159

MATE (pygamelib.assets.graphics.Models attribute), 159
Math (class in pygamelib.base), 190
max_height (pygamelib.gfx.ui.GridSelector attribute),

523
max_width (pygamelib.gfx.ui.GridSelector attribute),

523
maximum (pygamelib.gfx.ui.ProgressBar attribute), 541
maximum (pygamelib.gfx.ui.ProgressDialog attribute),

543
MEAT_ON_BONE (pygamelib.assets.graphics.Models at-

tribute), 159
MECHANICAL_ARM (pygamelib.assets.graphics.Models

attribute), 159

MECHANICAL_LEG (pygamelib.assets.graphics.Models
attribute), 159

MEDICAL_SYMBOL (pygamelib.assets.graphics.Models
attribute), 159

MEDIUM_DARK_SKIN_TONE
(pygamelib.assets.graphics.Models attribute),
159

MEDIUM_LIGHT_SKIN_TONE
(pygamelib.assets.graphics.Models attribute),
159

MEDIUM_SHADE (pygamelib.assets.graphics.Blocks at-
tribute), 38

MEDIUM_SKIN_TONE (pygamelib.assets.graphics.Models
attribute), 159

MEGAPHONE (pygamelib.assets.graphics.Models at-
tribute), 159

MELON (pygamelib.assets.graphics.Models attribute),
159

MEMO (pygamelib.assets.graphics.Models attribute), 159
MEN_HOLDING_HANDS

(pygamelib.assets.graphics.Models attribute),
159

MENORAH (pygamelib.assets.graphics.Models attribute),
159

MENS_ROOM (pygamelib.assets.graphics.Models at-
tribute), 159

Menu (class in pygamelib.gfx.ui), 526
menu_width() (pygamelib.gfx.ui.Menu method), 528
MenuAction (class in pygamelib.gfx.ui), 529
MenuBar (class in pygamelib.gfx.ui), 532
MERPERSON (pygamelib.assets.graphics.Models at-

tribute), 159
MessageDialog (class in pygamelib.gfx.ui), 534
METRICAL_BREVE (pygamelib.assets.graphics.MiscTechnicals

attribute), 74
METRICAL_LONG_OVER_SHORT

(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

METRICAL_LONG_OVER_TWO_SHORTS
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

METRICAL_PENTASEME
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

METRICAL_SHORT_OVER_LONG
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

METRICAL_TETRASEME
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

METRICAL_TRISEME (pygamelib.assets.graphics.MiscTechnicals
attribute), 74

METRICAL_TWO_SHORTS_JOINED
(pygamelib.assets.graphics.MiscTechnicals

648 Index

pygamelib Documentation, Release 1.3.0

attribute), 74
METRICAL_TWO_SHORTS_OVER_LONG

(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

METRO (pygamelib.assets.graphics.Models attribute),
159

MICROBE (pygamelib.assets.graphics.Models attribute),
159

MICROPHONE (pygamelib.assets.graphics.Models
attribute), 159

MICROSCOPE (pygamelib.assets.graphics.Models
attribute), 159

MIDDLE_FINGER (pygamelib.assets.graphics.Models
attribute), 159

MILITARY_HELMET (pygamelib.assets.graphics.Models
attribute), 159

MILITARY_MEDAL (pygamelib.assets.graphics.Models
attribute), 159

MILKY_WAY (pygamelib.assets.graphics.Models at-
tribute), 159

MINIBUS (pygamelib.assets.graphics.Models attribute),
159

MINUS (pygamelib.assets.graphics.Models attribute),
159

MIRROR (pygamelib.assets.graphics.Models attribute),
160

MiscTechnicals (class in
pygamelib.assets.graphics), 57

MOAI (pygamelib.assets.graphics.Models attribute), 160
MOBILE_PHONE (pygamelib.assets.graphics.Models at-

tribute), 160
MOBILE_PHONE_OFF (pygamelib.assets.graphics.Models

attribute), 160
MOBILE_PHONE_WITH_ARROW

(pygamelib.assets.graphics.Models attribute),
160

model (pygamelib.board_items.Actionable attribute),
211

model (pygamelib.board_items.ActionableTile at-
tribute), 219

model (pygamelib.board_items.BoardComplexItem at-
tribute), 229

model (pygamelib.board_items.BoardItem attribute),
246

model (pygamelib.board_items.BoardItemComplexComponent
attribute), 237

model (pygamelib.board_items.BoardItemVoid at-
tribute), 254

model (pygamelib.board_items.Camera attribute), 262
model (pygamelib.board_items.Character attribute),

271
model (pygamelib.board_items.ComplexDoor attribute),

279
model (pygamelib.board_items.ComplexNPC attribute),

288
model (pygamelib.board_items.ComplexPlayer at-

tribute), 297
model (pygamelib.board_items.ComplexTreasure

attribute), 306
model (pygamelib.board_items.ComplexWall attribute),

315
model (pygamelib.board_items.Door attribute), 324
model (pygamelib.board_items.GenericActionableStructure

attribute), 332
model (pygamelib.board_items.GenericStructure

attribute), 348
model (pygamelib.board_items.GenericStructureComplexComponent

attribute), 340
model (pygamelib.board_items.Immovable attribute),

356
model (pygamelib.board_items.Movable attribute), 364
model (pygamelib.board_items.NPC attribute), 373
model (pygamelib.board_items.Player attribute), 381
model (pygamelib.board_items.Projectile attribute), 392
model (pygamelib.board_items.TextItem attribute), 401
model (pygamelib.board_items.Tile attribute), 410
model (pygamelib.board_items.Treasure attribute), 419
model (pygamelib.board_items.Wall attribute), 427
model (pygamelib.gfx.core.Sprixel attribute), 504
model (pygamelib.gfx.particles.ParticleSprixel at-

tribute), 581
Models (class in pygamelib.assets.graphics), 76
modulate() (pygamelib.gfx.core.Sprite method), 494
MONEY_BAG (pygamelib.assets.graphics.Models at-

tribute), 160
MONEY_MOUTH_FACE (pygamelib.assets.graphics.Models

attribute), 160
MONEY_WITH_WINGS (pygamelib.assets.graphics.Models

attribute), 160
MONKEY (pygamelib.assets.graphics.Models attribute),

160
MONKEY_FACE (pygamelib.assets.graphics.Models at-

tribute), 160
MONORAIL (pygamelib.assets.graphics.Models at-

tribute), 160
monospace (pygamelib.gfx.core.Font attribute), 485
MONOSTABLE_SYMBOL

(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

MOON_CAKE (pygamelib.assets.graphics.Models at-
tribute), 160

MOON_VIEWING_CEREMONY
(pygamelib.assets.graphics.Models attribute),
160

MOSQUE (pygamelib.assets.graphics.Models attribute),
160

MOSQUITO (pygamelib.assets.graphics.Models at-
tribute), 160

Index 649

pygamelib Documentation, Release 1.3.0

MOTOR_BOAT (pygamelib.assets.graphics.Models
attribute), 160

MOTOR_SCOOTER (pygamelib.assets.graphics.Models
attribute), 160

MOTORCYCLE (pygamelib.assets.graphics.Models
attribute), 160

MOTORIZED_WHEELCHAIR
(pygamelib.assets.graphics.Models attribute),
160

MOTORWAY (pygamelib.assets.graphics.Models at-
tribute), 160

MOUNT_FUJI (pygamelib.assets.graphics.Models
attribute), 160

MOUNTAIN (pygamelib.assets.graphics.Models at-
tribute), 160

MOUNTAIN_CABLEWAY
(pygamelib.assets.graphics.Models attribute),
160

MOUNTAIN_RAILWAY (pygamelib.assets.graphics.Models
attribute), 160

MOUSE (pygamelib.assets.graphics.Models attribute),
160

MOUSE_FACE (pygamelib.assets.graphics.Models
attribute), 160

MOUSE_TRAP (pygamelib.assets.graphics.Models
attribute), 160

MOUTH (pygamelib.assets.graphics.Models attribute),
160

Movable (class in pygamelib.board_items), 359
move() (pygamelib.engine.Board method), 439
move_player() (pygamelib.engine.Game method),

454
moveset (pygamelib.actuators.RandomActuator at-

tribute), 29
MOVIE_CAMERA (pygamelib.assets.graphics.Models at-

tribute), 160
MRS_CLAUS (pygamelib.assets.graphics.Models at-

tribute), 160
MultiLineInputDialog (class in pygamelib.gfx.ui),

537
MULTIPLY (pygamelib.assets.graphics.Models at-

tribute), 160
MUSHROOM (pygamelib.assets.graphics.Models at-

tribute), 160
MUSICAL_KEYBOARD (pygamelib.assets.graphics.Models

attribute), 160
MUSICAL_NOTE (pygamelib.assets.graphics.Models at-

tribute), 160
MUSICAL_NOTES (pygamelib.assets.graphics.Models

attribute), 160
MUSICAL_SCORE (pygamelib.assets.graphics.Models

attribute), 160
MUTED_SPEAKER (pygamelib.assets.graphics.Models

attribute), 161

N
NAIL_POLISH (pygamelib.assets.graphics.Models at-

tribute), 161
name (pygamelib.gfx.core.Font attribute), 485
NAME_BADGE (pygamelib.assets.graphics.Models

attribute), 161
NATIONAL_PARK (pygamelib.assets.graphics.Models

attribute), 161
NAUSEATED_FACE (pygamelib.assets.graphics.Models

attribute), 161
NAZAR_AMULET (pygamelib.assets.graphics.Models at-

tribute), 161
nb_pages() (pygamelib.gfx.ui.GridSelector method),

523
NECKTIE (pygamelib.assets.graphics.Models attribute),

161
need_rendering (pygamelib.engine.Screen at-

tribute), 476
neighbors() (pygamelib.engine.Board method), 440
neighbors() (pygamelib.engine.Game method), 454
NERD_FACE (pygamelib.assets.graphics.Models at-

tribute), 161
NESTING_DOLLS (pygamelib.assets.graphics.Models

attribute), 161
NEUTRAL_FACE (pygamelib.assets.graphics.Models at-

tribute), 161
NEW_BUTTON (pygamelib.assets.graphics.Models

attribute), 161
NEW_MOON (pygamelib.assets.graphics.Models at-

tribute), 161
NEW_MOON_FACE (pygamelib.assets.graphics.Models

attribute), 161
NEWSPAPER (pygamelib.assets.graphics.Models at-

tribute), 161
next_action() (pygamelib.actuators.Behavioral

method), 12
next_action() (pygamelib.actuators.PathFinder

method), 25
next_frame() (pygamelib.gfx.core.Animation

method), 481
next_move() (pygamelib.actuators.Actuator method),

9
next_move() (pygamelib.actuators.Behavioral

method), 12
next_move() (pygamelib.actuators.PathActuator

method), 15
next_move() (pygamelib.actuators.PathFinder

method), 25
next_move() (pygamelib.actuators.PatrolActuator

method), 19
next_move() (pygamelib.actuators.RandomActuator

method), 29
next_move() (pygamelib.actuators.UnidirectionalActuator

method), 33

650 Index

pygamelib Documentation, Release 1.3.0

NEXT_PAGE (pygamelib.assets.graphics.MiscTechnicals
attribute), 74

NEXT_TRACK_BUTTON
(pygamelib.assets.graphics.Models attribute),
161

next_waypoint() (pygamelib.actuators.PathFinder
method), 25

NG_BUTTON (pygamelib.assets.graphics.Models at-
tribute), 161

NIGHT_WITH_STARS (pygamelib.assets.graphics.Models
attribute), 161

NINE_OCLOCK (pygamelib.assets.graphics.Models at-
tribute), 161

NINE_THIRTY (pygamelib.assets.graphics.Models at-
tribute), 161

NINJA (pygamelib.assets.graphics.Models attribute),
161

NO_BICYCLES (pygamelib.assets.graphics.Models at-
tribute), 161

NO_ENTRY (pygamelib.assets.graphics.Models at-
tribute), 161

NO_LITTERING (pygamelib.assets.graphics.Models at-
tribute), 161

NO_MOBILE_PHONES (pygamelib.assets.graphics.Models
attribute), 161

NO_ONE_UNDER_EIGHTEEN
(pygamelib.assets.graphics.Models attribute),
161

NO_PEDESTRIANS (pygamelib.assets.graphics.Models
attribute), 161

NO_SMOKING (pygamelib.assets.graphics.Models
attribute), 161

NON_POTABLE_WATER
(pygamelib.assets.graphics.Models attribute),
161

NOSE (pygamelib.assets.graphics.Models attribute), 161
NOT_CHECK_MARK (pygamelib.assets.graphics.MiscTechnicals

attribute), 74
NOTEBOOK (pygamelib.assets.graphics.Models at-

tribute), 161
NOTEBOOK_WITH_DECORATIVE_COVER

(pygamelib.assets.graphics.Models attribute),
161

notify() (pygamelib.actuators.Actuator method), 9
notify() (pygamelib.actuators.Behavioral method),

12
notify() (pygamelib.actuators.PathActuator method),

16
notify() (pygamelib.actuators.PathFinder method),

25
notify() (pygamelib.actuators.PatrolActuator

method), 19
notify() (pygamelib.actuators.RandomActuator

method), 30

notify() (pygamelib.actuators.UnidirectionalActuator
method), 33

notify() (pygamelib.base.PglBaseObject method),
194

notify() (pygamelib.base.Text method), 200
notify() (pygamelib.board_items.Actionable

method), 211
notify() (pygamelib.board_items.ActionableTile

method), 219
notify() (pygamelib.board_items.BoardComplexItem

method), 229
notify() (pygamelib.board_items.BoardItem method),

247
notify() (pygamelib.board_items.BoardItemComplexComponent

method), 237
notify() (pygamelib.board_items.BoardItemVoid

method), 254
notify() (pygamelib.board_items.Camera method),

262
notify() (pygamelib.board_items.Character method),

271
notify() (pygamelib.board_items.ComplexDoor

method), 279
notify() (pygamelib.board_items.ComplexNPC

method), 288
notify() (pygamelib.board_items.ComplexPlayer

method), 297
notify() (pygamelib.board_items.ComplexTreasure

method), 306
notify() (pygamelib.board_items.ComplexWall

method), 315
notify() (pygamelib.board_items.Door method), 324
notify() (pygamelib.board_items.GenericActionableStructure

method), 332
notify() (pygamelib.board_items.GenericStructure

method), 348
notify() (pygamelib.board_items.GenericStructureComplexComponent

method), 340
notify() (pygamelib.board_items.Immovable

method), 356
notify() (pygamelib.board_items.Movable method),

364
notify() (pygamelib.board_items.NPC method), 373
notify() (pygamelib.board_items.Player method),

381
notify() (pygamelib.board_items.Projectile method),

392
notify() (pygamelib.board_items.TextItem method),

401
notify() (pygamelib.board_items.Tile method), 410
notify() (pygamelib.board_items.Treasure method),

419
notify() (pygamelib.board_items.Wall method), 427
notify() (pygamelib.engine.Board method), 440

Index 651

pygamelib Documentation, Release 1.3.0

notify() (pygamelib.engine.Game method), 455
notify() (pygamelib.engine.Inventory method), 465
notify() (pygamelib.engine.Screen method), 476
notify() (pygamelib.gfx.core.Color method), 510
notify() (pygamelib.gfx.core.Sprite method), 495
notify() (pygamelib.gfx.core.Sprixel method), 504
notify() (pygamelib.gfx.particles.CircleEmitter

method), 549
notify() (pygamelib.gfx.particles.ColorParticle

method), 553
notify() (pygamelib.gfx.particles.ColorPartitionParticle

method), 559
notify() (pygamelib.gfx.particles.Particle method),

573
notify() (pygamelib.gfx.particles.ParticleEmitter

method), 566
notify() (pygamelib.gfx.particles.ParticleSprixel

method), 581
notify() (pygamelib.gfx.particles.PartitionParticle

method), 587
notify() (pygamelib.gfx.particles.RandomColorParticle

method), 592
notify() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 597
NPC (class in pygamelib.board_items), 367
NUT_AND_BOLT (pygamelib.assets.graphics.Models at-

tribute), 161

O
O_BUTTON_BLOOD_TYPE

(pygamelib.assets.graphics.Models attribute),
163

OBSERVER_EYE_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

OCTOPUS (pygamelib.assets.graphics.Models attribute),
161

ODEN (pygamelib.assets.graphics.Models attribute), 161
OFFICE_BUILDING (pygamelib.assets.graphics.Models

attribute), 161
OGRE (pygamelib.assets.graphics.Models attribute), 161
OIL_DRUM (pygamelib.assets.graphics.Models at-

tribute), 162
OK_BUTTON (pygamelib.assets.graphics.Models at-

tribute), 162
OK_HAND (pygamelib.assets.graphics.Models attribute),

162
OLD_KEY (pygamelib.assets.graphics.Models attribute),

162
OLD_MAN (pygamelib.assets.graphics.Models attribute),

162
OLD_WOMAN (pygamelib.assets.graphics.Models at-

tribute), 162

OLDER_PERSON (pygamelib.assets.graphics.Models at-
tribute), 162

OLIVE (pygamelib.assets.graphics.Models attribute),
162

OM (pygamelib.assets.graphics.Models attribute), 162
ON_ARROW (pygamelib.assets.graphics.Models at-

tribute), 162
ONCOMING_AUTOMOBILE

(pygamelib.assets.graphics.Models attribute),
162

ONCOMING_BUS (pygamelib.assets.graphics.Models at-
tribute), 162

ONCOMING_FIST (pygamelib.assets.graphics.Models
attribute), 162

ONCOMING_POLICE_CAR
(pygamelib.assets.graphics.Models attribute),
162

ONCOMING_TAXI (pygamelib.assets.graphics.Models
attribute), 162

ONE_OCLOCK (pygamelib.assets.graphics.Models
attribute), 162

ONE_PIECE_SWIMSUIT
(pygamelib.assets.graphics.Models attribute),
162

ONE_THIRTY (pygamelib.assets.graphics.Models
attribute), 162

ONION (pygamelib.assets.graphics.Models attribute),
162

OPEN_BOOK (pygamelib.assets.graphics.Models at-
tribute), 162

OPEN_CIRCUIT_OUTPUT_H_TYPE_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

OPEN_CIRCUIT_OUTPUT_L_TYPE_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

OPEN_FILE_FOLDER (pygamelib.assets.graphics.Models
attribute), 162

OPEN_HANDS (pygamelib.assets.graphics.Models
attribute), 162

OPEN_MAILBOX_WITH_LOWERED_FLAG
(pygamelib.assets.graphics.Models attribute),
162

OPEN_MAILBOX_WITH_RAISED_FLAG
(pygamelib.assets.graphics.Models attribute),
162

OPHIUCHUS (pygamelib.assets.graphics.Models at-
tribute), 162

OPTICAL_DISK (pygamelib.assets.graphics.Models at-
tribute), 162

OPTION_KEY (pygamelib.assets.graphics.MiscTechnicals
attribute), 74

ORANGE_BOOK (pygamelib.assets.graphics.Models at-
tribute), 162

652 Index

pygamelib Documentation, Release 1.3.0

ORANGE_CIRCLE (pygamelib.assets.graphics.Models
attribute), 162

ORANGE_HEART (pygamelib.assets.graphics.Models at-
tribute), 162

ORANGE_SQUARE (pygamelib.assets.graphics.Models
attribute), 162

ORANGUTAN (pygamelib.assets.graphics.Models at-
tribute), 162

ORTHODOX_CROSS (pygamelib.assets.graphics.Models
attribute), 162

OTTER (pygamelib.assets.graphics.Models attribute),
162

OUTBOX_TRAY (pygamelib.assets.graphics.Models at-
tribute), 162

overlappable() (pygamelib.board_items.Actionable
method), 211

overlappable() (pygamelib.board_items.ActionableTile
method), 220

overlappable() (pygamelib.board_items.BoardComplexItem
method), 229

overlappable() (pygamelib.board_items.BoardItem
method), 247

overlappable() (pygamelib.board_items.BoardItemComplexComponent
method), 238

overlappable() (pygamelib.board_items.BoardItemVoid
method), 255

overlappable() (pygamelib.board_items.Camera
method), 263

overlappable() (pygamelib.board_items.Character
method), 271

overlappable() (pygamelib.board_items.ComplexDoor
method), 279

overlappable() (pygamelib.board_items.ComplexNPC
method), 288

overlappable() (pygamelib.board_items.ComplexPlayer
method), 298

overlappable() (pygamelib.board_items.ComplexTreasure
method), 306

overlappable() (pygamelib.board_items.ComplexWall
method), 315

overlappable() (pygamelib.board_items.Door
method), 324

overlappable() (pygamelib.board_items.GenericActionableStructure
method), 332

overlappable() (pygamelib.board_items.GenericStructure
method), 348

overlappable() (pygamelib.board_items.GenericStructureComplexComponent
method), 340

overlappable() (pygamelib.board_items.Immovable
method), 356

overlappable() (pygamelib.board_items.Movable
method), 364

overlappable() (pygamelib.board_items.NPC
method), 373

overlappable() (pygamelib.board_items.Player
method), 381

overlappable() (pygamelib.board_items.Projectile
method), 393

overlappable() (pygamelib.board_items.TextItem
method), 401

overlappable() (pygamelib.board_items.Tile
method), 411

overlappable() (pygamelib.board_items.Treasure
method), 420

overlappable() (pygamelib.board_items.Wall
method), 428

OWL (pygamelib.assets.graphics.Models attribute), 162
OX (pygamelib.assets.graphics.Models attribute), 162
OYSTER (pygamelib.assets.graphics.Models attribute),

163

P
P_BUTTON (pygamelib.assets.graphics.Models at-

tribute), 166
PACKAGE (pygamelib.assets.graphics.Models attribute),

163
padding (pygamelib.gfx.ui.Menu attribute), 528
padding (pygamelib.gfx.ui.MenuAction attribute), 531
page_down() (pygamelib.gfx.ui.GridSelector method),

523
PAGE_FACING_UP (pygamelib.assets.graphics.Models

attribute), 163
page_up() (pygamelib.gfx.ui.GridSelector method),

523
PAGE_WITH_CURL (pygamelib.assets.graphics.Models

attribute), 163
PAGER (pygamelib.assets.graphics.Models attribute),

163
PAINTBRUSH (pygamelib.assets.graphics.Models

attribute), 163
PALM_TREE (pygamelib.assets.graphics.Models at-

tribute), 163
PALMS_UP_TOGETHER

(pygamelib.assets.graphics.Models attribute),
163

PANCAKES (pygamelib.assets.graphics.Models at-
tribute), 163

PANDA (pygamelib.assets.graphics.Models attribute),
163

PAPERCLIP (pygamelib.assets.graphics.Models at-
tribute), 163

PARACHUTE (pygamelib.assets.graphics.Models at-
tribute), 163

parent (pygamelib.base.Text attribute), 200
PARROT (pygamelib.assets.graphics.Models attribute),

163
PART_ALTERNATION_MARK

(pygamelib.assets.graphics.Models attribute),

Index 653

pygamelib Documentation, Release 1.3.0

163
Particle (class in pygamelib.gfx.particles), 570
particle_emitter (pygamelib.board_items.Actionable

attribute), 212
particle_emitter (pygamelib.board_items.ActionableTile

attribute), 220
particle_emitter (pygamelib.board_items.BoardComplexItem

attribute), 229
particle_emitter (pygamelib.board_items.BoardItem

attribute), 247
particle_emitter (pygamelib.board_items.BoardItemComplexComponent

attribute), 238
particle_emitter (pygamelib.board_items.BoardItemVoid

attribute), 255
particle_emitter (pygamelib.board_items.Camera

attribute), 263
particle_emitter (pygamelib.board_items.Character

attribute), 271
particle_emitter (pygamelib.board_items.ComplexDoor

attribute), 279
particle_emitter (pygamelib.board_items.ComplexNPC

attribute), 289
particle_emitter (pygamelib.board_items.ComplexPlayer

attribute), 298
particle_emitter (pygamelib.board_items.ComplexTreasure

attribute), 307
particle_emitter (pygamelib.board_items.ComplexWall

attribute), 315
particle_emitter (pygamelib.board_items.Door

attribute), 324
particle_emitter (pygamelib.board_items.GenericActionableStructure

attribute), 333
particle_emitter (pygamelib.board_items.GenericStructure

attribute), 348
particle_emitter (pygamelib.board_items.GenericStructureComplexComponent

attribute), 340
particle_emitter (pygamelib.board_items.Immovable

attribute), 356
particle_emitter (pygamelib.board_items.Movable

attribute), 365
particle_emitter (pygamelib.board_items.NPC at-

tribute), 373
particle_emitter (pygamelib.board_items.Player

attribute), 382
particle_emitter (pygamelib.board_items.Projectile

attribute), 393
particle_emitter (pygamelib.board_items.TextItem

attribute), 401
particle_emitter (pygamelib.board_items.Tile at-

tribute), 411
particle_emitter (pygamelib.board_items.Treasure

attribute), 420
particle_emitter (pygamelib.board_items.Wall at-

tribute), 428

particle_pool (pygamelib.gfx.particles.CircleEmitter
attribute), 549

particle_pool (pygamelib.gfx.particles.ParticleEmitter
attribute), 567

ParticleEmitter (class in pygamelib.gfx.particles),
563

ParticlePool (class in pygamelib.gfx.particles), 568
ParticleSprixel (class in pygamelib.gfx.particles),

575
PartitionParticle (class in

pygamelib.gfx.particles), 583
PARTY_POPPER (pygamelib.assets.graphics.Models at-

tribute), 163
PARTYING_FACE (pygamelib.assets.graphics.Models

attribute), 163
PASSENGER_SHIP (pygamelib.assets.graphics.Models

attribute), 163
PASSIVE_PULL_DOWN_OUTPUT_SYMBOL

(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

PASSIVE_PULL_UP_OUTPUT_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

PASSPORT_CONTROL (pygamelib.assets.graphics.Models
attribute), 163

path (pygamelib.gfx.ui.FileDialog attribute), 519
PathActuator (class in pygamelib.actuators), 13
PathFinder (class in pygamelib.actuators), 21
PatrolActuator (class in pygamelib.actuators), 17
pause() (pygamelib.actuators.Actuator method), 9
pause() (pygamelib.actuators.Behavioral method), 12
pause() (pygamelib.actuators.PathActuator method),

16
pause() (pygamelib.actuators.PathFinder method), 26
pause() (pygamelib.actuators.PatrolActuator method),

20
pause() (pygamelib.actuators.RandomActuator

method), 30
pause() (pygamelib.actuators.UnidirectionalActuator

method), 33
pause() (pygamelib.engine.Game method), 455
pause() (pygamelib.gfx.core.Animation method), 481
PAUSE_BUTTON (pygamelib.assets.graphics.Models at-

tribute), 163
PAW_PRINTS (pygamelib.assets.graphics.Models

attribute), 163
PEACE_SYMBOL (pygamelib.assets.graphics.Models at-

tribute), 163
PEACH (pygamelib.assets.graphics.Models attribute),

163
PEACOCK (pygamelib.assets.graphics.Models attribute),

163
PEANUTS (pygamelib.assets.graphics.Models attribute),

163

654 Index

pygamelib Documentation, Release 1.3.0

PEAR (pygamelib.assets.graphics.Models attribute), 163
PEN (pygamelib.assets.graphics.Models attribute), 163
PENCIL (pygamelib.assets.graphics.Models attribute),

163
PENGUIN (pygamelib.assets.graphics.Models attribute),

163
PENSIVE_FACE (pygamelib.assets.graphics.Models at-

tribute), 163
PEOPLE_HUGGING (pygamelib.assets.graphics.Models

attribute), 163
PEOPLE_WITH_BUNNY_EARS

(pygamelib.assets.graphics.Models attribute),
163

PEOPLE_WRESTLING (pygamelib.assets.graphics.Models
attribute), 163

PERFORMING_ARTS (pygamelib.assets.graphics.Models
attribute), 163

PERSEVERING_FACE (pygamelib.assets.graphics.Models
attribute), 163

PERSON (pygamelib.assets.graphics.Models attribute),
163

PERSON_BIKING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_BLOND_HAIR
(pygamelib.assets.graphics.Models attribute),
164

PERSON_BOUNCING_BALL
(pygamelib.assets.graphics.Models attribute),
164

PERSON_BOWING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_CARTWHEELING
(pygamelib.assets.graphics.Models attribute),
164

PERSON_CLIMBING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_FACEPALMING
(pygamelib.assets.graphics.Models attribute),
164

PERSON_FENCING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_FROWNING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_GESTURING_NO
(pygamelib.assets.graphics.Models attribute),
164

PERSON_GESTURING_OK
(pygamelib.assets.graphics.Models attribute),
164

PERSON_GETTING_HAIRCUT
(pygamelib.assets.graphics.Models attribute),
164

PERSON_GETTING_MASSAGE
(pygamelib.assets.graphics.Models attribute),

164
PERSON_GOLFING (pygamelib.assets.graphics.Models

attribute), 164
PERSON_IN_BED (pygamelib.assets.graphics.Models

attribute), 164
PERSON_IN_LOTUS_POSITION

(pygamelib.assets.graphics.Models attribute),
164

PERSON_IN_STEAMY_ROOM
(pygamelib.assets.graphics.Models attribute),
164

PERSON_IN_SUIT_LEVITATING
(pygamelib.assets.graphics.Models attribute),
164

PERSON_IN_TUXEDO (pygamelib.assets.graphics.Models
attribute), 164

PERSON_JUGGLING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_KNEELING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_LIFTING_WEIGHTS
(pygamelib.assets.graphics.Models attribute),
164

PERSON_MOUNTAIN_BIKING
(pygamelib.assets.graphics.Models attribute),
164

PERSON_PLAYING_HANDBALL
(pygamelib.assets.graphics.Models attribute),
164

PERSON_PLAYING_WATER_POLO
(pygamelib.assets.graphics.Models attribute),
164

PERSON_POUTING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_RAISING_HAND
(pygamelib.assets.graphics.Models attribute),
164

PERSON_ROWING_BOAT
(pygamelib.assets.graphics.Models attribute),
164

PERSON_RUNNING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_SHRUGGING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_STANDING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_SURFING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_SWIMMING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_TAKING_BATH
(pygamelib.assets.graphics.Models attribute),
164

PERSON_TIPPING_HAND

Index 655

pygamelib Documentation, Release 1.3.0

(pygamelib.assets.graphics.Models attribute),
164

PERSON_WALKING (pygamelib.assets.graphics.Models
attribute), 164

PERSON_WEARING_TURBAN
(pygamelib.assets.graphics.Models attribute),
165

PERSON_WITH_SKULLCAP
(pygamelib.assets.graphics.Models attribute),
165

PERSON_WITH_VEIL (pygamelib.assets.graphics.Models
attribute), 165

PERSPECTIVE (pygamelib.assets.graphics.MiscTechnicals
attribute), 74

PETRI_DISH (pygamelib.assets.graphics.Models
attribute), 165

PglBaseObject (class in pygamelib.base), 192
PglException, 194
PglInvalidLevelException, 195
PglInvalidTypeException, 195
PglInventoryException, 195
PglObjectIsNotMovableException, 195
PglOutOfBoardBoundException, 195
PIñATA (pygamelib.assets.graphics.Models attribute),

165
PICK (pygamelib.assets.graphics.Models attribute), 165
pickable() (pygamelib.board_items.Actionable

method), 212
pickable() (pygamelib.board_items.ActionableTile

method), 220
pickable() (pygamelib.board_items.BoardComplexItem

method), 229
pickable() (pygamelib.board_items.BoardItem

method), 247
pickable() (pygamelib.board_items.BoardItemComplexComponent

method), 238
pickable() (pygamelib.board_items.BoardItemVoid

method), 255
pickable() (pygamelib.board_items.Camera

method), 263
pickable() (pygamelib.board_items.Character

method), 271
pickable() (pygamelib.board_items.ComplexDoor

method), 279
pickable() (pygamelib.board_items.ComplexNPC

method), 289
pickable() (pygamelib.board_items.ComplexPlayer

method), 298
pickable() (pygamelib.board_items.ComplexTreasure

method), 307
pickable() (pygamelib.board_items.ComplexWall

method), 315
pickable() (pygamelib.board_items.Door method),

324

pickable() (pygamelib.board_items.GenericActionableStructure
method), 333

pickable() (pygamelib.board_items.GenericStructure
method), 348

pickable() (pygamelib.board_items.GenericStructureComplexComponent
method), 340

pickable() (pygamelib.board_items.Immovable
method), 356

pickable() (pygamelib.board_items.Movable
method), 365

pickable() (pygamelib.board_items.NPC method),
373

pickable() (pygamelib.board_items.Player method),
382

pickable() (pygamelib.board_items.Projectile
method), 393

pickable() (pygamelib.board_items.TextItem
method), 401

pickable() (pygamelib.board_items.Tile method),
411

pickable() (pygamelib.board_items.Treasure
method), 420

pickable() (pygamelib.board_items.Wall method),
428

PICKUP_TRUCK (pygamelib.assets.graphics.Models at-
tribute), 165

PIE (pygamelib.assets.graphics.Models attribute), 165
PIG (pygamelib.assets.graphics.Models attribute), 165
PIG_FACE (pygamelib.assets.graphics.Models at-

tribute), 165
PIG_NOSE (pygamelib.assets.graphics.Models at-

tribute), 165
PILE_OF_POO (pygamelib.assets.graphics.Models at-

tribute), 165
PILL (pygamelib.assets.graphics.Models attribute), 165
PINCHED_FINGERS (pygamelib.assets.graphics.Models

attribute), 165
PINCHING_HAND (pygamelib.assets.graphics.Models

attribute), 165
PINE_DECORATION (pygamelib.assets.graphics.Models

attribute), 165
PINEAPPLE (pygamelib.assets.graphics.Models at-

tribute), 165
PING_PONG (pygamelib.assets.graphics.Models at-

tribute), 165
PISCES (pygamelib.assets.graphics.Models attribute),

165
PISTOL (pygamelib.assets.graphics.Models attribute),

165
PIZZA (pygamelib.assets.graphics.Models attribute),

165
PLACARD (pygamelib.assets.graphics.Models attribute),

165
place() (pygamelib.engine.Screen method), 476

656 Index

pygamelib Documentation, Release 1.3.0

place_item() (pygamelib.engine.Board method), 440
PLACE_OF_INTEREST_SIGN

(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

PLACE_OF_WORSHIP (pygamelib.assets.graphics.Models
attribute), 165

play_all() (pygamelib.gfx.core.Animation method),
481

PLAY_BUTTON (pygamelib.assets.graphics.Models at-
tribute), 165

PLAY_OR_PAUSE_BUTTON
(pygamelib.assets.graphics.Models attribute),
165

Player (class in pygamelib.board_items), 376
PLEADING_FACE (pygamelib.assets.graphics.Models

attribute), 165
PLUNGER (pygamelib.assets.graphics.Models attribute),

165
PLUS (pygamelib.assets.graphics.Models attribute), 165
POLICE_CAR (pygamelib.assets.graphics.Models

attribute), 165
POLICE_CAR_LIGHT (pygamelib.assets.graphics.Models

attribute), 165
POLICE_OFFICER (pygamelib.assets.graphics.Models

attribute), 165
POODLE (pygamelib.assets.graphics.Models attribute),

165
pool (pygamelib.gfx.particles.ParticlePool attribute),

570
pop() (pygamelib.gfx.core.SpriteCollection method),

488
POPCORN (pygamelib.assets.graphics.Models attribute),

165
popitem() (pygamelib.gfx.core.SpriteCollection

method), 488
position_as_vector()

(pygamelib.board_items.Actionable method),
212

position_as_vector()
(pygamelib.board_items.ActionableTile
method), 220

position_as_vector()
(pygamelib.board_items.BoardComplexItem
method), 229

position_as_vector()
(pygamelib.board_items.BoardItem method),
247

position_as_vector()
(pygamelib.board_items.BoardItemComplexComponent
method), 238

position_as_vector()
(pygamelib.board_items.BoardItemVoid
method), 255

position_as_vector()

(pygamelib.board_items.Camera method),
263

position_as_vector()
(pygamelib.board_items.Character method),
271

position_as_vector()
(pygamelib.board_items.ComplexDoor
method), 279

position_as_vector()
(pygamelib.board_items.ComplexNPC
method), 289

position_as_vector()
(pygamelib.board_items.ComplexPlayer
method), 298

position_as_vector()
(pygamelib.board_items.ComplexTreasure
method), 307

position_as_vector()
(pygamelib.board_items.ComplexWall
method), 316

position_as_vector()
(pygamelib.board_items.Door method), 325

position_as_vector()
(pygamelib.board_items.GenericActionableStructure
method), 333

position_as_vector()
(pygamelib.board_items.GenericStructure
method), 349

position_as_vector()
(pygamelib.board_items.GenericStructureComplexComponent
method), 341

position_as_vector()
(pygamelib.board_items.Immovable method),
356

position_as_vector()
(pygamelib.board_items.Movable method),
365

position_as_vector()
(pygamelib.board_items.NPC method), 373

position_as_vector()
(pygamelib.board_items.Player method),
382

position_as_vector()
(pygamelib.board_items.Projectile method),
393

position_as_vector()
(pygamelib.board_items.TextItem method),
402

position_as_vector()
(pygamelib.board_items.Tile method), 411

position_as_vector()
(pygamelib.board_items.Treasure method),
420

position_as_vector()

Index 657

pygamelib Documentation, Release 1.3.0

(pygamelib.board_items.Wall method), 428
POSITION_INDICATOR

(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

POST_OFFICE (pygamelib.assets.graphics.Models at-
tribute), 165

POSTAL_HORN (pygamelib.assets.graphics.Models at-
tribute), 165

POSTBOX (pygamelib.assets.graphics.Models attribute),
165

POT_OF_FOOD (pygamelib.assets.graphics.Models at-
tribute), 166

POTABLE_WATER (pygamelib.assets.graphics.Models
attribute), 166

POTATO (pygamelib.assets.graphics.Models attribute),
166

POTTED_PLANT (pygamelib.assets.graphics.Models at-
tribute), 166

POULTRY_LEG (pygamelib.assets.graphics.Models at-
tribute), 166

POUND_BANKNOTE (pygamelib.assets.graphics.Models
attribute), 166

POUTING_CAT (pygamelib.assets.graphics.Models at-
tribute), 166

POUTING_FACE (pygamelib.assets.graphics.Models at-
tribute), 166

POWER_ON_OFF_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

POWER_ON_SYMBOL (pygamelib.assets.graphics.MiscTechnicals
attribute), 74

POWER_SLEEP_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

POWER_SYMBOL (pygamelib.assets.graphics.MiscTechnicals
attribute), 74

PRAYER_BEADS (pygamelib.assets.graphics.Models at-
tribute), 166

PREGNANT_WOMAN (pygamelib.assets.graphics.Models
attribute), 166

PRETZEL (pygamelib.assets.graphics.Models attribute),
166

PREVIOUS_PAGE (pygamelib.assets.graphics.MiscTechnicals
attribute), 74

PRINCE (pygamelib.assets.graphics.Models attribute),
166

PRINCESS (pygamelib.assets.graphics.Models at-
tribute), 166

print_formatted() (pygamelib.base.Text method),
200

PRINT_SCREEN_SYMBOL
(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

print_white_on_red() (pygamelib.base.Text static

method), 200
PRINTER (pygamelib.assets.graphics.Models attribute),

166
progress_marker (pygamelib.gfx.ui.ProgressBar at-

tribute), 541
ProgressBar (class in pygamelib.gfx.ui), 540
ProgressDialog (class in pygamelib.gfx.ui), 542
PROHIBITED (pygamelib.assets.graphics.Models

attribute), 166
Projectile (class in pygamelib.board_items), 385
PROJECTIVE (pygamelib.assets.graphics.MiscTechnicals

attribute), 74
PURPLE_CIRCLE (pygamelib.assets.graphics.Models

attribute), 166
PURPLE_HEART (pygamelib.assets.graphics.Models at-

tribute), 166
PURPLE_SQUARE (pygamelib.assets.graphics.Models

attribute), 166
PURSE (pygamelib.assets.graphics.Models attribute),

166
PUSHPIN (pygamelib.assets.graphics.Models attribute),

166
PUZZLE_PIECE (pygamelib.assets.graphics.Models at-

tribute), 166
pygamelib.constants (module), 432

Q
QUADRANT_LOWER_LEFT

(pygamelib.assets.graphics.Blocks attribute),
38

QUADRANT_LOWER_RIGHT
(pygamelib.assets.graphics.Blocks attribute),
38

QUADRANT_UPPER_LEFT
(pygamelib.assets.graphics.Blocks attribute),
38

QUADRANT_UPPER_LEFT_AND_LOWER_LEFT_AND_LOWER_RIGHT
(pygamelib.assets.graphics.Blocks attribute),
38

QUADRANT_UPPER_LEFT_AND_LOWER_RIGHT
(pygamelib.assets.graphics.Blocks attribute),
38

QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_LEFT
(pygamelib.assets.graphics.Blocks attribute),
38

QUADRANT_UPPER_LEFT_AND_UPPER_RIGHT_AND_LOWER_RIGHT
(pygamelib.assets.graphics.Blocks attribute),
38

QUADRANT_UPPER_RIGHT
(pygamelib.assets.graphics.Blocks attribute),
38

QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT
(pygamelib.assets.graphics.Blocks attribute),
38

658 Index

pygamelib Documentation, Release 1.3.0

QUADRANT_UPPER_RIGHT_AND_LOWER_LEFT_AND_LOWER_RIGHT
(pygamelib.assets.graphics.Blocks attribute),
38

QUESTION_MARK (pygamelib.assets.graphics.Models
attribute), 166

R
r (pygamelib.gfx.core.Color attribute), 510
RABBIT (pygamelib.assets.graphics.Models attribute),

166
RABBIT_FACE (pygamelib.assets.graphics.Models at-

tribute), 166
RACCOON (pygamelib.assets.graphics.Models attribute),

166
RACING_CAR (pygamelib.assets.graphics.Models

attribute), 166
RADICAL_SYMBOL_BOTTOM

(pygamelib.assets.graphics.MiscTechnicals
attribute), 74

RADIO (pygamelib.assets.graphics.Models attribute),
166

RADIO_BUTTON (pygamelib.assets.graphics.Models at-
tribute), 166

RADIOACTIVE (pygamelib.assets.graphics.Models at-
tribute), 166

RAILWAY_CAR (pygamelib.assets.graphics.Models at-
tribute), 166

RAILWAY_TRACK (pygamelib.assets.graphics.Models
attribute), 166

RAINBOW (pygamelib.assets.graphics.Models attribute),
166

RAISED_BACK_OF_HAND
(pygamelib.assets.graphics.Models attribute),
166

RAISED_FIST (pygamelib.assets.graphics.Models at-
tribute), 166

RAISED_HAND (pygamelib.assets.graphics.Models at-
tribute), 166

RAISING_HANDS (pygamelib.assets.graphics.Models
attribute), 167

RAM (pygamelib.assets.graphics.Models attribute), 167
random() (pygamelib.gfx.core.Color class method),

510
RandomActuator (class in pygamelib.actuators), 27
RandomColorParticle (class in

pygamelib.gfx.particles), 589
RandomColorPartitionParticle (class in

pygamelib.gfx.particles), 594
randomize() (pygamelib.gfx.core.Color method), 510
RAT (pygamelib.assets.graphics.Models attribute), 167
RAZOR (pygamelib.assets.graphics.Models attribute),

167
RECEIPT (pygamelib.assets.graphics.Models attribute),

167

RECORD_BUTTON (pygamelib.assets.graphics.Models
attribute), 167

RECYCLING_SYMBOL (pygamelib.assets.graphics.Models
attribute), 167

red (pygamelib.gfx.ui.ColorPicker attribute), 516
red() (pygamelib.base.Text static method), 201
RED_APPLE (pygamelib.assets.graphics.Models at-

tribute), 167
red_bright() (pygamelib.base.Text static method),

201
RED_CIRCLE (pygamelib.assets.graphics.Models

attribute), 167
red_dim() (pygamelib.base.Text static method), 201
RED_ENVELOPE (pygamelib.assets.graphics.Models at-

tribute), 167
RED_HAIR (pygamelib.assets.graphics.Models at-

tribute), 167
RED_HEART (pygamelib.assets.graphics.Models at-

tribute), 167
RED_PAPER_LANTERN

(pygamelib.assets.graphics.Models attribute),
167

red_rect() (pygamelib.gfx.core.Sprixel class
method), 504

red_rect() (pygamelib.gfx.particles.ParticleSprixel
class method), 581

RED_SQUARE (pygamelib.assets.graphics.Models
attribute), 167

red_square() (pygamelib.gfx.core.Sprixel class
method), 504

red_square() (pygamelib.gfx.particles.ParticleSprixel
class method), 581

RED_TRIANGLE_POINTED_DOWN
(pygamelib.assets.graphics.Models attribute),
167

RED_TRIANGLE_POINTED_UP
(pygamelib.assets.graphics.Models attribute),
167

REGISTERED (pygamelib.assets.graphics.Models
attribute), 167

RELIEVED_FACE (pygamelib.assets.graphics.Models
attribute), 167

REMINDER_RIBBON (pygamelib.assets.graphics.Models
attribute), 167

remove_constraint()
(pygamelib.engine.Inventory method), 465

remove_directional_animation()
(pygamelib.board_items.Projectile method),
393

remove_directional_model()
(pygamelib.board_items.Projectile method),
393

remove_frame() (pygamelib.gfx.core.Animation
method), 482

Index 659

pygamelib Documentation, Release 1.3.0

remove_item() (pygamelib.engine.Board method),
441

remove_npc() (pygamelib.engine.Game method), 455
remove_waypoint()

(pygamelib.actuators.PathFinder method),
26

rename() (pygamelib.gfx.core.SpriteCollection
method), 488

render() (pygamelib.engine.Screen method), 477
render() (pygamelib.gfx.particles.ColorParticle

method), 554
render() (pygamelib.gfx.particles.ColorPartitionParticle

method), 559
render() (pygamelib.gfx.particles.Particle method),

573
render() (pygamelib.gfx.particles.PartitionParticle

method), 587
render() (pygamelib.gfx.particles.RandomColorParticle

method), 592
render() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 597
render_cell() (pygamelib.engine.Board method),

441
render_to_buffer() (pygamelib.base.Text

method), 201
render_to_buffer()

(pygamelib.board_items.Actionable method),
212

render_to_buffer()
(pygamelib.board_items.ActionableTile
method), 220

render_to_buffer()
(pygamelib.board_items.BoardComplexItem
method), 229

render_to_buffer()
(pygamelib.board_items.BoardItem method),
247

render_to_buffer()
(pygamelib.board_items.BoardItemComplexComponent
method), 238

render_to_buffer()
(pygamelib.board_items.BoardItemVoid
method), 255

render_to_buffer()
(pygamelib.board_items.Camera method),
263

render_to_buffer()
(pygamelib.board_items.Character method),
272

render_to_buffer()
(pygamelib.board_items.ComplexDoor
method), 280

render_to_buffer()
(pygamelib.board_items.ComplexNPC

method), 289
render_to_buffer()

(pygamelib.board_items.ComplexPlayer
method), 298

render_to_buffer()
(pygamelib.board_items.ComplexTreasure
method), 307

render_to_buffer()
(pygamelib.board_items.ComplexWall
method), 316

render_to_buffer()
(pygamelib.board_items.Door method), 325

render_to_buffer()
(pygamelib.board_items.GenericActionableStructure
method), 333

render_to_buffer()
(pygamelib.board_items.GenericStructure
method), 349

render_to_buffer()
(pygamelib.board_items.GenericStructureComplexComponent
method), 341

render_to_buffer()
(pygamelib.board_items.Immovable method),
357

render_to_buffer()
(pygamelib.board_items.Movable method),
365

render_to_buffer() (pygamelib.board_items.NPC
method), 374

render_to_buffer()
(pygamelib.board_items.Player method),
382

render_to_buffer()
(pygamelib.board_items.Projectile method),
393

render_to_buffer()
(pygamelib.board_items.TextItem method),
402

render_to_buffer() (pygamelib.board_items.Tile
method), 411

render_to_buffer()
(pygamelib.board_items.Treasure method),
420

render_to_buffer() (pygamelib.board_items.Wall
method), 428

render_to_buffer() (pygamelib.engine.Board
method), 441

render_to_buffer() (pygamelib.gfx.core.Sprite
method), 495

render_to_buffer() (pygamelib.gfx.core.Sprixel
method), 504

render_to_buffer()
(pygamelib.gfx.particles.CircleEmitter
method), 549

660 Index

pygamelib Documentation, Release 1.3.0

render_to_buffer()
(pygamelib.gfx.particles.ParticleEmitter
method), 567

render_to_buffer()
(pygamelib.gfx.particles.ParticleSprixel
method), 581

render_to_buffer() (pygamelib.gfx.ui.Box
method), 513

render_to_buffer()
(pygamelib.gfx.ui.ColorPicker method), 516

render_to_buffer()
(pygamelib.gfx.ui.ColorPickerDialog method),
514

render_to_buffer() (pygamelib.gfx.ui.FileDialog
method), 519

render_to_buffer()
(pygamelib.gfx.ui.GridSelector method),
523

render_to_buffer()
(pygamelib.gfx.ui.GridSelectorDialog method),
521

render_to_buffer()
(pygamelib.gfx.ui.LineInputDialog method),
525

render_to_buffer() (pygamelib.gfx.ui.Menu
method), 528

render_to_buffer()
(pygamelib.gfx.ui.MenuAction method), 531

render_to_buffer() (pygamelib.gfx.ui.MenuBar
method), 534

render_to_buffer()
(pygamelib.gfx.ui.MessageDialog method),
537

render_to_buffer()
(pygamelib.gfx.ui.MultiLineInputDialog
method), 539

render_to_buffer()
(pygamelib.gfx.ui.ProgressBar method),
541

render_to_buffer()
(pygamelib.gfx.ui.ProgressDialog method),
543

REPEAT_BUTTON (pygamelib.assets.graphics.Models
attribute), 167

REPEAT_SINGLE_BUTTON
(pygamelib.assets.graphics.Models attribute),
167

RESCUE_WORKERS_HELMET
(pygamelib.assets.graphics.Models attribute),
167

reset() (pygamelib.gfx.core.Animation method), 482
reset() (pygamelib.gfx.particles.ColorParticle

method), 554
reset() (pygamelib.gfx.particles.ColorPartitionParticle

method), 559
reset() (pygamelib.gfx.particles.Particle method), 573
reset() (pygamelib.gfx.particles.PartitionParticle

method), 587
reset() (pygamelib.gfx.particles.RandomColorParticle

method), 592
reset() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 598
reset_lifespan() (pygamelib.gfx.particles.ColorParticle

method), 554
reset_lifespan() (pygamelib.gfx.particles.ColorPartitionParticle

method), 559
reset_lifespan() (pygamelib.gfx.particles.Particle

method), 574
reset_lifespan() (pygamelib.gfx.particles.PartitionParticle

method), 588
reset_lifespan() (pygamelib.gfx.particles.RandomColorParticle

method), 593
reset_lifespan() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 598
resize() (pygamelib.gfx.particles.ParticlePool

method), 570
resize_pool() (pygamelib.gfx.particles.CircleEmitter

method), 549
resize_pool() (pygamelib.gfx.particles.ParticleEmitter

method), 567
restorable() (pygamelib.board_items.Actionable

method), 212
restorable() (pygamelib.board_items.ActionableTile

method), 220
restorable() (pygamelib.board_items.BoardComplexItem

method), 230
restorable() (pygamelib.board_items.BoardItem

method), 248
restorable() (pygamelib.board_items.BoardItemComplexComponent

method), 238
restorable() (pygamelib.board_items.BoardItemVoid

method), 255
restorable() (pygamelib.board_items.Camera

method), 263
restorable() (pygamelib.board_items.Character

method), 272
restorable() (pygamelib.board_items.ComplexDoor

method), 280
restorable() (pygamelib.board_items.ComplexNPC

method), 289
restorable() (pygamelib.board_items.ComplexPlayer

method), 298
restorable() (pygamelib.board_items.ComplexTreasure

method), 307
restorable() (pygamelib.board_items.ComplexWall

method), 316
restorable() (pygamelib.board_items.Door

method), 325

Index 661

pygamelib Documentation, Release 1.3.0

restorable() (pygamelib.board_items.GenericActionableStructure
method), 333

restorable() (pygamelib.board_items.GenericStructure
method), 349

restorable() (pygamelib.board_items.GenericStructureComplexComponent
method), 341

restorable() (pygamelib.board_items.Immovable
method), 357

restorable() (pygamelib.board_items.Movable
method), 365

restorable() (pygamelib.board_items.NPC
method), 374

restorable() (pygamelib.board_items.Player
method), 382

restorable() (pygamelib.board_items.Projectile
method), 394

restorable() (pygamelib.board_items.TextItem
method), 402

restorable() (pygamelib.board_items.Tile method),
411

restorable() (pygamelib.board_items.Treasure
method), 420

restorable() (pygamelib.board_items.Wall method),
428

RESTROOM (pygamelib.assets.graphics.Models at-
tribute), 167

RETURN_SYMBOL (pygamelib.assets.graphics.MiscTechnicals
attribute), 75

REVERSE_BUTTON (pygamelib.assets.graphics.Models
attribute), 167

REVERSED_NOT_SIGN
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

REVOLVING_HEARTS (pygamelib.assets.graphics.Models
attribute), 167

RHINOCEROS (pygamelib.assets.graphics.Models
attribute), 167

RIBBON (pygamelib.assets.graphics.Models attribute),
167

RICE_BALL (pygamelib.assets.graphics.Models at-
tribute), 167

RICE_CRACKER (pygamelib.assets.graphics.Models at-
tribute), 167

RIGHT_ANGER_BUBBLE
(pygamelib.assets.graphics.Models attribute),
167

RIGHT_ANGLE_WITH_DOWNWARDS_ZIGZAG_ARROW
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 75

RIGHT_ARROW (pygamelib.assets.graphics.Models at-
tribute), 167

RIGHT_ARROW_CURVING_DOWN
(pygamelib.assets.graphics.Models attribute),
167

RIGHT_ARROW_CURVING_LEFT
(pygamelib.assets.graphics.Models attribute),
167

RIGHT_ARROW_CURVING_UP
(pygamelib.assets.graphics.Models attribute),
167

RIGHT_CEILING (pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_CURLY_BRACKET_LOWER_HOOK
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_CURLY_BRACKET_MIDDLE_PIECE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_CURLY_BRACKET_UPPER_HOOK
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_DOWN_HEAVY_AND_LEFT_UP_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 47

RIGHT_FACING_FIST
(pygamelib.assets.graphics.Models attribute),
167

RIGHT_FLOOR (pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_HALF_BLACK_CIRCLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

RIGHT_HALF_BLOCK (pygamelib.assets.graphics.Blocks
attribute), 38

RIGHT_HEAVY_AND_LEFT_DOWN_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

RIGHT_HEAVY_AND_LEFT_UP_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

RIGHT_HEAVY_AND_LEFT_VERTICAL_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

RIGHT_LIGHT_AND_LEFT_DOWN_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

RIGHT_LIGHT_AND_LEFT_UP_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

RIGHT_LIGHT_AND_LEFT_VERTICAL_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

RIGHT_ONE_EIGHTH_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

RIGHT_PARENTHESIS_EXTENSION
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

662 Index

pygamelib Documentation, Release 1.3.0

RIGHT_PARENTHESIS_LOWER_HOOK
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_PARENTHESIS_UPPER_HOOK
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_POINTING_ANGLE_BRACKET
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_SQUARE_BRACKET_EXTENSION
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_SQUARE_BRACKET_LOWER_CORNER
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_SQUARE_BRACKET_UPPER_CORNER
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RIGHT_UP_HEAVY_AND_LEFT_DOWN_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

RIGHT_VERTICAL_BOX_LINE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

RING (pygamelib.assets.graphics.Models attribute), 167
RING_OPERATOR (pygamelib.assets.graphics.GeometricShapes

attribute), 55
RINGED_PLANET (pygamelib.assets.graphics.Models

attribute), 168
ROASTED_SWEET_POTATO

(pygamelib.assets.graphics.Models attribute),
168

ROBOT (pygamelib.assets.graphics.Models attribute),
168

ROCK (pygamelib.assets.graphics.Models attribute), 168
ROCKET (pygamelib.assets.graphics.Models attribute),

168
ROLL_OF_PAPER (pygamelib.assets.graphics.Models

attribute), 168
ROLLED_UP_NEWSPAPER

(pygamelib.assets.graphics.Models attribute),
168

ROLLER_COASTER (pygamelib.assets.graphics.Models
attribute), 168

ROLLER_SKATE (pygamelib.assets.graphics.Models at-
tribute), 168

ROLLING_ON_THE_FLOOR_LAUGHING
(pygamelib.assets.graphics.Models attribute),
168

ROOSTER (pygamelib.assets.graphics.Models attribute),
168

ROSE (pygamelib.assets.graphics.Models attribute), 168
ROSETTE (pygamelib.assets.graphics.Models attribute),

168

ROUND_PUSHPIN (pygamelib.assets.graphics.Models
attribute), 168

rounding_precision (pygamelib.base.Vector2D at-
tribute), 204

row (pygamelib.base.Vector2D attribute), 204
row (pygamelib.board_items.Actionable attribute), 212
row (pygamelib.board_items.ActionableTile attribute),

221
row (pygamelib.board_items.BoardComplexItem at-

tribute), 230
row (pygamelib.board_items.BoardItem attribute), 248
row (pygamelib.board_items.BoardItemComplexComponent

attribute), 239
row (pygamelib.board_items.BoardItemVoid attribute),

255
row (pygamelib.board_items.Camera attribute), 264
row (pygamelib.board_items.Character attribute), 272
row (pygamelib.board_items.ComplexDoor attribute),

280
row (pygamelib.board_items.ComplexNPC attribute),

289
row (pygamelib.board_items.ComplexPlayer attribute),

298
row (pygamelib.board_items.ComplexTreasure at-

tribute), 307
row (pygamelib.board_items.ComplexWall attribute),

316
row (pygamelib.board_items.Door attribute), 325
row (pygamelib.board_items.GenericActionableStructure

attribute), 333
row (pygamelib.board_items.GenericStructure at-

tribute), 349
row (pygamelib.board_items.GenericStructureComplexComponent

attribute), 341
row (pygamelib.board_items.Immovable attribute), 357
row (pygamelib.board_items.Movable attribute), 365
row (pygamelib.board_items.NPC attribute), 374
row (pygamelib.board_items.Player attribute), 382
row (pygamelib.board_items.Projectile attribute), 394
row (pygamelib.board_items.TextItem attribute), 402
row (pygamelib.board_items.Tile attribute), 412
row (pygamelib.board_items.Treasure attribute), 421
row (pygamelib.board_items.Wall attribute), 429
row (pygamelib.gfx.particles.CircleEmitter attribute),

549
row (pygamelib.gfx.particles.ColorParticle attribute),

555
row (pygamelib.gfx.particles.ColorPartitionParticle at-

tribute), 560
row (pygamelib.gfx.particles.Particle attribute), 574
row (pygamelib.gfx.particles.ParticleEmitter attribute),

567
row (pygamelib.gfx.particles.PartitionParticle attribute),

588

Index 663

pygamelib Documentation, Release 1.3.0

row (pygamelib.gfx.particles.RandomColorParticle at-
tribute), 593

row (pygamelib.gfx.particles.RandomColorPartitionParticle
attribute), 598

RUGBY_FOOTBALL (pygamelib.assets.graphics.Models
attribute), 168

run() (pygamelib.engine.Game method), 455
RUNNING_SHIRT (pygamelib.assets.graphics.Models

attribute), 168
RUNNING_SHOE (pygamelib.assets.graphics.Models at-

tribute), 168

S
SAD_BUT_RELIEVED_FACE

(pygamelib.assets.graphics.Models attribute),
168

SAFETY_PIN (pygamelib.assets.graphics.Models
attribute), 168

SAFETY_VEST (pygamelib.assets.graphics.Models at-
tribute), 168

SAGITTARIUS (pygamelib.assets.graphics.Models at-
tribute), 168

SAILBOAT (pygamelib.assets.graphics.Models at-
tribute), 168

SAKE (pygamelib.assets.graphics.Models attribute), 168
SALT (pygamelib.assets.graphics.Models attribute), 168
SANDWICH (pygamelib.assets.graphics.Models at-

tribute), 168
SANTA_CLAUS (pygamelib.assets.graphics.Models at-

tribute), 168
SARI (pygamelib.assets.graphics.Models attribute), 168
SATELLITE (pygamelib.assets.graphics.Models at-

tribute), 168
SATELLITE_ANTENNA

(pygamelib.assets.graphics.Models attribute),
168

SAUROPOD (pygamelib.assets.graphics.Models at-
tribute), 168

save_board() (pygamelib.engine.Game method), 456
save_config() (pygamelib.engine.Game method),

457
SAXOPHONE (pygamelib.assets.graphics.Models at-

tribute), 168
scalable (pygamelib.gfx.core.Font attribute), 486
scale() (pygamelib.gfx.core.Sprite method), 495
SCARF (pygamelib.assets.graphics.Models attribute),

168
SCHOOL (pygamelib.assets.graphics.Models attribute),

168
SCISSORS (pygamelib.assets.graphics.Models at-

tribute), 168
SCORPIO (pygamelib.assets.graphics.Models attribute),

168

SCORPION (pygamelib.assets.graphics.Models at-
tribute), 168

Screen (class in pygamelib.engine), 467
screen_column (pygamelib.actuators.Actuator

attribute), 9
screen_column (pygamelib.actuators.Behavioral at-

tribute), 13
screen_column (pygamelib.actuators.PathActuator

attribute), 16
screen_column (pygamelib.actuators.PathFinder at-

tribute), 26
screen_column (pygamelib.actuators.PatrolActuator

attribute), 20
screen_column (pygamelib.actuators.RandomActuator

attribute), 30
screen_column (pygamelib.actuators.UnidirectionalActuator

attribute), 33
screen_column (pygamelib.base.PglBaseObject at-

tribute), 194
screen_column (pygamelib.base.Text attribute), 201
screen_column (pygamelib.board_items.Actionable

attribute), 212
screen_column (pygamelib.board_items.ActionableTile

attribute), 221
screen_column (pygamelib.board_items.BoardComplexItem

attribute), 230
screen_column (pygamelib.board_items.BoardItem

attribute), 248
screen_column (pygamelib.board_items.BoardItemComplexComponent

attribute), 239
screen_column (pygamelib.board_items.BoardItemVoid

attribute), 256
screen_column (pygamelib.board_items.Camera at-

tribute), 264
screen_column (pygamelib.board_items.Character

attribute), 272
screen_column (pygamelib.board_items.ComplexDoor

attribute), 280
screen_column (pygamelib.board_items.ComplexNPC

attribute), 290
screen_column (pygamelib.board_items.ComplexPlayer

attribute), 299
screen_column (pygamelib.board_items.ComplexTreasure

attribute), 307
screen_column (pygamelib.board_items.ComplexWall

attribute), 316
screen_column (pygamelib.board_items.Door

attribute), 325
screen_column (pygamelib.board_items.GenericActionableStructure

attribute), 333
screen_column (pygamelib.board_items.GenericStructure

attribute), 349
screen_column (pygamelib.board_items.GenericStructureComplexComponent

attribute), 341

664 Index

pygamelib Documentation, Release 1.3.0

screen_column (pygamelib.board_items.Immovable
attribute), 357

screen_column (pygamelib.board_items.Movable at-
tribute), 366

screen_column (pygamelib.board_items.NPC at-
tribute), 374

screen_column (pygamelib.board_items.Player at-
tribute), 382

screen_column (pygamelib.board_items.Projectile
attribute), 394

screen_column (pygamelib.board_items.TextItem at-
tribute), 402

screen_column (pygamelib.board_items.Tile at-
tribute), 412

screen_column (pygamelib.board_items.Treasure at-
tribute), 421

screen_column (pygamelib.board_items.Wall at-
tribute), 429

screen_column (pygamelib.engine.Board attribute),
442

screen_column (pygamelib.engine.Game attribute),
457

screen_column (pygamelib.engine.Inventory at-
tribute), 465

screen_column (pygamelib.engine.Screen attribute),
478

screen_column (pygamelib.gfx.core.Color attribute),
511

screen_column (pygamelib.gfx.core.Sprite attribute),
496

screen_column (pygamelib.gfx.core.Sprixel at-
tribute), 505

screen_column (pygamelib.gfx.particles.CircleEmitter
attribute), 549

screen_column (pygamelib.gfx.particles.ColorParticle
attribute), 555

screen_column (pygamelib.gfx.particles.ColorPartitionParticle
attribute), 560

screen_column (pygamelib.gfx.particles.Particle at-
tribute), 574

screen_column (pygamelib.gfx.particles.ParticleEmitter
attribute), 567

screen_column (pygamelib.gfx.particles.ParticleSprixel
attribute), 582

screen_column (pygamelib.gfx.particles.PartitionParticle
attribute), 588

screen_column (pygamelib.gfx.particles.RandomColorParticle
attribute), 593

screen_column (pygamelib.gfx.particles.RandomColorPartitionParticle
attribute), 598

screen_row (pygamelib.actuators.Actuator attribute),
10

screen_row (pygamelib.actuators.Behavioral at-
tribute), 13

screen_row (pygamelib.actuators.PathActuator
attribute), 16

screen_row (pygamelib.actuators.PathFinder at-
tribute), 26

screen_row (pygamelib.actuators.PatrolActuator at-
tribute), 20

screen_row (pygamelib.actuators.RandomActuator
attribute), 30

screen_row (pygamelib.actuators.UnidirectionalActuator
attribute), 34

screen_row (pygamelib.base.PglBaseObject at-
tribute), 194

screen_row (pygamelib.base.Text attribute), 201
screen_row (pygamelib.board_items.Actionable at-

tribute), 213
screen_row (pygamelib.board_items.ActionableTile

attribute), 221
screen_row (pygamelib.board_items.BoardComplexItem

attribute), 230
screen_row (pygamelib.board_items.BoardItem at-

tribute), 248
screen_row (pygamelib.board_items.BoardItemComplexComponent

attribute), 239
screen_row (pygamelib.board_items.BoardItemVoid

attribute), 256
screen_row (pygamelib.board_items.Camera at-

tribute), 264
screen_row (pygamelib.board_items.Character

attribute), 272
screen_row (pygamelib.board_items.ComplexDoor

attribute), 280
screen_row (pygamelib.board_items.ComplexNPC at-

tribute), 290
screen_row (pygamelib.board_items.ComplexPlayer

attribute), 299
screen_row (pygamelib.board_items.ComplexTreasure

attribute), 308
screen_row (pygamelib.board_items.ComplexWall at-

tribute), 317
screen_row (pygamelib.board_items.Door attribute),

325
screen_row (pygamelib.board_items.GenericActionableStructure

attribute), 334
screen_row (pygamelib.board_items.GenericStructure

attribute), 349
screen_row (pygamelib.board_items.GenericStructureComplexComponent

attribute), 341
screen_row (pygamelib.board_items.Immovable at-

tribute), 357
screen_row (pygamelib.board_items.Movable at-

tribute), 366
screen_row (pygamelib.board_items.NPC attribute),

374
screen_row (pygamelib.board_items.Player attribute),

Index 665

pygamelib Documentation, Release 1.3.0

383
screen_row (pygamelib.board_items.Projectile at-

tribute), 394
screen_row (pygamelib.board_items.TextItem at-

tribute), 402
screen_row (pygamelib.board_items.Tile attribute),

412
screen_row (pygamelib.board_items.Treasure at-

tribute), 421
screen_row (pygamelib.board_items.Wall attribute),

429
screen_row (pygamelib.engine.Board attribute), 442
screen_row (pygamelib.engine.Game attribute), 457
screen_row (pygamelib.engine.Inventory attribute),

466
screen_row (pygamelib.engine.Screen attribute), 478
screen_row (pygamelib.gfx.core.Color attribute), 511
screen_row (pygamelib.gfx.core.Sprite attribute), 496
screen_row (pygamelib.gfx.core.Sprixel attribute),

505
screen_row (pygamelib.gfx.particles.CircleEmitter at-

tribute), 550
screen_row (pygamelib.gfx.particles.ColorParticle at-

tribute), 555
screen_row (pygamelib.gfx.particles.ColorPartitionParticle

attribute), 560
screen_row (pygamelib.gfx.particles.Particle at-

tribute), 574
screen_row (pygamelib.gfx.particles.ParticleEmitter

attribute), 567
screen_row (pygamelib.gfx.particles.ParticleSprixel

attribute), 582
screen_row (pygamelib.gfx.particles.PartitionParticle

attribute), 588
screen_row (pygamelib.gfx.particles.RandomColorParticle

attribute), 593
screen_row (pygamelib.gfx.particles.RandomColorPartitionParticle

attribute), 598
SCREWDRIVER (pygamelib.assets.graphics.Models at-

tribute), 169
SCROLL (pygamelib.assets.graphics.Models attribute),

169
SEAL (pygamelib.assets.graphics.Models attribute), 169
search() (pygamelib.engine.Inventory method), 466
search_frame() (pygamelib.gfx.core.Animation

method), 482
SEAT (pygamelib.assets.graphics.Models attribute), 169
SECOND_PLACE_MEDAL

(pygamelib.assets.graphics.Models attribute),
169

SECTOR (pygamelib.assets.graphics.MiscTechnicals at-
tribute), 75

SEE_NO_EVIL_MONKEY
(pygamelib.assets.graphics.Models attribute),

169
SEEDLING (pygamelib.assets.graphics.Models at-

tribute), 169
SEGMENT (pygamelib.assets.graphics.MiscTechnicals at-

tribute), 75
select_next() (pygamelib.gfx.ui.Menu method), 528
select_next() (pygamelib.gfx.ui.MenuBar method),

534
select_previous() (pygamelib.gfx.ui.Menu

method), 528
select_previous() (pygamelib.gfx.ui.MenuBar

method), 534
selected (pygamelib.gfx.ui.Menu attribute), 529
selected (pygamelib.gfx.ui.MenuAction attribute), 531
selection (pygamelib.gfx.ui.ColorPicker attribute),

516
SELFIE (pygamelib.assets.graphics.Models attribute),

169
serialize() (pygamelib.actuators.Actuator method),

10
serialize() (pygamelib.actuators.Behavioral

method), 13
serialize() (pygamelib.actuators.PathActuator

method), 16
serialize() (pygamelib.actuators.PathFinder

method), 26
serialize() (pygamelib.actuators.PatrolActuator

method), 20
serialize() (pygamelib.actuators.RandomActuator

method), 30
serialize() (pygamelib.actuators.UnidirectionalActuator

method), 34
serialize() (pygamelib.base.Text method), 201
serialize() (pygamelib.base.Vector2D method), 205
serialize() (pygamelib.board_items.Actionable

method), 213
serialize() (pygamelib.board_items.ActionableTile

method), 221
serialize() (pygamelib.board_items.BoardComplexItem

method), 230
serialize() (pygamelib.board_items.BoardItem

method), 248
serialize() (pygamelib.board_items.BoardItemComplexComponent

method), 239
serialize() (pygamelib.board_items.BoardItemVoid

method), 256
serialize() (pygamelib.board_items.Camera

method), 264
serialize() (pygamelib.board_items.Character

method), 272
serialize() (pygamelib.board_items.ComplexDoor

method), 280
serialize() (pygamelib.board_items.ComplexNPC

method), 290

666 Index

pygamelib Documentation, Release 1.3.0

serialize() (pygamelib.board_items.ComplexPlayer
method), 299

serialize() (pygamelib.board_items.ComplexTreasure
method), 308

serialize() (pygamelib.board_items.ComplexWall
method), 317

serialize() (pygamelib.board_items.Door method),
326

serialize() (pygamelib.board_items.GenericActionableStructure
method), 334

serialize() (pygamelib.board_items.GenericStructure
method), 350

serialize() (pygamelib.board_items.GenericStructureComplexComponent
method), 342

serialize() (pygamelib.board_items.Immovable
method), 357

serialize() (pygamelib.board_items.Movable
method), 366

serialize() (pygamelib.board_items.NPC method),
374

serialize() (pygamelib.board_items.Player
method), 383

serialize() (pygamelib.board_items.Projectile
method), 394

serialize() (pygamelib.board_items.TextItem
method), 403

serialize() (pygamelib.board_items.Tile method),
412

serialize() (pygamelib.board_items.Treasure
method), 421

serialize() (pygamelib.board_items.Wall method),
429

serialize() (pygamelib.engine.Board method), 442
serialize() (pygamelib.engine.Inventory method),

466
serialize() (pygamelib.gfx.core.Animation method),

482
serialize() (pygamelib.gfx.core.Color method), 511
serialize() (pygamelib.gfx.core.Sprite method), 496
serialize() (pygamelib.gfx.core.SpriteCollection

method), 488
serialize() (pygamelib.gfx.core.Sprixel method),

505
serialize() (pygamelib.gfx.particles.CircleEmitter

method), 550
serialize() (pygamelib.gfx.particles.ColorParticle

method), 555
serialize() (pygamelib.gfx.particles.ColorPartitionParticle

method), 560
serialize() (pygamelib.gfx.particles.EmitterProperties

method), 562
serialize() (pygamelib.gfx.particles.Particle

method), 574
serialize() (pygamelib.gfx.particles.ParticleEmitter

method), 567
serialize() (pygamelib.gfx.particles.ParticleSprixel

method), 582
serialize() (pygamelib.gfx.particles.PartitionParticle

method), 588
serialize() (pygamelib.gfx.particles.RandomColorParticle

method), 593
serialize() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 598
session_log() (pygamelib.engine.Game method),

457
session_logs() (pygamelib.engine.Game method),

457
set_can_move() (pygamelib.board_items.Actionable

method), 213
set_can_move() (pygamelib.board_items.ActionableTile

method), 221
set_can_move() (pygamelib.board_items.BoardComplexItem

method), 230
set_can_move() (pygamelib.board_items.BoardItem

method), 248
set_can_move() (pygamelib.board_items.BoardItemComplexComponent

method), 239
set_can_move() (pygamelib.board_items.BoardItemVoid

method), 256
set_can_move() (pygamelib.board_items.Camera

method), 264
set_can_move() (pygamelib.board_items.Character

method), 272
set_can_move() (pygamelib.board_items.ComplexDoor

method), 281
set_can_move() (pygamelib.board_items.ComplexNPC

method), 290
set_can_move() (pygamelib.board_items.ComplexPlayer

method), 299
set_can_move() (pygamelib.board_items.ComplexTreasure

method), 308
set_can_move() (pygamelib.board_items.ComplexWall

method), 317
set_can_move() (pygamelib.board_items.Door

method), 326
set_can_move() (pygamelib.board_items.GenericActionableStructure

method), 334
set_can_move() (pygamelib.board_items.GenericStructure

method), 350
set_can_move() (pygamelib.board_items.GenericStructureComplexComponent

method), 342
set_can_move() (pygamelib.board_items.Immovable

method), 358
set_can_move() (pygamelib.board_items.Movable

method), 366
set_can_move() (pygamelib.board_items.NPC

method), 374
set_can_move() (pygamelib.board_items.Player

Index 667

pygamelib Documentation, Release 1.3.0

method), 383
set_can_move() (pygamelib.board_items.Projectile

method), 394
set_can_move() (pygamelib.board_items.TextItem

method), 403
set_can_move() (pygamelib.board_items.Tile

method), 412
set_can_move() (pygamelib.board_items.Treasure

method), 421
set_can_move() (pygamelib.board_items.Wall

method), 429
set_color() (pygamelib.gfx.ui.ColorPickerDialog

method), 514
set_destination()

(pygamelib.actuators.PathFinder method),
27

set_direction() (pygamelib.board_items.Projectile
method), 394

set_overlappable()
(pygamelib.board_items.Actionable method),
213

set_overlappable()
(pygamelib.board_items.ActionableTile
method), 221

set_overlappable()
(pygamelib.board_items.BoardComplexItem
method), 231

set_overlappable()
(pygamelib.board_items.BoardItem method),
248

set_overlappable()
(pygamelib.board_items.BoardItemComplexComponent
method), 239

set_overlappable()
(pygamelib.board_items.BoardItemVoid
method), 256

set_overlappable()
(pygamelib.board_items.Camera method),
264

set_overlappable()
(pygamelib.board_items.Character method),
273

set_overlappable()
(pygamelib.board_items.ComplexDoor
method), 281

set_overlappable()
(pygamelib.board_items.ComplexNPC
method), 290

set_overlappable()
(pygamelib.board_items.ComplexPlayer
method), 299

set_overlappable()
(pygamelib.board_items.ComplexTreasure
method), 308

set_overlappable()
(pygamelib.board_items.ComplexWall
method), 317

set_overlappable()
(pygamelib.board_items.Door method), 326

set_overlappable()
(pygamelib.board_items.GenericActionableStructure
method), 334

set_overlappable()
(pygamelib.board_items.GenericStructure
method), 350

set_overlappable()
(pygamelib.board_items.GenericStructureComplexComponent
method), 342

set_overlappable()
(pygamelib.board_items.Immovable method),
358

set_overlappable()
(pygamelib.board_items.Movable method),
366

set_overlappable() (pygamelib.board_items.NPC
method), 375

set_overlappable()
(pygamelib.board_items.Player method),
383

set_overlappable()
(pygamelib.board_items.Projectile method),
395

set_overlappable()
(pygamelib.board_items.TextItem method),
403

set_overlappable() (pygamelib.board_items.Tile
method), 412

set_overlappable()
(pygamelib.board_items.Treasure method),
421

set_overlappable() (pygamelib.board_items.Wall
method), 429

set_path() (pygamelib.actuators.PathActuator
method), 16

set_path() (pygamelib.actuators.PatrolActuator
method), 20

set_pickable() (pygamelib.board_items.Actionable
method), 213

set_pickable() (pygamelib.board_items.ActionableTile
method), 221

set_pickable() (pygamelib.board_items.BoardComplexItem
method), 231

set_pickable() (pygamelib.board_items.BoardItem
method), 248

set_pickable() (pygamelib.board_items.BoardItemComplexComponent
method), 239

set_pickable() (pygamelib.board_items.BoardItemVoid
method), 256

668 Index

pygamelib Documentation, Release 1.3.0

set_pickable() (pygamelib.board_items.Camera
method), 264

set_pickable() (pygamelib.board_items.Character
method), 273

set_pickable() (pygamelib.board_items.ComplexDoor
method), 281

set_pickable() (pygamelib.board_items.ComplexNPC
method), 290

set_pickable() (pygamelib.board_items.ComplexPlayer
method), 299

set_pickable() (pygamelib.board_items.ComplexTreasure
method), 308

set_pickable() (pygamelib.board_items.ComplexWall
method), 317

set_pickable() (pygamelib.board_items.Door
method), 326

set_pickable() (pygamelib.board_items.GenericActionableStructure
method), 334

set_pickable() (pygamelib.board_items.GenericStructure
method), 350

set_pickable() (pygamelib.board_items.GenericStructureComplexComponent
method), 342

set_pickable() (pygamelib.board_items.Immovable
method), 358

set_pickable() (pygamelib.board_items.Movable
method), 366

set_pickable() (pygamelib.board_items.NPC
method), 375

set_pickable() (pygamelib.board_items.Player
method), 383

set_pickable() (pygamelib.board_items.Projectile
method), 395

set_pickable() (pygamelib.board_items.TextItem
method), 403

set_pickable() (pygamelib.board_items.Tile
method), 412

set_pickable() (pygamelib.board_items.Treasure
method), 421

set_pickable() (pygamelib.board_items.Wall
method), 429

set_restorable() (pygamelib.board_items.Actionable
method), 213

set_restorable() (pygamelib.board_items.ActionableTile
method), 222

set_restorable() (pygamelib.board_items.BoardComplexItem
method), 231

set_restorable() (pygamelib.board_items.BoardItem
method), 249

set_restorable() (pygamelib.board_items.BoardItemComplexComponent
method), 240

set_restorable() (pygamelib.board_items.BoardItemVoid
method), 256

set_restorable() (pygamelib.board_items.Camera
method), 265

set_restorable() (pygamelib.board_items.Character
method), 273

set_restorable() (pygamelib.board_items.ComplexDoor
method), 281

set_restorable() (pygamelib.board_items.ComplexNPC
method), 290

set_restorable() (pygamelib.board_items.ComplexPlayer
method), 299

set_restorable() (pygamelib.board_items.ComplexTreasure
method), 308

set_restorable() (pygamelib.board_items.ComplexWall
method), 317

set_restorable() (pygamelib.board_items.Door
method), 326

set_restorable() (pygamelib.board_items.GenericActionableStructure
method), 334

set_restorable() (pygamelib.board_items.GenericStructure
method), 350

set_restorable() (pygamelib.board_items.GenericStructureComplexComponent
method), 342

set_restorable() (pygamelib.board_items.Immovable
method), 358

set_restorable() (pygamelib.board_items.Movable
method), 366

set_restorable() (pygamelib.board_items.NPC
method), 375

set_restorable() (pygamelib.board_items.Player
method), 383

set_restorable() (pygamelib.board_items.Projectile
method), 395

set_restorable() (pygamelib.board_items.TextItem
method), 403

set_restorable() (pygamelib.board_items.Tile
method), 413

set_restorable() (pygamelib.board_items.Treasure
method), 421

set_restorable() (pygamelib.board_items.Wall
method), 430

set_selection() (pygamelib.gfx.ui.ColorPickerDialog
method), 514

set_sprixel() (pygamelib.gfx.core.Sprite method),
496

set_transparency() (pygamelib.gfx.core.Sprite
method), 496

setdefault() (pygamelib.gfx.core.SpriteCollection
method), 488

SEVEN_OCLOCK (pygamelib.assets.graphics.Models at-
tribute), 169

SEVEN_THIRTY (pygamelib.assets.graphics.Models at-
tribute), 169

SEWING_NEEDLE (pygamelib.assets.graphics.Models
attribute), 169

SHALLOW_PAN_OF_FOOD
(pygamelib.assets.graphics.Models attribute),

Index 669

pygamelib Documentation, Release 1.3.0

169
SHAMROCK (pygamelib.assets.graphics.Models at-

tribute), 169
SHARK (pygamelib.assets.graphics.Models attribute),

169
SHAVED_ICE (pygamelib.assets.graphics.Models

attribute), 169
SHEAF_OF_RICE (pygamelib.assets.graphics.Models

attribute), 169
SHIELD (pygamelib.assets.graphics.Models attribute),

169
SHINTO_SHRINE (pygamelib.assets.graphics.Models

attribute), 169
SHIP (pygamelib.assets.graphics.Models attribute), 169
SHOOTING_STAR (pygamelib.assets.graphics.Models

attribute), 169
SHOPPING_BAGS (pygamelib.assets.graphics.Models

attribute), 169
SHOPPING_CART (pygamelib.assets.graphics.Models

attribute), 169
SHORTCAKE (pygamelib.assets.graphics.Models at-

tribute), 169
SHORTS (pygamelib.assets.graphics.Models attribute),

169
SHOULDERED_OPEN_BOX

(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

show() (pygamelib.gfx.ui.ColorPickerDialog method),
515

show() (pygamelib.gfx.ui.Dialog method), 517
show() (pygamelib.gfx.ui.FileDialog method), 519
show() (pygamelib.gfx.ui.GridSelectorDialog method),

521
show() (pygamelib.gfx.ui.LineInputDialog method),

525
show() (pygamelib.gfx.ui.MessageDialog method), 537
show() (pygamelib.gfx.ui.MultiLineInputDialog

method), 539
show() (pygamelib.gfx.ui.ProgressDialog method), 543
show_hidden_files (pygamelib.gfx.ui.FileDialog

attribute), 519
SHOWER (pygamelib.assets.graphics.Models attribute),

169
SHRIMP (pygamelib.assets.graphics.Models attribute),

169
SHUFFLE_TRACKS_BUTTON

(pygamelib.assets.graphics.Models attribute),
169

SHUSHING_FACE (pygamelib.assets.graphics.Models
attribute), 169

SIGN_OF_THE_HORNS
(pygamelib.assets.graphics.Models attribute),
169

SIX_OCLOCK (pygamelib.assets.graphics.Models

attribute), 169
SIX_THIRTY (pygamelib.assets.graphics.Models

attribute), 169
size (pygamelib.board_items.Actionable attribute), 213
size (pygamelib.board_items.ActionableTile attribute),

222
size (pygamelib.board_items.BoardComplexItem at-

tribute), 231
size (pygamelib.board_items.BoardItem attribute), 249
size (pygamelib.board_items.BoardItemComplexComponent

attribute), 240
size (pygamelib.board_items.BoardItemVoid attribute),

256
size (pygamelib.board_items.Camera attribute), 265
size (pygamelib.board_items.Character attribute), 273
size (pygamelib.board_items.ComplexDoor attribute),

281
size (pygamelib.board_items.ComplexNPC attribute),

291
size (pygamelib.board_items.ComplexPlayer attribute),

299
size (pygamelib.board_items.ComplexTreasure at-

tribute), 308
size (pygamelib.board_items.ComplexWall attribute),

317
size (pygamelib.board_items.Door attribute), 326
size (pygamelib.board_items.GenericActionableStructure

attribute), 334
size (pygamelib.board_items.GenericStructure at-

tribute), 350
size (pygamelib.board_items.GenericStructureComplexComponent

attribute), 342
size (pygamelib.board_items.Immovable attribute), 358
size (pygamelib.board_items.Movable attribute), 366
size (pygamelib.board_items.NPC attribute), 375
size (pygamelib.board_items.Player attribute), 383
size (pygamelib.board_items.Projectile attribute), 395
size (pygamelib.board_items.TextItem attribute), 403
size (pygamelib.board_items.Tile attribute), 413
size (pygamelib.board_items.Treasure attribute), 422
size (pygamelib.board_items.Wall attribute), 430
size() (pygamelib.engine.Inventory method), 466
SKATEBOARD (pygamelib.assets.graphics.Models

attribute), 169
SKIER (pygamelib.assets.graphics.Models attribute),

169
SKIS (pygamelib.assets.graphics.Models attribute), 169
SKULL (pygamelib.assets.graphics.Models attribute),

169
SKULL_AND_CROSSBONES

(pygamelib.assets.graphics.Models attribute),
169

SKUNK (pygamelib.assets.graphics.Models attribute),
170

670 Index

pygamelib Documentation, Release 1.3.0

SLED (pygamelib.assets.graphics.Models attribute), 170
SLEEPING_FACE (pygamelib.assets.graphics.Models

attribute), 170
SLEEPY_FACE (pygamelib.assets.graphics.Models at-

tribute), 170
SLIGHTLY_FROWNING_FACE

(pygamelib.assets.graphics.Models attribute),
170

SLIGHTLY_SMILING_FACE
(pygamelib.assets.graphics.Models attribute),
170

SLOPE (pygamelib.assets.graphics.MiscTechnicals at-
tribute), 75

SLOT_MACHINE (pygamelib.assets.graphics.Models at-
tribute), 170

SLOTH (pygamelib.assets.graphics.Models attribute),
170

SMALL_AIRPLANE (pygamelib.assets.graphics.Models
attribute), 170

SMALL_BLUE_DIAMOND
(pygamelib.assets.graphics.Models attribute),
170

SMALL_ORANGE_DIAMOND
(pygamelib.assets.graphics.Models attribute),
170

SMILE (pygamelib.assets.graphics.MiscTechnicals at-
tribute), 75

SMILING_CAT_WITH_HEART_EYES
(pygamelib.assets.graphics.Models attribute),
170

SMILING_FACE (pygamelib.assets.graphics.Models at-
tribute), 170

SMILING_FACE_WITH_HALO
(pygamelib.assets.graphics.Models attribute),
170

SMILING_FACE_WITH_HEART_EYES
(pygamelib.assets.graphics.Models attribute),
170

SMILING_FACE_WITH_HEARTS
(pygamelib.assets.graphics.Models attribute),
170

SMILING_FACE_WITH_HORNS
(pygamelib.assets.graphics.Models attribute),
170

SMILING_FACE_WITH_SMILING_EYES
(pygamelib.assets.graphics.Models attribute),
170

SMILING_FACE_WITH_SUNGLASSES
(pygamelib.assets.graphics.Models attribute),
170

SMILING_FACE_WITH_TEAR
(pygamelib.assets.graphics.Models attribute),
170

SMIRKING_FACE (pygamelib.assets.graphics.Models

attribute), 170
SNAIL (pygamelib.assets.graphics.Models attribute),

170
SNAKE (pygamelib.assets.graphics.Models attribute),

170
SNEEZING_FACE (pygamelib.assets.graphics.Models

attribute), 170
SNOW_CAPPED_MOUNTAIN

(pygamelib.assets.graphics.Models attribute),
170

SNOWBOARDER (pygamelib.assets.graphics.Models at-
tribute), 170

SNOWFLAKE (pygamelib.assets.graphics.Models at-
tribute), 170

SNOWMAN (pygamelib.assets.graphics.Models attribute),
170

SNOWMAN_WITHOUT_SNOW
(pygamelib.assets.graphics.Models attribute),
170

SOAP (pygamelib.assets.graphics.Models attribute), 170
SOCCER_BALL (pygamelib.assets.graphics.Models at-

tribute), 170
SOCKS (pygamelib.assets.graphics.Models attribute),

170
SOFT_ICE_CREAM (pygamelib.assets.graphics.Models

attribute), 170
SOFTBALL (pygamelib.assets.graphics.Models at-

tribute), 170
SOFTWARE_FUNCTION_SYMBOL

(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

SOON_ARROW (pygamelib.assets.graphics.Models
attribute), 170

SOS_BUTTON (pygamelib.assets.graphics.Models
attribute), 170

spacing (pygamelib.gfx.ui.MenuBar attribute), 534
SPADE_SUIT (pygamelib.assets.graphics.Models

attribute), 171
SPAGHETTI (pygamelib.assets.graphics.Models at-

tribute), 171
SPARKLE (pygamelib.assets.graphics.Models attribute),

171
SPARKLER (pygamelib.assets.graphics.Models at-

tribute), 171
SPARKLES (pygamelib.assets.graphics.Models at-

tribute), 171
SPARKLING_HEART (pygamelib.assets.graphics.Models

attribute), 171
SPEAK_NO_EVIL_MONKEY

(pygamelib.assets.graphics.Models attribute),
171

SPEAKER_HIGH_VOLUME
(pygamelib.assets.graphics.Models attribute),
171

Index 671

pygamelib Documentation, Release 1.3.0

SPEAKER_LOW_VOLUME
(pygamelib.assets.graphics.Models attribute),
171

SPEAKER_MEDIUM_VOLUME
(pygamelib.assets.graphics.Models attribute),
171

SPEAKING_HEAD (pygamelib.assets.graphics.Models
attribute), 171

SPEECH_BALLOON (pygamelib.assets.graphics.Models
attribute), 171

SPEEDBOAT (pygamelib.assets.graphics.Models at-
tribute), 171

SPIDER (pygamelib.assets.graphics.Models attribute),
171

SPIDER_WEB (pygamelib.assets.graphics.Models
attribute), 171

SPIRAL_CALENDAR (pygamelib.assets.graphics.Models
attribute), 171

SPIRAL_NOTEPAD (pygamelib.assets.graphics.Models
attribute), 171

SPIRAL_SHELL (pygamelib.assets.graphics.Models at-
tribute), 171

SPONGE (pygamelib.assets.graphics.Models attribute),
171

SPOON (pygamelib.assets.graphics.Models attribute),
171

SPORT_UTILITY_VEHICLE
(pygamelib.assets.graphics.Models attribute),
171

SPORTS_MEDAL (pygamelib.assets.graphics.Models at-
tribute), 171

SPOUTING_WHALE (pygamelib.assets.graphics.Models
attribute), 171

Sprite (class in pygamelib.gfx.core), 489
sprite (pygamelib.board_items.ActionableTile at-

tribute), 222
sprite (pygamelib.board_items.BoardComplexItem at-

tribute), 231
sprite (pygamelib.board_items.ComplexDoor at-

tribute), 281
sprite (pygamelib.board_items.ComplexNPC at-

tribute), 291
sprite (pygamelib.board_items.ComplexPlayer at-

tribute), 300
sprite (pygamelib.board_items.ComplexTreasure at-

tribute), 309
sprite (pygamelib.board_items.ComplexWall at-

tribute), 318
sprite (pygamelib.board_items.TextItem attribute),

404
sprite (pygamelib.board_items.Tile attribute), 413
SpriteCollection (class in pygamelib.gfx.core),

486
Sprixel (class in pygamelib.gfx.core), 498

sprixel() (pygamelib.gfx.core.Sprite method), 497
SQUARE_FOOT (pygamelib.assets.graphics.MiscTechnicals

attribute), 75
SQUARE_LOZENGE (pygamelib.assets.graphics.MiscTechnicals

attribute), 75
SQUARE_WITH_DIAGONAL_CROSSHATCH_FILL

(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUARE_WITH_HORIZONTAL_FILL
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUARE_WITH_LEFT_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUARE_WITH_LOWER_RIGHT_DIAGONAL_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUARE_WITH_ORTHOGONAL_CROSSHATCH_FILL
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUARE_WITH_RIGHT_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUARE_WITH_UPPER_LEFT_DIAGONAL_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUARE_WITH_UPPER_LEFT_TO_LOWER_RIGHT_FILL
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUARE_WITH_UPPER_RIGHT_TO_LOWER_LEFT_FILL
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUARE_WITH_VERTICAL_FILL
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

SQUID (pygamelib.assets.graphics.Models attribute),
171

SQUINTING_FACE_WITH_TONGUE
(pygamelib.assets.graphics.Models attribute),
171

STADIUM (pygamelib.assets.graphics.Models attribute),
171

STAR (pygamelib.assets.graphics.Models attribute), 171
STAR_AND_CRESCENT

(pygamelib.assets.graphics.Models attribute),
171

STAR_OF_DAVID (pygamelib.assets.graphics.Models
attribute), 171

STAR_STRUCK (pygamelib.assets.graphics.Models at-
tribute), 171

start() (pygamelib.actuators.Actuator method), 10
start() (pygamelib.actuators.Behavioral method), 13
start() (pygamelib.actuators.PathActuator method),

16

672 Index

pygamelib Documentation, Release 1.3.0

start() (pygamelib.actuators.PathFinder method), 27
start() (pygamelib.actuators.PatrolActuator method),

20
start() (pygamelib.actuators.RandomActuator

method), 30
start() (pygamelib.actuators.UnidirectionalActuator

method), 34
start() (pygamelib.engine.Game method), 458
start() (pygamelib.gfx.core.Animation method), 482
state (pygamelib.engine.Game attribute), 458
STATION (pygamelib.assets.graphics.Models attribute),

171
STATUE_OF_LIBERTY

(pygamelib.assets.graphics.Models attribute),
171

STEAMING_BOWL (pygamelib.assets.graphics.Models
attribute), 171

STETHOSCOPE (pygamelib.assets.graphics.Models at-
tribute), 171

stop() (pygamelib.actuators.Actuator method), 10
stop() (pygamelib.actuators.Behavioral method), 13
stop() (pygamelib.actuators.PathActuator method), 17
stop() (pygamelib.actuators.PathFinder method), 27
stop() (pygamelib.actuators.PatrolActuator method),

20
stop() (pygamelib.actuators.RandomActuator

method), 31
stop() (pygamelib.actuators.UnidirectionalActuator

method), 34
stop() (pygamelib.engine.Game method), 458
stop() (pygamelib.gfx.core.Animation method), 483
STOP_BUTTON (pygamelib.assets.graphics.Models at-

tribute), 171
STOP_SIGN (pygamelib.assets.graphics.Models at-

tribute), 172
STOPWATCH (pygamelib.assets.graphics.MiscTechnicals

attribute), 75
STOPWATCH (pygamelib.assets.graphics.Models at-

tribute), 171
store_position() (pygamelib.board_items.Actionable

method), 214
store_position() (pygamelib.board_items.ActionableTile

method), 222
store_position() (pygamelib.board_items.BoardComplexItem

method), 232
store_position() (pygamelib.board_items.BoardItem

method), 249
store_position() (pygamelib.board_items.BoardItemComplexComponent

method), 240
store_position() (pygamelib.board_items.BoardItemVoid

method), 257
store_position() (pygamelib.board_items.Camera

method), 265
store_position() (pygamelib.board_items.Character

method), 273
store_position() (pygamelib.board_items.ComplexDoor

method), 282
store_position() (pygamelib.board_items.ComplexNPC

method), 291
store_position() (pygamelib.board_items.ComplexPlayer

method), 300
store_position() (pygamelib.board_items.ComplexTreasure

method), 309
store_position() (pygamelib.board_items.ComplexWall

method), 318
store_position() (pygamelib.board_items.Door

method), 327
store_position() (pygamelib.board_items.GenericActionableStructure

method), 335
store_position() (pygamelib.board_items.GenericStructure

method), 351
store_position() (pygamelib.board_items.GenericStructureComplexComponent

method), 342
store_position() (pygamelib.board_items.Immovable

method), 358
store_position() (pygamelib.board_items.Movable

method), 367
store_position() (pygamelib.board_items.NPC

method), 375
store_position() (pygamelib.board_items.Player

method), 384
store_position() (pygamelib.board_items.Projectile

method), 395
store_position() (pygamelib.board_items.TextItem

method), 404
store_position() (pygamelib.board_items.Tile

method), 413
store_position() (pygamelib.board_items.Treasure

method), 422
store_position() (pygamelib.board_items.Wall

method), 430
store_screen_position()

(pygamelib.actuators.Actuator method),
10

store_screen_position()
(pygamelib.actuators.Behavioral method),
13

store_screen_position()
(pygamelib.actuators.PathActuator method),
17

store_screen_position()
(pygamelib.actuators.PathFinder method),
27

store_screen_position()
(pygamelib.actuators.PatrolActuator method),
20

store_screen_position()
(pygamelib.actuators.RandomActuator

Index 673

pygamelib Documentation, Release 1.3.0

method), 31
store_screen_position()

(pygamelib.actuators.UnidirectionalActuator
method), 34

store_screen_position()
(pygamelib.base.PglBaseObject method),
194

store_screen_position() (pygamelib.base.Text
method), 201

store_screen_position()
(pygamelib.board_items.Actionable method),
214

store_screen_position()
(pygamelib.board_items.ActionableTile
method), 223

store_screen_position()
(pygamelib.board_items.BoardComplexItem
method), 232

store_screen_position()
(pygamelib.board_items.BoardItem method),
249

store_screen_position()
(pygamelib.board_items.BoardItemComplexComponent
method), 240

store_screen_position()
(pygamelib.board_items.BoardItemVoid
method), 257

store_screen_position()
(pygamelib.board_items.Camera method),
265

store_screen_position()
(pygamelib.board_items.Character method),
274

store_screen_position()
(pygamelib.board_items.ComplexDoor
method), 282

store_screen_position()
(pygamelib.board_items.ComplexNPC
method), 292

store_screen_position()
(pygamelib.board_items.ComplexPlayer
method), 300

store_screen_position()
(pygamelib.board_items.ComplexTreasure
method), 309

store_screen_position()
(pygamelib.board_items.ComplexWall
method), 318

store_screen_position()
(pygamelib.board_items.Door method), 327

store_screen_position()
(pygamelib.board_items.GenericActionableStructure
method), 335

store_screen_position()

(pygamelib.board_items.GenericStructure
method), 351

store_screen_position()
(pygamelib.board_items.GenericStructureComplexComponent
method), 343

store_screen_position()
(pygamelib.board_items.Immovable method),
359

store_screen_position()
(pygamelib.board_items.Movable method),
367

store_screen_position()
(pygamelib.board_items.NPC method), 376

store_screen_position()
(pygamelib.board_items.Player method),
384

store_screen_position()
(pygamelib.board_items.Projectile method),
396

store_screen_position()
(pygamelib.board_items.TextItem method),
404

store_screen_position()
(pygamelib.board_items.Tile method), 414

store_screen_position()
(pygamelib.board_items.Treasure method),
422

store_screen_position()
(pygamelib.board_items.Wall method), 430

store_screen_position()
(pygamelib.engine.Board method), 442

store_screen_position()
(pygamelib.engine.Game method), 458

store_screen_position()
(pygamelib.engine.Inventory method), 466

store_screen_position()
(pygamelib.engine.Screen method), 478

store_screen_position()
(pygamelib.gfx.core.Color method), 511

store_screen_position()
(pygamelib.gfx.core.Sprite method), 497

store_screen_position()
(pygamelib.gfx.core.Sprixel method), 505

store_screen_position()
(pygamelib.gfx.particles.CircleEmitter
method), 550

store_screen_position()
(pygamelib.gfx.particles.ColorParticle
method), 555

store_screen_position()
(pygamelib.gfx.particles.ColorPartitionParticle
method), 560

store_screen_position()
(pygamelib.gfx.particles.Particle method),

674 Index

pygamelib Documentation, Release 1.3.0

574
store_screen_position()

(pygamelib.gfx.particles.ParticleEmitter
method), 567

store_screen_position()
(pygamelib.gfx.particles.ParticleSprixel
method), 582

store_screen_position()
(pygamelib.gfx.particles.PartitionParticle
method), 588

store_screen_position()
(pygamelib.gfx.particles.RandomColorParticle
method), 593

store_screen_position()
(pygamelib.gfx.particles.RandomColorPartitionParticle
method), 599

STRAIGHT_RULER (pygamelib.assets.graphics.Models
attribute), 172

STRAIGHTNESS (pygamelib.assets.graphics.MiscTechnicals
attribute), 75

STRAWBERRY (pygamelib.assets.graphics.Models
attribute), 172

STUDIO_MICROPHONE
(pygamelib.assets.graphics.Models attribute),
172

STUFFED_FLATBREAD
(pygamelib.assets.graphics.Models attribute),
172

style (pygamelib.base.Text attribute), 202
SUMMATION_BOTTOM (pygamelib.assets.graphics.MiscTechnicals

attribute), 75
SUMMATION_TOP (pygamelib.assets.graphics.MiscTechnicals

attribute), 75
SUN (pygamelib.assets.graphics.Models attribute), 172
SUN_BEHIND_CLOUD (pygamelib.assets.graphics.Models

attribute), 172
SUN_BEHIND_LARGE_CLOUD

(pygamelib.assets.graphics.Models attribute),
172

SUN_BEHIND_RAIN_CLOUD
(pygamelib.assets.graphics.Models attribute),
172

SUN_BEHIND_SMALL_CLOUD
(pygamelib.assets.graphics.Models attribute),
172

SUN_WITH_FACE (pygamelib.assets.graphics.Models
attribute), 172

SUNFLOWER (pygamelib.assets.graphics.Models at-
tribute), 172

SUNGLASSES (pygamelib.assets.graphics.Models
attribute), 172

SUNRISE (pygamelib.assets.graphics.Models attribute),
172

SUNRISE_OVER_MOUNTAINS

(pygamelib.assets.graphics.Models attribute),
172

SUNSET (pygamelib.assets.graphics.Models attribute),
172

SUPERHERO (pygamelib.assets.graphics.Models at-
tribute), 172

SUPERVILLAIN (pygamelib.assets.graphics.Models at-
tribute), 172

SUSHI (pygamelib.assets.graphics.Models attribute),
172

SUSPENSION_RAILWAY
(pygamelib.assets.graphics.Models attribute),
172

SWAN (pygamelib.assets.graphics.Models attribute), 172
SWEAT_DROPLETS (pygamelib.assets.graphics.Models

attribute), 172
SYMMETRY (pygamelib.assets.graphics.MiscTechnicals

attribute), 75
SYNAGOGUE (pygamelib.assets.graphics.Models at-

tribute), 172
SYRINGE (pygamelib.assets.graphics.Models attribute),

172

T
T_REX (pygamelib.assets.graphics.Models attribute),

174
T_SHIRT (pygamelib.assets.graphics.Models attribute),

174
TACO (pygamelib.assets.graphics.Models attribute), 172
TAKEOUT_BOX (pygamelib.assets.graphics.Models at-

tribute), 172
TAMALE (pygamelib.assets.graphics.Models attribute),

172
TANABATA_TREE (pygamelib.assets.graphics.Models

attribute), 172
TANGERINE (pygamelib.assets.graphics.Models at-

tribute), 172
TAURUS (pygamelib.assets.graphics.Models attribute),

172
TAXI (pygamelib.assets.graphics.Models attribute), 172
TEACUP_WITHOUT_HANDLE

(pygamelib.assets.graphics.Models attribute),
172

TEAPOT (pygamelib.assets.graphics.Models attribute),
172

TEAR_OFF_CALENDAR
(pygamelib.assets.graphics.Models attribute),
172

TEDDY_BEAR (pygamelib.assets.graphics.Models
attribute), 172

TELEPHONE (pygamelib.assets.graphics.Models at-
tribute), 172

TELEPHONE_RECEIVER
(pygamelib.assets.graphics.Models attribute),

Index 675

pygamelib Documentation, Release 1.3.0

173
TELEPHONE_RECORDER

(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

TELESCOPE (pygamelib.assets.graphics.Models at-
tribute), 173

TELEVISION (pygamelib.assets.graphics.Models
attribute), 173

TEN_OCLOCK (pygamelib.assets.graphics.Models
attribute), 173

TEN_THIRTY (pygamelib.assets.graphics.Models
attribute), 173

TENNIS (pygamelib.assets.graphics.Models attribute),
173

TENT (pygamelib.assets.graphics.Models attribute), 173
terminate() (pygamelib.gfx.particles.ColorParticle

method), 555
terminate() (pygamelib.gfx.particles.ColorPartitionParticle

method), 560
terminate() (pygamelib.gfx.particles.Particle

method), 574
terminate() (pygamelib.gfx.particles.PartitionParticle

method), 589
terminate() (pygamelib.gfx.particles.RandomColorParticle

method), 594
terminate() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 599
TEST_TUBE (pygamelib.assets.graphics.Models at-

tribute), 173
Text (class in pygamelib.base), 195
text (pygamelib.base.Text attribute), 202
text (pygamelib.board_items.TextItem attribute), 405
TextItem (class in pygamelib.board_items), 396
THERMOMETER (pygamelib.assets.graphics.Models at-

tribute), 173
THINKING_FACE (pygamelib.assets.graphics.Models

attribute), 173
THIRD_PLACE_MEDAL

(pygamelib.assets.graphics.Models attribute),
173

THONG_SANDAL (pygamelib.assets.graphics.Models at-
tribute), 173

THOUGHT_BALLOON (pygamelib.assets.graphics.Models
attribute), 173

THREAD (pygamelib.assets.graphics.Models attribute),
173

THREE_OCLOCK (pygamelib.assets.graphics.Models at-
tribute), 173

THREE_THIRTY (pygamelib.assets.graphics.Models at-
tribute), 173

THUMBS_DOWN (pygamelib.assets.graphics.Models at-
tribute), 173

THUMBS_UP (pygamelib.assets.graphics.Models at-
tribute), 173

TICKET (pygamelib.assets.graphics.Models attribute),
173

TIGER (pygamelib.assets.graphics.Models attribute),
173

TIGER_FACE (pygamelib.assets.graphics.Models
attribute), 173

Tile (class in pygamelib.board_items), 405
TIMER_CLOCK (pygamelib.assets.graphics.MiscTechnicals

attribute), 75
TIMER_CLOCK (pygamelib.assets.graphics.Models at-

tribute), 173
tint() (pygamelib.gfx.core.Sprite method), 497
TIRED_FACE (pygamelib.assets.graphics.Models

attribute), 173
title (pygamelib.gfx.ui.Box attribute), 513
title (pygamelib.gfx.ui.ColorPickerDialog attribute),

515
title (pygamelib.gfx.ui.GridSelectorDialog attribute),

521
title (pygamelib.gfx.ui.LineInputDialog attribute), 525
title (pygamelib.gfx.ui.Menu attribute), 529
title (pygamelib.gfx.ui.MenuAction attribute), 531
title (pygamelib.gfx.ui.MessageDialog attribute), 537
title (pygamelib.gfx.ui.MultiLineInputDialog at-

tribute), 540
title_width() (pygamelib.gfx.ui.Menu method), 529
title_width() (pygamelib.gfx.ui.MenuAction

method), 531
to_json_file() (pygamelib.gfx.core.SpriteCollection

method), 488
toggle_active() (pygamelib.gfx.particles.CircleEmitter

method), 550
toggle_active() (pygamelib.gfx.particles.ParticleEmitter

method), 568
TOILET (pygamelib.assets.graphics.Models attribute),

173
TOKYO_TOWER (pygamelib.assets.graphics.Models at-

tribute), 173
TOMATO (pygamelib.assets.graphics.Models attribute),

173
TONGUE (pygamelib.assets.graphics.Models attribute),

173
TOOLBOX (pygamelib.assets.graphics.Models attribute),

173
TOOTH (pygamelib.assets.graphics.Models attribute),

173
TOOTHBRUSH (pygamelib.assets.graphics.Models

attribute), 173
TOP_ARROW (pygamelib.assets.graphics.Models at-

tribute), 173
TOP_CURLY_BRACKET

(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

TOP_HALF_INTEGRAL

676 Index

pygamelib Documentation, Release 1.3.0

(pygamelib.assets.graphics.MiscTechnicals
attribute), 75

TOP_HAT (pygamelib.assets.graphics.Models attribute),
173

TOP_LEFT_CORNER (pygamelib.assets.graphics.MiscTechnicals
attribute), 75

TOP_LEFT_CROP (pygamelib.assets.graphics.MiscTechnicals
attribute), 75

TOP_PARENTHESIS (pygamelib.assets.graphics.MiscTechnicals
attribute), 75

TOP_RIGHT_CORNER (pygamelib.assets.graphics.MiscTechnicals
attribute), 76

TOP_RIGHT_CROP (pygamelib.assets.graphics.MiscTechnicals
attribute), 76

TOP_SQUARE_BRACKET
(pygamelib.assets.graphics.MiscTechnicals
attribute), 76

TOP_TORTOISE_SHELL_BRACKET
(pygamelib.assets.graphics.MiscTechnicals
attribute), 76

TORNADO (pygamelib.assets.graphics.Models attribute),
173

TOTAL_RUNOUT (pygamelib.assets.graphics.MiscTechnicals
attribute), 76

TRACKBALL (pygamelib.assets.graphics.Models at-
tribute), 173

TRACTOR (pygamelib.assets.graphics.Models attribute),
173

TRADE_MARK (pygamelib.assets.graphics.Models
attribute), 173

TRAIN (pygamelib.assets.graphics.Models attribute),
174

TRAM (pygamelib.assets.graphics.Models attribute), 174
TRAM_CAR (pygamelib.assets.graphics.Models at-

tribute), 174
TRANSGENDER_SYMBOL

(pygamelib.assets.graphics.Models attribute),
174

Treasure (class in pygamelib.board_items), 415
TRIANGULAR_FLAG (pygamelib.assets.graphics.Models

attribute), 174
TRIANGULAR_RULER (pygamelib.assets.graphics.Models

attribute), 174
TRIDENT_EMBLEM (pygamelib.assets.graphics.Models

attribute), 174
trigger_rendering() (pygamelib.engine.Screen

method), 478
TROLLEYBUS (pygamelib.assets.graphics.Models

attribute), 174
TROPHY (pygamelib.assets.graphics.Models attribute),

174
TROPICAL_DRINK (pygamelib.assets.graphics.Models

attribute), 174
TROPICAL_FISH (pygamelib.assets.graphics.Models

attribute), 174
TRUMPET (pygamelib.assets.graphics.Models attribute),

174
TULIP (pygamelib.assets.graphics.Models attribute),

174
TUMBLER_GLASS (pygamelib.assets.graphics.Models

attribute), 174
TURKEY (pygamelib.assets.graphics.Models attribute),

174
TURNED_NOT_SIGN (pygamelib.assets.graphics.MiscTechnicals

attribute), 76
TURTLE (pygamelib.assets.graphics.Models attribute),

174
TWELVE_OCLOCK (pygamelib.assets.graphics.Models

attribute), 174
TWELVE_THIRTY (pygamelib.assets.graphics.Models

attribute), 174
TWO_HEARTS (pygamelib.assets.graphics.Models

attribute), 174
TWO_HUMP_CAMEL (pygamelib.assets.graphics.Models

attribute), 174
TWO_OCLOCK (pygamelib.assets.graphics.Models

attribute), 174
TWO_THIRTY (pygamelib.assets.graphics.Models

attribute), 174

U
UiConfig (class in pygamelib.gfx.ui), 544
UMBRELLA (pygamelib.assets.graphics.Models at-

tribute), 174
UMBRELLA_ON_GROUND

(pygamelib.assets.graphics.Models attribute),
174

UMBRELLA_WITH_RAIN_DROPS
(pygamelib.assets.graphics.Models attribute),
174

UNAMUSED_FACE (pygamelib.assets.graphics.Models
attribute), 174

UNDO_SYMBOL (pygamelib.assets.graphics.MiscTechnicals
attribute), 76

UNICORN (pygamelib.assets.graphics.Models attribute),
174

UnidirectionalActuator (class in
pygamelib.actuators), 31

unit() (pygamelib.base.Vector2D method), 205
UNLOCKED (pygamelib.assets.graphics.Models at-

tribute), 174
UP_ARROW (pygamelib.assets.graphics.Models at-

tribute), 174
UP_ARROWHEAD (pygamelib.assets.graphics.MiscTechnicals

attribute), 76
UP_ARROWHEAD_BETWEEN_TWO_HORIZONTAL_BARS

(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 76

Index 677

pygamelib Documentation, Release 1.3.0

UP_BUTTON (pygamelib.assets.graphics.Models at-
tribute), 174

UP_DOUBLE_AND_HORIZONTAL_SINGLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_DOUBLE_AND_LEFT_SINGLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_DOUBLE_AND_RIGHT_SINGLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_DOWN_ARROW (pygamelib.assets.graphics.Models
attribute), 174

UP_HEAVY_AND_DOWN_HORIZONTAL_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_HEAVY_AND_HORIZONTAL_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_HEAVY_AND_LEFT_DOWN_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_HEAVY_AND_LEFT_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_HEAVY_AND_RIGHT_DOWN_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_HEAVY_AND_RIGHT_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_LEFT_ARROW (pygamelib.assets.graphics.Models
attribute), 174

UP_LIGHT_AND_DOWN_HORIZONTAL_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_LIGHT_AND_HORIZONTAL_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_LIGHT_AND_LEFT_DOWN_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_LIGHT_AND_LEFT_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_LIGHT_AND_RIGHT_DOWN_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_LIGHT_AND_RIGHT_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_POINTING_TRIANGLE_WITH_LEFT_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

UP_POINTING_TRIANGLE_WITH_RIGHT_HALF_BLACK
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

UP_RIGHT_ARROW (pygamelib.assets.graphics.Models
attribute), 175

UP_SINGLE_AND_HORIZONTAL_DOUBLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_SINGLE_AND_LEFT_DOUBLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

UP_SINGLE_AND_RIGHT_DOUBLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

update() (pygamelib.engine.Screen method), 478
update() (pygamelib.gfx.core.SpriteCollection

method), 489
update() (pygamelib.gfx.particles.CircleEmitter

method), 550
update() (pygamelib.gfx.particles.ColorParticle

method), 555
update() (pygamelib.gfx.particles.ColorPartitionParticle

method), 560
update() (pygamelib.gfx.particles.Particle method),

575
update() (pygamelib.gfx.particles.ParticleEmitter

method), 568
update() (pygamelib.gfx.particles.PartitionParticle

method), 589
update() (pygamelib.gfx.particles.RandomColorParticle

method), 594
update() (pygamelib.gfx.particles.RandomColorPartitionParticle

method), 599
update_menu_entry() (pygamelib.engine.Game

method), 458
update_sprite() (pygamelib.board_items.ActionableTile

method), 223
update_sprite() (pygamelib.board_items.BoardComplexItem

method), 232
update_sprite() (pygamelib.board_items.ComplexDoor

method), 282
update_sprite() (pygamelib.board_items.ComplexNPC

method), 292
update_sprite() (pygamelib.board_items.ComplexPlayer

method), 301
update_sprite() (pygamelib.board_items.ComplexTreasure

method), 310
update_sprite() (pygamelib.board_items.ComplexWall

method), 319
update_sprite() (pygamelib.board_items.TextItem

method), 405
update_sprite() (pygamelib.board_items.Tile

method), 414
UPPER_HALF_BLOCK (pygamelib.assets.graphics.Blocks

678 Index

pygamelib Documentation, Release 1.3.0

attribute), 38
UPPER_HALF_CIRCLE

(pygamelib.assets.graphics.GeometricShapes
attribute), 55

UPPER_HALF_INVERSE_WHITE_CIRCLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

UPPER_LEFT_OR_LOWER_RIGHT_CURLY_BRACKET_SECTION
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 76

UPPER_LEFT_QUADRANT_CIRCULAR_ARC
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

UPPER_LEFT_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

UPPER_ONE_EIGHTH_BLOCK
(pygamelib.assets.graphics.Blocks attribute),
38

UPPER_RIGHT_OR_LOWER_LEFT_CURLY_BRACKET_SECTION
(pygamelib.assets.graphics.MiscTechnicals at-
tribute), 76

UPPER_RIGHT_QUADRANT_CIRCULAR_ARC
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

UPPER_RIGHT_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 55

UPSIDE_DOWN_FACE (pygamelib.assets.graphics.Models
attribute), 174

UPWARDS_BUTTON (pygamelib.assets.graphics.Models
attribute), 174

user_input (pygamelib.gfx.ui.ColorPickerDialog at-
tribute), 515

user_input (pygamelib.gfx.ui.Dialog attribute), 517
user_input (pygamelib.gfx.ui.FileDialog attribute),

519
user_input (pygamelib.gfx.ui.GridSelectorDialog at-

tribute), 521
user_input (pygamelib.gfx.ui.LineInputDialog

attribute), 525
user_input (pygamelib.gfx.ui.MessageDialog at-

tribute), 537
user_input (pygamelib.gfx.ui.MultiLineInputDialog

attribute), 540
user_input (pygamelib.gfx.ui.ProgressDialog at-

tribute), 544

V
value (pygamelib.gfx.ui.ProgressBar attribute), 542
value (pygamelib.gfx.ui.ProgressDialog attribute), 544
value() (pygamelib.engine.Inventory method), 467
values() (pygamelib.gfx.core.SpriteCollection

method), 489

VAMPIRE (pygamelib.assets.graphics.Models attribute),
175

vcenter (pygamelib.engine.Screen attribute), 479
Vector2D (class in pygamelib.base), 202
VERTICAL_DOUBLE_AND_HORIZONTAL_SINGLE

(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_DOUBLE_AND_LEFT_SINGLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_DOUBLE_AND_RIGHT_SINGLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_HEAVY_AND_HORIZONTAL_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_HEAVY_AND_LEFT_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_HEAVY_AND_RIGHT_LIGHT
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_LIGHT_AND_HORIZONTAL_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_LIGHT_AND_LEFT_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_LIGHT_AND_RIGHT_HEAVY
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_LINE_EXTENSION
(pygamelib.assets.graphics.MiscTechnicals
attribute), 76

VERTICAL_LINE_WITH_MIDDLE_DOT
(pygamelib.assets.graphics.MiscTechnicals
attribute), 76

VERTICAL_SINGLE_AND_HORIZONTAL_DOUBLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_SINGLE_AND_LEFT_DOUBLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 48

VERTICAL_SINGLE_AND_RIGHT_DOUBLE
(pygamelib.assets.graphics.BoxDrawings
attribute), 49

vertical_spacing (pygamelib.gfx.core.Font at-
tribute), 486

VERTICAL_TRAFFIC_LIGHT
(pygamelib.assets.graphics.Models attribute),
175

VIBRATION_MODE (pygamelib.assets.graphics.Models
attribute), 175

VICTORY_HAND (pygamelib.assets.graphics.Models at-

Index 679

pygamelib Documentation, Release 1.3.0

tribute), 175
VIDEO_CAMERA (pygamelib.assets.graphics.Models at-

tribute), 175
VIDEO_GAME (pygamelib.assets.graphics.Models

attribute), 175
VIDEOCASSETTE (pygamelib.assets.graphics.Models

attribute), 175
VIEWDATA_SQUARE (pygamelib.assets.graphics.MiscTechnicals

attribute), 76
VIOLIN (pygamelib.assets.graphics.Models attribute),

175
VIRGO (pygamelib.assets.graphics.Models attribute),

175
VOLCANO (pygamelib.assets.graphics.Models attribute),

175
VOLLEYBALL (pygamelib.assets.graphics.Models

attribute), 175
VS_BUTTON (pygamelib.assets.graphics.Models at-

tribute), 175
VULCAN_SALUTE (pygamelib.assets.graphics.Models

attribute), 175

W
WAFFLE (pygamelib.assets.graphics.Models attribute),

175
Wall (class in pygamelib.board_items), 423
WANING_CRESCENT_MOON

(pygamelib.assets.graphics.Models attribute),
175

WANING_GIBBOUS_MOON
(pygamelib.assets.graphics.Models attribute),
175

warn() (pygamelib.base.Text static method), 202
WARNING (pygamelib.assets.graphics.Models attribute),

175
WASTEBASKET (pygamelib.assets.graphics.Models at-

tribute), 175
WATCH (pygamelib.assets.graphics.MiscTechnicals at-

tribute), 76
WATCH (pygamelib.assets.graphics.Models attribute),

175
WATER_BUFFALO (pygamelib.assets.graphics.Models

attribute), 175
WATER_CLOSET (pygamelib.assets.graphics.Models at-

tribute), 175
WATER_WAVE (pygamelib.assets.graphics.Models

attribute), 175
WATERMELON (pygamelib.assets.graphics.Models

attribute), 175
WAVING_HAND (pygamelib.assets.graphics.Models at-

tribute), 175
WAVY_DASH (pygamelib.assets.graphics.Models at-

tribute), 175

WAVY_LINE (pygamelib.assets.graphics.MiscTechnicals
attribute), 76

WAXING_CRESCENT_MOON
(pygamelib.assets.graphics.Models attribute),
175

WAXING_GIBBOUS_MOON
(pygamelib.assets.graphics.Models attribute),
175

WEARY_CAT (pygamelib.assets.graphics.Models at-
tribute), 175

WEARY_FACE (pygamelib.assets.graphics.Models
attribute), 175

WEDDING (pygamelib.assets.graphics.Models attribute),
175

WHALE (pygamelib.assets.graphics.Models attribute),
175

WHEEL_OF_DHARMA (pygamelib.assets.graphics.Models
attribute), 175

WHEELCHAIR_SYMBOL
(pygamelib.assets.graphics.Models attribute),
175

white() (pygamelib.base.Text static method), 202
white_bright() (pygamelib.base.Text static

method), 202
WHITE_BULLET (pygamelib.assets.graphics.GeometricShapes

attribute), 56
WHITE_CANE (pygamelib.assets.graphics.Models

attribute), 175
WHITE_CIRCLE (pygamelib.assets.graphics.GeometricShapes

attribute), 56
WHITE_CIRCLE (pygamelib.assets.graphics.Models at-

tribute), 175
WHITE_CIRCLE_WITH_LOWER_LEFT_QUADRANT

(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_CIRCLE_WITH_LOWER_RIGHT_QUADRANT
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_CIRCLE_WITH_UPPER_LEFT_QUADRANT
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_CIRCLE_WITH_UPPER_RIGHT_QUADRANT
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_DIAMOND (pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_DIAMOND_CONTAINING_BLACK_SMALL_DIAMOND
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

white_dim() (pygamelib.base.Text static method), 202
WHITE_DOWN_POINTING_SMALL_TRIANGLE

(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_DOWN_POINTING_TRIANGLE

680 Index

pygamelib Documentation, Release 1.3.0

(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_EXCLAMATION_MARK
(pygamelib.assets.graphics.Models attribute),
176

WHITE_FLAG (pygamelib.assets.graphics.Models
attribute), 176

WHITE_FLOWER (pygamelib.assets.graphics.Models at-
tribute), 176

WHITE_HAIR (pygamelib.assets.graphics.Models
attribute), 176

WHITE_HEART (pygamelib.assets.graphics.Models at-
tribute), 176

WHITE_LARGE_SQUARE
(pygamelib.assets.graphics.Models attribute),
176

WHITE_LEFT_POINTING_POINTER
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_LEFT_POINTING_SMALL_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_LEFT_POINTING_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_MEDIUM_SMALL_SQUARE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_MEDIUM_SMALL_SQUARE
(pygamelib.assets.graphics.Models attribute),
176

WHITE_MEDIUM_SQUARE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_MEDIUM_SQUARE
(pygamelib.assets.graphics.Models attribute),
176

WHITE_PARALLELOGRAM
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_QUESTION_MARK
(pygamelib.assets.graphics.Models attribute),
176

white_rect() (pygamelib.gfx.core.Sprixel class
method), 505

white_rect() (pygamelib.gfx.particles.ParticleSprixel
class method), 582

WHITE_RECTANGLE (pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_RIGHT_POINTING_POINTER
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_RIGHT_POINTING_SMALL_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes

attribute), 56
WHITE_RIGHT_POINTING_TRIANGLE

(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_SMALL_SQUARE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_SMALL_SQUARE
(pygamelib.assets.graphics.Models attribute),
176

WHITE_SQUARE (pygamelib.assets.graphics.GeometricShapes
attribute), 56

white_square() (pygamelib.gfx.core.Sprixel class
method), 505

white_square() (pygamelib.gfx.particles.ParticleSprixel
class method), 582

WHITE_SQUARE_BUTTON
(pygamelib.assets.graphics.Models attribute),
176

WHITE_SQUARE_CONTAINING_BLACK_SMALL_SQUARE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_SQUARE_WITH_CENTRE_VERTICAL_LINE
(pygamelib.assets.graphics.MiscTechnicals
attribute), 76

WHITE_SQUARE_WITH_LOWER_LEFT_QUADRANT
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_SQUARE_WITH_LOWER_RIGHT_QUADRANT
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_SQUARE_WITH_ROUNDED_CORNERS
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_SQUARE_WITH_UPPER_LEFT_QUADRANT
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_SQUARE_WITH_UPPER_RIGHT_QUADRANT
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_SQUARE_WITH_VERTICAL_BISECTING_LINE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_TRAPEZIUM (pygamelib.assets.graphics.MiscTechnicals
attribute), 76

WHITE_UP_POINTING_SMALL_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_UP_POINTING_TRIANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

WHITE_UP_POINTING_TRIANGLE_WITH_DOT
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

Index 681

pygamelib Documentation, Release 1.3.0

WHITE_VERTICAL_RECTANGLE
(pygamelib.assets.graphics.GeometricShapes
attribute), 56

width (pygamelib.board_items.Actionable attribute),
214

width (pygamelib.board_items.ActionableTile at-
tribute), 223

width (pygamelib.board_items.BoardComplexItem at-
tribute), 233

width (pygamelib.board_items.BoardItem attribute),
250

width (pygamelib.board_items.BoardItemComplexComponent
attribute), 240

width (pygamelib.board_items.BoardItemVoid at-
tribute), 257

width (pygamelib.board_items.Camera attribute), 265
width (pygamelib.board_items.Character attribute),

274
width (pygamelib.board_items.ComplexDoor attribute),

283
width (pygamelib.board_items.ComplexNPC attribute),

292
width (pygamelib.board_items.ComplexPlayer at-

tribute), 301
width (pygamelib.board_items.ComplexTreasure

attribute), 310
width (pygamelib.board_items.ComplexWall attribute),

319
width (pygamelib.board_items.Door attribute), 327
width (pygamelib.board_items.GenericActionableStructure

attribute), 335
width (pygamelib.board_items.GenericStructure

attribute), 351
width (pygamelib.board_items.GenericStructureComplexComponent

attribute), 343
width (pygamelib.board_items.Immovable attribute),

359
width (pygamelib.board_items.Movable attribute), 367
width (pygamelib.board_items.NPC attribute), 376
width (pygamelib.board_items.Player attribute), 384
width (pygamelib.board_items.Projectile attribute), 396
width (pygamelib.board_items.TextItem attribute), 405
width (pygamelib.board_items.Tile attribute), 414
width (pygamelib.board_items.Treasure attribute), 422
width (pygamelib.board_items.Wall attribute), 430
width (pygamelib.engine.Board attribute), 442
width (pygamelib.engine.Screen attribute), 479
width (pygamelib.gfx.core.Sprite attribute), 498
width (pygamelib.gfx.ui.Box attribute), 513
WILTED_FLOWER (pygamelib.assets.graphics.Models

attribute), 176
WIND_CHIME (pygamelib.assets.graphics.Models

attribute), 176
WIND_FACE (pygamelib.assets.graphics.Models at-

tribute), 176
WINDOW (pygamelib.assets.graphics.Models attribute),

176
WINE_GLASS (pygamelib.assets.graphics.Models

attribute), 176
WINKING_FACE (pygamelib.assets.graphics.Models at-

tribute), 176
WINKING_FACE_WITH_TONGUE

(pygamelib.assets.graphics.Models attribute),
176

WOLF (pygamelib.assets.graphics.Models attribute), 176
WOMAN (pygamelib.assets.graphics.Models attribute),

176
WOMAN_AND_MAN_HOLDING_HANDS

(pygamelib.assets.graphics.Models attribute),
176

WOMAN_DANCING (pygamelib.assets.graphics.Models
attribute), 176

WOMAN_WITH_HEADSCARF
(pygamelib.assets.graphics.Models attribute),
176

WOMANS_BOOT (pygamelib.assets.graphics.Models at-
tribute), 176

WOMANS_CLOTHES (pygamelib.assets.graphics.Models
attribute), 176

WOMANS_HAT (pygamelib.assets.graphics.Models
attribute), 176

WOMANS_SANDAL (pygamelib.assets.graphics.Models
attribute), 176

WOMEN_HOLDING_HANDS
(pygamelib.assets.graphics.Models attribute),
176

WOMENS_ROOM (pygamelib.assets.graphics.Models at-
tribute), 176

WOOD (pygamelib.assets.graphics.Models attribute), 176
WOOZY_FACE (pygamelib.assets.graphics.Models

attribute), 176
WORLD_MAP (pygamelib.assets.graphics.Models at-

tribute), 176
WORM (pygamelib.assets.graphics.Models attribute), 176
WORRIED_FACE (pygamelib.assets.graphics.Models at-

tribute), 176
WRAPPED_GIFT (pygamelib.assets.graphics.Models at-

tribute), 176
WRENCH (pygamelib.assets.graphics.Models attribute),

176
WRITING_HAND (pygamelib.assets.graphics.Models at-

tribute), 177

X
x (pygamelib.base.Vector2D attribute), 205
x (pygamelib.gfx.particles.CircleEmitter attribute), 550
x (pygamelib.gfx.particles.ColorParticle attribute), 556

682 Index

pygamelib Documentation, Release 1.3.0

x (pygamelib.gfx.particles.ColorPartitionParticle at-
tribute), 561

x (pygamelib.gfx.particles.Particle attribute), 575
x (pygamelib.gfx.particles.ParticleEmitter attribute), 568
x (pygamelib.gfx.particles.PartitionParticle attribute),

589
x (pygamelib.gfx.particles.RandomColorParticle at-

tribute), 594
x (pygamelib.gfx.particles.RandomColorPartitionParticle

attribute), 599
X_IN_A_RECTANGLE_BOX

(pygamelib.assets.graphics.MiscTechnicals
attribute), 76

Y
y (pygamelib.base.Vector2D attribute), 205
y (pygamelib.gfx.particles.CircleEmitter attribute), 550
y (pygamelib.gfx.particles.ColorParticle attribute), 556
y (pygamelib.gfx.particles.ColorPartitionParticle at-

tribute), 561
y (pygamelib.gfx.particles.Particle attribute), 575
y (pygamelib.gfx.particles.ParticleEmitter attribute), 568
y (pygamelib.gfx.particles.PartitionParticle attribute),

589
y (pygamelib.gfx.particles.RandomColorParticle at-

tribute), 594
y (pygamelib.gfx.particles.RandomColorPartitionParticle

attribute), 599
YARN (pygamelib.assets.graphics.Models attribute), 177
YAWNING_FACE (pygamelib.assets.graphics.Models at-

tribute), 177
yellow() (pygamelib.base.Text static method), 202
yellow_bright() (pygamelib.base.Text static

method), 202
YELLOW_CIRCLE (pygamelib.assets.graphics.Models

attribute), 177
yellow_dim() (pygamelib.base.Text static method),

202
YELLOW_HEART (pygamelib.assets.graphics.Models at-

tribute), 177
yellow_rect() (pygamelib.gfx.core.Sprixel class

method), 506
yellow_rect() (pygamelib.gfx.particles.ParticleSprixel

class method), 583
YELLOW_SQUARE (pygamelib.assets.graphics.Models

attribute), 177
yellow_square() (pygamelib.gfx.core.Sprixel class

method), 506
yellow_square() (pygamelib.gfx.particles.ParticleSprixel

class method), 583
YEN_BANKNOTE (pygamelib.assets.graphics.Models at-

tribute), 177
YIN_YANG (pygamelib.assets.graphics.Models at-

tribute), 177

YO_YO (pygamelib.assets.graphics.Models attribute),
177

Z
ZANY_FACE (pygamelib.assets.graphics.Models at-

tribute), 177
ZEBRA (pygamelib.assets.graphics.Models attribute),

177
ZIPPER_MOUTH_FACE

(pygamelib.assets.graphics.Models attribute),
177

ZOMBIE (pygamelib.assets.graphics.Models attribute),
177

ZZZ (pygamelib.assets.graphics.Models attribute), 177

Index 683

	Forewords
	Introduction
	Tutorials
	actuators
	assets
	base
	board_items
	constants
	engine
	gfx
	Credits
	Release notes

	Indices and tables
	Python Module Index
	Index

